Úvod Struktura počítače Logické obvody
|
|
- Jana Mašková
- před 6 lety
- Počet zobrazení:
Transkript
1 MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Úvod Struktura počítače Logické obvody České vysoké učení technické Fakulta elektrotechnická A1B14MIS Mikroprocesory pro výkonové systémy 01 Ver.1.40 J. Zděnek, 20171
2 Struktura předmětu Trochu historie digitální techniky Přechod od analogové světa do digitálního Číslicový počítač, struktura, jednotky, propojení Transistor v digitální technice Logické obvody, formy popisu, Kombinační obvody, návrh a realizace z hradel Sekvenční obvody, návrh a realizace Typické kombinační a sekvenční obvody v počítačích výkonových systémů Data, jejich zobrazení a zpracování Systémová struktura počítače Procesor, paměti Systém přerušení Periferie pro řízení výkonových systémů Periferie pro komunikaci A1B14MIS Mikroprocesory pro výkonové systémy 01 2
3 Cíle předmětu Přehled o architektuře mikropočítačů pro řízení výkonových systému, včetně historických souvislostí vývoje digitální techniky Náplň odpovídá předmětům Digital Design a "Embedded Systems" Využívá programovatelné obvody Seznamuje s moderními návrhovými CAD nástroji (Computer Aided Design) Seznamuje s postupem návrhu číslicových obvodů včetně metodiky ověření návrhu v hardware Seznamuje s postupem návrhu řídících programů mikropočítačů výkonových systémů (používá programovací jazyk C A1B14MIS Mikroprocesory pro výkonové systémy 01 3
4 Podmínky zápočtu a zkoušky Předmět A1B14MIS: 2+2 týdně, zápočet, zkouška Cvičení všechna laboratorní Zápočet za body z laboratorních úloh a testu na cvičení: Max 65 bodů, na zápočet min 32 bodů 24 bodů čtyři fungující laboratorní úlohy 5 bodů - Kombinační obvody (blok KOM) 6 bodů Sekvenční obvody (blok SEQ) 6 bodů Malý servopohon, část 1 (blok MSP1) 7 bodů Malý servopohon, část 2 (blok MSP2) 36 bodů test na cvičení (min 18 bodů) 5 bodů aktivita na cvičení Zkouška: Min 55 bodů ze cvičení = zkouška jen malá ústní (hodnocení A, B, C) Jinak body ze cvičení + písemný zkouškový test (až 35 bodů, min 10) Možnost: +ústní zkouška (odečte se 10 bodů, možno získat 20 bodů) A1B14MIS Mikroprocesory pro výkonové systémy 01 4
5 Program laboratorních cvičení Týden Blok Program Týden Blok Program 1. - Úvod do ISE 7. MSP1 Malý servopohon, část 1 2. KOM Kombinační obvody 8. MSP1 Malý servopohon, část 1 3. KOM Kombinační obvody 9. MSP2 Malý servopohon, část 2 4. SEK Sekvenční obvody 10. MSP2 Malý servopohon, část 2 5. SEK Sekvenční obvody 11. MSP2 Malý servopohon, část Úvod do MPLAB Test Dodatečné odevzdání úloh Bloky KOM a SEK se cvičí na CAD systému Xilinx ISEWebpack a FPGA Spartan Bloky MSP1 a MSP2 se cvičí na IDE Microchip MPLAB a pic18f Software ISEWebpack i MPLAB jsou pro domácí práci studentů k dispozici ke stažení z webu a instalaci zdarma Úspěšnéřešení laboratorních úloh => předpokládá účast na přednáškách a podstatnou domácí přípravu A1B14MIS Mikroprocesory pro výkonové systémy 01 5
6 Zdroje informací Přednášky k předmětu A1B14MIS Web předmětu A1B14MIS Řešené příklady na webu předmětu Návody k přípravkům používaných v laboratorních cvičeních (jsou na webu předmětu) Návod na stažení a instalaci CAD Xilinx ISEWebpack (web předmětu) Návod na stažení a instalaci IDE Microchip MPLAB (web předmětu) Firemní materiály firem Digilent a Microchip k přípravkům používaných v laboratorních cvičeních (web předmětu) On line help v ISEWebpack On line help v MPLAB Pinker J., Poupa M.:Číslicové systémy a jazyk VHDL, BEN, Praha A1B14MIS Mikroprocesory pro výkonové systémy 01 6
7 Co je číslicový počítač (Digital Computer)? Zobrazení dat Nespojité diskrétní (digitální, číslicové) Spojité analogové Počítač Číslicový nespojité zobrazení dat Analogový spojité zobrazení dat Hybridní oba způsoby A1B14MIS Mikroprocesory pro výkonové systémy 01 7
8 Technologie dramatický rozvoj Procesory Logická kapacita: o 30% za rok Hodinová frekvence: o 20% za rok Hlavní paměť Mooreův zákon DRAM kapacita: o 60% za rok (4x každé 3 roky) Rychlost přístupová doba: o 10% za rok Cena za bit: snížení o 25% za rok Disk Kapacita: o 60% za rok Využití dat: o 100% každých 9 měsíců Počítačové sítě Sířka pásma o 100% za rok! Embedded (vestavné) mikroprocesory Plovoucíčárka, 32bitů, velká paměť programu i dat, velký výkon Vestavěnéřadiče pro komunikaci (Ethernet, CAN, ) A1B14MIS Mikroprocesory pro výkonové systémy 01 8
9 Mooreův zákon The number of transistors on a chip doubles every 18 months, By Intel co-founder Gordon Moore regarding the pace of semiconductor technology. He made this famous comment in 1965 when there were approximately 60 devices on a chip. Proving Moore's law to be rather accurate, four decades later, Intel place 1.7 billion transistors on its Itanium chip. In 1975, Moore extended the 18 months to 24 months. More recently, he said that: The cost of a semiconductor manufacturing plant doubles with each generation of microprocessor. A1B14MIS Mikroprocesory pro výkonové systémy 01 9
10 Mooreův zákon Itanium Počet transistorů na čipu Pentium 8080A x let A1B14MIS Mikroprocesory pro výkonové systémy 01 10
11 Výkon vs roky Výkon x 40 let A1B14MIS Mikroprocesory pro výkonové systémy 01 11
12 Historie vývojové mezníky 3000 let př.n.l. Babylon vynalezen Abakus Současný model Starověký Řím A1B14MIS Mikroprocesory pro výkonové systémy 01 12
13 Historie vývojové mezníky 1623 W. Schickard první mechanický kalkulátor 1642 B. Pascal více rozšířený mechanický kalkulátor 1834 Ch. Babbage - kalkulátor pro výpočet logaritmů Charles Babbage analytical engine (1834) První skutečný počítač Měl čtyři části Store (paměť), Mill (CPU), Input section (čtečka děrných karet z měděného plechu), Output section (děrovačka karet). Neměl operační systém. Kapacita paměti 1000 slov (slovo 50 dekadických cifer) Millčetl operandy z paměti, uměl +, -, *, -, a výsledek zapsal zpět do paměti. Velký pokrok počítač byl universální,četl program a data z děrných karet a výsledek přenesl do výstupních karet Programoval se v jednoduchém assembleru Programátorka Ada Lovelace (dcera básnika Byrona) Počítač nikdy nepracoval uspokojivě, nepřesné mech.součásti Literatura: [2],[3] A1B14MIS Mikroprocesory pro výkonové systémy 01 13
14 Historie vývojové mezníky 1854 G. Boole matematické základy logiky 1890 H. Holleright založil TMC z niž v r vzniklo IBM 1936 A. M. Turing teorie konečných automatů (FSA, FSM) 1938 K. Zuse první binární elektromechanický kalkulátor 1943 fa IBM & Harvard un. MARK 1 velký elektromech. kalkulátor 1944 Pennsylvania un. ENIAC první zcela funkční elektronický kalk W. Schockley, W. Brattain, J. Bardeen vynález tranzistoru 1951 fa UNIVAC první komerční počítač 1953 fa IBM elektronický počítač IBM fa Texas Instruments první integrovaný obvod 1959 fa Fairchild planární proces základ masové výroby integr. obvodů 1963 fa Fairchild první hradla MOSFET (CMOS) A1B14MIS Mikroprocesory pro výkonové systémy 01 14
15 Historie vývojové mezníky 1963 fa DEC první minipočítač 1965 G. Moore Mooreův zákon o rychlosti růstu integrace 1969 fa IBM programovatelné logické pole (PLA) na čipu 1971 fa Intel první mikroprocesor (i4004) 1978 fa Monolitc Memories Programmable Array Logic (PAL pak GAL) Embedded mikroprocesory (8048, 8051, Z8, ) 1982 fa Texas Instruments Signálový procesor 1981 fa IBM osobní počítač (PC) 1983 Intermetrics, IBM, Texas Instruments VHDL (Hardware Description Language) jazyk pro návrh a simulaci logických obvodů 1984 fa XILINX obvody FPGA Field Programmable Gate Arrays) 1984 fa GDA Verilog jazyk pro návrh logických obvodů 1987 VHDL IEEE standardem 1995 Verilog IEEE standardem Dnes typický pohonářský signálový procesor např. TI320F28335 A1B14MIS Mikroprocesory pro výkonové systémy 01 15
16 Historie blízká minulost - shrnutí Více než 50 let od vytvoření 1. univerzálního elektronického počítače Dnešní PC jsou výkonnější než počítač z r za miliony HW průlom: VLSI technologie a mikroprocesory (70. léta) SW průlom: univerzální na výrobci nezávislé OS (UNIX) a přechod od programování ve strojovém jazyku (SOJ) k vyšších programovacím jazykům Nástup RISC (Reduced Instruction Set Computer) - důsledek: paralelizmus na úrovní zpracování instrukcí ILP (Instruction Level Parallelism), tj. proudové zpracování instrukcí atd. používaní vnitřních vyrovnávacích skrytých pamětí (cache) Průlom v navrhování: vývoj kvantitativního přístupu k návrhu a analýze počítačů, který využívá empirické pozorování, experimentování a simulace A1B14MIS Mikroprocesory pro výkonové systémy 01 16
17 Chronologie v datech - shrnutí 60. léta: dominantní velké sálové počítače s aplikacemi jako: zpracováni dat ve finanční sféře rozsáhlé vědeckotechnické výpočty 70. léta: minipočítače pro aplikace ve vědeckých laboratořích a ve školách 80. léta: Nástup vestavných (embedded) počítačů do různých oblastní techniky Stolní počítače založené na mikroprocesorech, servery a lokální sítě pro větší úlohy s větší pamětí a výkonem 90. léta: Embedded počítače ve všech oblastech techniky Internet a WWW technologie Současnost: rozdělení počítačového trhu na 3 oblasti charakterizované rozdílným použitím, požadavky a počítačovou technologií: osobní, stolní a přenosné počítače servery a výkonné paralelní počítače a superpočítače vestavné (embedded) a řídící počítače v jednoúčelových zařízeních A1B14MIS Mikroprocesory pro výkonové systémy 01 17
18 Číslicový počítač (Digital Computer) Svět v okolí počítače většínou analogový, někdy digitální Zobrazení dat uvnitřčíslicového počítače Nespojité diskrétní (digitální, číslicové) Vstup počítače Analogový signál nutno převést na digitální Digitální použije počítač přímo (někdy po upravě),? Příklad? Výstup počítače Digitální signál nutno převést na analogový (pokud požadováno) Digitální výstup ovládá počítač přímo (někdy po upravě)? Příklad? A1B14MIS Mikroprocesory pro výkonové systémy 01 18
19 Spojitá funkce času Spojitá funkce času x (t) x (t) t [s] A1B14MIS Mikroprocesory pro výkonové systémy 01 19
20 Vzorkování v čase Vzorkování v čase, číselné vzorky x (k) x (k) Vzorky označené pořadovým číslem k, skutečný čas t = kt) k [1] A1B14MIS Mikroprocesory pro výkonové systémy 01 20
21 Kvantování v amplitudě Číselné vzorky, kvantování v amplitudě x1 (k) Vzorky odebrané ze spojitého signálu Vzorky po kvantování v amplitudě 12 Proč kvantovat? 10 x (k), x1(k) V počítači kvantování v amplitudě (podle počtu bitů slova, zde 4 bity) k [1] A1B14MIS Mikroprocesory pro výkonové systémy 01 21
22 Přechod spojitý signál počítač (číslo) A1B14MIS Mikroprocesory pro výkonové systémy 01 22
23 Číselné vzorky zpracované počítačem Číselné vzorky zpracované poč ítačem, y (k) y (k) k [1] A1B14MIS Mikroprocesory pro výkonové systémy 01 23
24 Přechod počítač (číslo) spojitý signál Program Počítač Číslo y(k) FOH First Order Hold Tvarovací obvod Spojitý signál y(t) y(t) Clock Informace v amplitudě signálu t A1B14MIS Mikroprocesory pro výkonové systémy 01 24
25 Rekonstrukce signálu z čísel Rekonstruovaný signál y(t) z č ísel y(k) y (t) t [s] A1B14MIS Mikroprocesory pro výkonové systémy 01 25
26 Přechod počítač (číslo) spojitý signál A1B14MIS Mikroprocesory pro výkonové systémy 01 26
27 Číslicový řídicí systém (princip) A1B14MIS Mikroprocesory pro výkonové systémy 01 27
28 Výkonový systém (př. elektrický pohon) A1B14MIS Mikroprocesory pro výkonové systémy 01 28
29 Co je Embedded Computer? Embedded Computer = vestavný/vestavěný počítač tj. počítač vestavěný do zařízení, které jako počítač nevypadá. Embedded Computer mářadu speciálních periferií nezbytných pro realizaci řídicích funkcí (viz dále v lekci i semestru) Příklady: Laserová tiskárna Scanner Digitální fotoaparát Mobilní telefon Pračka Řídicí jednotka spalovacího motoru auta Elektrický pohon metra Elektrický pohon auta Elektrické pohony robota ve svařovně automobilky Elektrický pohon lokomotivy atp A1B14MIS Mikroprocesory pro výkonové systémy 01 29
30 Řidicí počítač - hardware (zjednodušeno) Řidicí počítač (Hardware) Procesor Paměť Programu & Dat Modulátor (PWM) Impulsní výstupy Nadřazený Systém (počítač/člověk) Komunikace (UART, Ethernet, CAN) Časovač Řadič přerušení Analogově číslicový převodník Měření Impulsních signálů Logické vstupy & výstupy Logické výstupy Analogový signál (napětí) Impulsní signál Logické vstupy A1B14MIS Mikroprocesory pro výkonové systémy 01 30
31 Control Computer (Simplified) A1B14MIS Mikroprocesory pro výkonové systémy 01 31
32 Realizace řídícího počítače (hardware) Realizace hardware několik možností: Komerční mikroprocesor a ostatní součástky Komerční mikroprocesor a část specielních obvodů v FPGA (typicky modulátor, část měření impulsních signálů tzv. ochrany ) Vše včetně mikroprocesoru v FPGA: Pak vzniká SoC System on Chip. Návrh procesoru se kupuje jako Intelectual property od firmy produkující FPGA. Návrh procesoru je v HDL (Hardware Description Language). HDL popis je zpracován CAD systémem pro návrh obsahu FPGA a je připojen k ostatnímu návrhu (schema nebo též HDL) uživatele. A1B14MIS Mikroprocesory pro výkonové systémy 01 32
33 Řidicí počítač část v FPGA A1B14MIS Mikroprocesory pro výkonové systémy 01 33
34 Řidicí počítač celý v FPGA (SoC System on Chip) System on Chip (SoC) ADC mimo FPGA A1B14MIS Mikroprocesory pro výkonové systémy 01 34
35 Reprezentace digitálního systému Funkční (behavioral or functional representation) Popis funkce ne implementace Black-box + závislosti výstupů na vstupech v čase Co to má dělat Strukturní Popis implementace bez zvláštního popisu funkce (ta vyplývá ze vzájemného spojení bloků o známé funkci) Vnitřek black-boxů Jak je to zapojeno Fyzikální Popisuje fyzikální vlastnosti každého black-boxu Popisuje přesné vztahy mezi bloky (velikost, hmotnost, spotřebu, zahřátí, časování, a to v každém bodě, vstupním i výstupním pinu) Jak to vyrobit A1B14MIS Mikroprocesory pro výkonové systémy 01 35
36 Úrovně abstrakce digitální technika Funkční, strukturní i fyzikální reprezentace může být použita na různém úrovni abstrakce (granularity) podle použitých typů objektů. Úroveň Funkční Strukturní Fyzikální Abstrakce Popis Bloky objekty Transistor Diferenciální rovnice, Volt-ampérové Transistor, Odpor, Analogové a číslicové buňky, charakteristiky Kondenzátor Tvar na substrátu Hradlo Booleovské rovnice, Hradlo, Moduly, Kombinační obvod, Klopný obvod Bloky Sekvenční obvod procesor Algoritmus, Vývojový diagram Soubor instrukci Sčítačka, komparátor, multiplexer, registr, čítač Mikročipy počítač Specifikace funkce, Program Procesor, Paměť, Desky plošných spojů, Vícečipové moduly Periferie (V/V bloky) Literatura: [1] A1B14MIS Mikroprocesory pro výkonové systémy 01 36
37 Návrh počítače metodou zdola-nahoru - MIS TRANSISTORS, RESISTORS, CAPACITORS DIGITAL CIRCUIT DESIGN ANALOG CIRCUIT DESIGN ELECTRONICS BOOLEAN ALGEBRA LOGIC GATES, FLIP-FLOPS ANALOG COMPONENTS FINITE-STATE MACHINES BINARY SYSTEM, DATA REPRESENTATION LOGIC DESIGN TECHNIQUES SEQUENTIAL DESIGN TECHNIQUES VLSI DESIGN COMBINATIONAL COMPONENTS STORAGE COMPONENTS INTERFACE COMPONENTS GENERALIZED FINITE STATE MACHINEs REGISTER-TRANSFER DESIGN (RTL) PROCESSOR COMPONENTS SOFTWARE DESIGN AND ENGINEERING COMPUTER DESIGN A1B14MIS Mikroprocesory pro výkonové systémy 01 37
38 Postup řešení zdola-nahoru vs shora-dolů Programování A0B36PRI Algoritmy Typy a struktury dat Programové konstrukce Průmyslové počítačové systémy A1B13PPS Shora Mezi Mikroprocesory pro výkonové systémy A1B14MIS Struktura řídicího počítače Speciální bloky pro řídicí aplikace Jak fungují, jak je připojit nebo postavit z hradel Jak řídicí počítač programovat (zde ve vyšším prog. jazyku C ) Výkonové součástky a technologie A1B13VST Materiály pro výkonovou elektrotechniku A1B13MVE Transistory, rezistory, kondenzátory Zdola A1B14MIS Mikroprocesory pro výkonové systémy 01 38
39 Počítačový software Firmware BIOS (Basic Input Output Systém), adresové módy, architektura souboru instrukcí ( ISA - Instruction Set Architecture), jazyk symbolických instrukcí assembler Operační systém Plánovač (Scheduler), exekutiva (Dispatcher) přepínání úloh, správa paměti, privilegia a ochrana, struktura souborů na disku, správa periferií (správa zařízení). V embedded aplikacích specializovaný operační systém nebo též žádný (jednoduché aplikace). Vývojářský software Asembler, kompilátory ( C, ), linker, simulátor, ladící prostředky (debugger), RT-monitory, loadery, knihovny, správa versí. Aplikace Programovací jazyky, řídící aplikace (př. vozy metra, řízení motoru automobilu, řízení pračky), editory, prohlížeče, hry, A1B14MIS Mikroprocesory pro výkonové systémy 01 39
40 Počítačový hardware Architektura procesoru Architektura procesoru, provádění instrukcí, tok dat, řízení, Paměťová hierarchie Správa paměťového systému, vyrovnávací paměť (cache), segmentace a stránkování (MMU virtual memory) Systémová rozhraní Přerušovací systém, DMA (Direct Memory Access), periferie pro měření a generování signálů (řidicí aplikace), periferie pro synchronizaci v čase (Timer, RTC), komunikační periferie, komunikační protokoly, HDD rozhraní, Uživatelská rozhraní Display, klávesnice, (myš), audio rozhraní, speciální aplikační rozhraní (ovládací prvky, řídicí páky, tlačítka, přepínače), A1B14MIS Mikroprocesory pro výkonové systémy 01 40
41 Architektura počítače - hardware Hlavní komponenty počítače Paměť programu a dat Vstupní a výstupní zařízení Komunikace s okolním světem Procesor Výpočetní část Mezipaměť výsledků Řízení Řadič (Controller) A1B14MIS Mikroprocesory pro výkonové systémy 01 41
42 Architektura typu von Neumann Společná paměť programu (instrukcí) a dat NELZE paralelně číst instrukce a přenášet data (cesta je společná) A1B14MIS Mikroprocesory pro výkonové systémy 01 42
43 Architektura typu von Neumann Instrukce a data jsou uložena v téže paměti. Instrukce a data nelze přenášet po sběrnici současně (společná cesta) pomalejšíčinnost Jednodušší propojení procesoru s pamětí Paměť je organizována lineárně (tzn. jednorozměrně) a je rozdělena na stejně velké buňky, které se adresují celými čísly (zprav. 0, 1, 2, 3,... ). Data ani instrukce nejsou explicitně označeny. Explicitně nejsou označeny ani různé datové typy. Pro reprezentaci dat i instrukcí se používají dvojkové signály. Instrukce se provádějí jednotlivě, a to v pořadí, v němž jsou zapsány v paměti, pokud není toto pořadí změněno speciálními instrukcemi (nazývanými skoky). Počítač tvoří: Processor (ALU aritmetická a logická jednotky, registry, řídicí část (řadič controller), hlavní paměť (main memory) společně instrukce a data, systém přerušení, vstupní a výstupní zařízení (periferie peripherals) A1B14MIS Mikroprocesory pro výkonové systémy 01 43
44 Architektura typu Harvard Oddělená paměť programu (instrukcí) a dat LZE paralelně číst instrukce a přenášet data (cesty jsou oddělené) A1B14MIS Mikroprocesory pro výkonové systémy 01 44
45 Architektura typu Harvard Instrukce a data jsou uložena v oddělených pamětech. Instrukce lze číst současně s přenosem dat (oddělené cesty) rychlejší činnost Šířka přenosové cesty instrukcí může být jiná (větší) než přenosová cesta dat. Složitější propojení procesoru s pamětmi (vs von Neumann ) Data a instrukce jsou explicitně označeny Paměť je organizována lineárně (tzn. jednorozměrně) a je rozdělena na stejně velké buňky, které se adresují celými čísly (zprav. 0, 1, 2, 3,... ). Pro reprezentaci dat i instrukcí se používají dvojkové signály. Instrukce se provádějí jednotlivě, a to v pořadí, v němž jsou zapsány v paměti, pokud není toto pořadí změněno speciálními instrukcemi (nazývanými skoky). Počítač tvoří: Processor (ALU aritmetická a logická jednotky, registry, řídicí část (řadič controller), paměť programu (instrukcí), paměť dat, systém přerušení, vstupní a výstupní zařízení (periferie peripherals) A1B14MIS Mikroprocesory pro výkonové systémy 01 45
46 Vývoj software úrovně abstrakce Literatura: [1] A1B14MIS Mikroprocesory pro výkonové systémy 01 46
47 Vývoj software úrovně abstrakce Překladač (sw) Asembler (sw) Processor (hw) if( z < 0 z > 35} x++; else y++; cmp z, #0 bnc Cont1 cmp z, LIM bc Cont1 inc x *WR *RD DB A1B14MIS Mikroprocesory pro výkonové systémy 01 47
48 Organizace hlavní paměti (program, data) Hlavní paměť je rozdělena na buňky paměťová místa, kterým jsou přiřazena nezápornáčísla nazývaná adresy Obsah paměťového místa je slovo slovo (word) velikost závisí na procesoru (např. 16b, 24b, 32b, 64b), b značí bit (binary digit) B značí byte (slabika), 8b = 1B, byte je uspořádaná osmice bitů, obvykle 2 nebo i více byteů tvoří slovo, např. u procesorů Intel řady x86 1 slovo = 2B = 16b. Obsah paměťového místa na adrese adr bývá někdy označován <adr>; nehrozí-li nedorozumění píše se však často adr místo <adr>. A1B14MIS Mikroprocesory pro výkonové systémy 01 48
49 Zobrazení dat v paměti Numerická data čísla: V pevnéřádovéčárce (fixed point) celáčísla (integer format) byte, word, racionálníčísla (fraction format) byte, word, V pohyblivéřádovéčárce (floating point), racionálníčísla, double, float,, matisa+charakteristika Formát zobrazení: Dvojková (binary), př b Šestnáctková (hexadecimal), př. A3h nebo 0xA3 Desítková (decimal), př. 163d nebo 163 Bez znaménka (unsigned), pouze nezáporná, byte, word, unsigned Se znaménkem (signed), integer, short int, signed Různě dlouhá, různý rozsah hodnot (short int, integer, long int, byte, word, double, A1B14MIS Mikroprocesory pro výkonové systémy 01 49
50 Aplikace digitální techniky (Pro zájemce)? Bod obratu? A1B14MIS Mikroprocesory pro výkonové systémy 01 50
51 První transistor (Pro zájemce) 1947 W. Schockley, W. Brattain, J. Bardeen vynález tranzistoru Bell Laboratories, první hrotový transistor Literatura: [7] A1B14MIS Mikroprocesory pro výkonové systémy 01 51
52 Transistor (Důležité) Dva způsoby použití: Zesilovač Elektronický spínač V digitální technice se tranzistor používá jako spínač c c b b e NPN e PNP Bipolární Řízený proudem báze (b) Unipolární Řízený napětím hradla (U gs ) A1B14MIS Mikroprocesory pro výkonové systémy 01 52
53 Materiál pro výrobu transistorů křemík (Si) (Pro zájemce) Základní materiál pro výrobu tranzistorů je dnes křemík (Si) Do určitých oblastí křemíku se přidají nečistoty (př: arsén (As), bór (B)) Periodická tabulka prvků (Mendělejev) Literatura: [6] A1B14MIS Mikroprocesory pro výkonové systémy 01 53
54 Krystalová mřížka křemíku (Pro zájemce) Křemík je polovodič Čistý křemík je špatný vodič nemá žádné volné nosiče náboje Křemík (Si) patří do 4. skupiny Periodické tabulky prvků Záměrným přidáním nečistot ze 3. nebo 5. skupiny Periodické tabulky prvků se zvýší jeho vodivost Si Si Si Si Si Si Si Si Si Krystalová mřížka křemíku (Si) Není volný nosič náboje Literatura: [4] A1B14MIS Mikroprocesory pro výkonové systémy 01 54
55 Zvýšení vodivosti křemíku (Pro zájemce) Křemík je polovodič Čistý křemík je špatný vodič nemá žádné volné nosiče náboje Křemík (Si) patří do 4. skupiny Periodické tabulky prvků Záměrným přidáním nečistot ze 3. nebo 5. skupiny se zvýší jeho vodivost Si Si + Si Si Si - Si Si B - Si Si + As Si Si Si Si Si Si Si Přidáním atomů prvku ze 3. skupiny Chybí elektron (vzniká díra ) Získáme polovodič typu-p Přidáním atomů prvku z 5. skupiny Přebývá elektron Získáme polovodič typu-n A1B14MIS Mikroprocesory pro výkonové systémy 01 55
56 Transistor nmos (Pro zájemce) Metal(Gate) Oxide(SiO 2 ) Semiconductor(Body) Transistor (MOS Transistor) Dnes však gate z polysilikonu (nikoliv z kovu) SiO 2 velmi dobrý izolant, Polysilicon vodič Základna (substrát, body) transistoru je polovodič typu-p Symbol nmos trasistoru Literatura: [4] A1B14MIS Mikroprocesory pro výkonové systémy 01 56
57 Funkce transistoru nmos Vypnuto (Off) (Pro zájemce) Gate a Body připojeny na stejný potenciál (typicky 0V) Vodivý kanál mezi Gate a Drain neexistuje stav vypnuto (Off) Vodivý kanál není A1B14MIS Mikroprocesory pro výkonové systémy 01 57
58 Funkce transistoru nmos Zapnuto (On) (Pro zájemce) Body (substrát) připojeno na 0V, Gate na kladné napětí (+V) Záporné náboje jsou vtahovány do substrátu pod Gate Vznikne vodivý kanál typu-n mezi Gate a Drain stav zapnuto (On) Source Gate + Drain Polysilicon SiO 2 n+ n+ p bulk Si Vodivý kanál Body A1B14MIS Mikroprocesory pro výkonové systémy 01 58
59 Transistor pmos (Pro zájemce) Metal(Gate) Oxide(SiO 2 ) Semiconductor(Body) Transistor (MOS Transistor) Typy oblastí vytvářející transistor pmos jsou opačné proti nmos Podobná funkce jako nmos, ale napětí na Gate a Body opačná proti nmos Body +V: Gate +V stav vypnuto (Off), Gate 0V stav zapnuto (on) Symbol pmos trasistoru A1B14MIS Mikroprocesory pro výkonové systémy 01 59
60 Napájecí napětí transistorů MOS (v digitálních obvodech) Důležité 0V značí se GND (zkratka z Ground) +V značí se V DD V DD = 5V u starších obvodů V DD = 3,3V nebo 2,5V nebo 1,8V nebo 1,5V,. Větší integrace (více transistorů na čipu) menší tranzistory nutno nižší napětí, aby nedocházelo k průrazu. A1B14MIS Mikroprocesory pro výkonové systémy 01 60
61 MOS transistory jako elektrické spínače (Důležité) Pro zjednodušení označíme: 0V jako log 0 symbolem 0 +V jako log 1 symbolem 1 Literatura: [5] A1B14MIS Mikroprocesory pro výkonové systémy 01 61
62 CMOS invertor (funkce NOT) (Pro zájemce) V DD kladné napětí a f NOT a f f = NOT a zapisujeme: f = a A1B14MIS Mikroprocesory pro výkonové systémy 01 62
63 CMOS invertor realizace v křemíku (Pro zájemce) CMOS invertor ralizace planární technologií (příčný řez) Literatura: [4] A1B14MIS Mikroprocesory pro výkonové systémy 01 63
64 V DD kladné napětí CMOS hradlo NAND (Pro zájemce) a b f V DD NAND a b f f = a NAND b zapisujeme : f = a. b a b f A1B14MIS Mikroprocesory pro výkonové systémy 01 64
65 Transistor jako elektronický spínač (Důležité) A1B14MIS Mikroprocesory pro výkonové systémy 01 65
66 Transmission Gate (TG) Analog Switch (Důležité) A1B14MIS Mikroprocesory pro výkonové systémy 01 66
67 Kviz Co to je? (Pro zájemce) CLK Q D Q CLK CLK CLK Literatura: [5] A1B14MIS Mikroprocesory pro výkonové systémy 01 67
68 Kviz Co to je? (Pro zájemce) A1B14MIS Mikroprocesory pro výkonové systémy 01 68
69 D Latch (paměťový člen) (Pro zájemce) A1B14MIS Mikroprocesory pro výkonové systémy 01 69
70 Digitální (číslicový) signál (Důležité) Idealizovaný tvar digitálního signálu A1B14MIS Mikroprocesory pro výkonové systémy 01 70
71 Digitální (číslicový) signál (Důležité) Skutečný tvar digitálního signálu A1B14MIS Mikroprocesory pro výkonové systémy 01 71
72 Výstupní a vstupní logické úrovně (Důležité) Výstupní a vstupní úrovně logických členů (zde příklad tzv. TTL úrovní) A1B14MIS Mikroprocesory pro výkonové systémy 01 72
73 Realizace funkcí digitálních (číslicových) obvodů (Důležité) Komerční (připravené funkce, paměti, procesory, ) LSI nízká integrace (hradla) MSI čítače, multiplexery,.. LSI vysoká integrace (paměti, starší procesor,.. VLSI všechno ostatní (většína dnešních digitálních obvodů) Hradlová pole (FPGA, CPLD, ) Připravené základní obvody a propojovací pole, dané funkce si uživatel navrhne pomocí CAD systému a nahraje do hradlového pole. Tím připravené obvody propojí do požadované funkce. ASIC obvody (Application Specific Integrated Circuits) VLSI obvody, kde funkce je realizována podle návrhu zadavatele přímo do křemíku (vhodné pro velké série) Kombinace Funkce realizována propojení z obvodů všech tříd uvedených výše. A1B14MIS Mikroprocesory pro výkonové systémy 01 73
74 Pouzdra integrovaných obvodů (Důležité) Literatura: [7] A1B14MIS Mikroprocesory pro výkonové systémy 01 74
75 Příklad digitální přepínač (Multiplexer) (Důležité) Princip: D0, D1 - digitální vstupy, S řídicí vstup, Y digitální výstup S = 0 S = 1 S S D0 D1 Y D0 D1 Y A1B14MIS Mikroprocesory pro výkonové systémy 01 75
76 Příklad digitální přepínač (Multiplexer) (Viz. Lec.02) Popis funkce pravdivostní tabulkou (Truth Table) D S D1 D0 Y A1B14MIS Mikroprocesory pro výkonové systémy 01 76
77 Příklad digitální přepínač (Multiplexer) (Viz. Lec.02) Symbol multiplexeru A1B14MIS Mikroprocesory pro výkonové systémy 01 77
78 Realizace??? (Viz. Lec.02) Hradlo (gate) a b a f 1 f 2 b a f 3 f 1= a AND b f 2= a OR b f 3= NOT a Logická funkce Logický operátor a b a a f 4 f 5 f 6 b b f 4= a NAND b f 5= a NOR b f 6= a XOR b A1B14MIS Mikroprocesory pro výkonové systémy 01 78
79 Funkce hradel, Booleova algebra (Viz. Lec.02) a b a f 1 f b 2 a f 3 AND OR NOT a b f a b f a f f 1= a ANDb zapisujeme : f 1= a. b f = a 2 OR b zapisujeme : f 2 = a + b f 3= NOT a zapisujeme : f 3= a A1B14MIS Mikroprocesory pro výkonové systémy 01 79
80 Funkce hradel, Booleova algebra (Viz. Lec.02) a b f a a 4 b f 5 b f 6 NAND a b f NOR a b f XOR a b f f 4 a = NAND zapisujeme : f 4 = a. b b f 5= a NOR b zapisujeme : f 5= a + b f 6= a XOR b zapisujeme : f 6= a + b A1B14MIS Mikroprocesory pro výkonové systémy 01 80
81 Alternativní značení hradel (Důležité) & 1 & 1 1 =1 (kolečko) = negace Jiné značení A1B14MIS Mikroprocesory pro výkonové systémy 01 81
82 Příklad digitální přepínač (Multiplexer) (Viz. Lec.02) Intuitivně zapojení multiplexeru (Metodou pokus-omyl) Použijeme hradla NAND a NOT A1B14MIS Mikroprocesory pro výkonové systémy 01 82
83 MIS laboratorní cvičení (KOM, SEK) Software Hardware BASYS2 FPGA Device A1B14MIS Mikroprocesory pro výkonové systémy 01 83
84 Testovací hardware MIS laboratorní cvičení (KOM, SEK) A1B14MIS Mikroprocesory pro výkonové systémy 01 84
85 Testovací hardware MIS - laboratorní cvičení (KOM, SEK) A1B14MIS Mikroprocesory pro výkonové systémy 01 85
86 Testovací hardware MIS laboratorní cvičení (KOM, SEK) A1B14MIS Mikroprocesory pro výkonové systémy 01 86
87 CAD Xilinx ISE Návrh logických obvodů MIS laboratorní cvičení (KOM, SEK) A1B14MIS Mikroprocesory pro výkonové systémy 01 87
88 Použitá literatura [1] Kubátová, H.: Struktura a architektura počítačů, Přednášky FEL, [2] McIver McHoes, A Flynn, I.M.: Understanding Operating Systems.Thomson, [3] Tanenbaum, A: Modern Operating Systems. Prentice Hall, New Jersey, [4] Weste,N.H.E.- Harris,D.M.: CMOS VLSI Design. Addison-Wesley, [5] Vahid, F.: Digital Design. Wiley, [6] [7] Floyd, T.L.: Digital Fundamentals, Pearson, A1B14MIS Mikroprocesory pro výkonové systémy 01 88
89 MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Úvod Struktura počítače Logické obvody KONEC České vysoké učení technické Fakulta elektrotechnická A1B14MIS Mikroprocesory pro výkonové systémy 01
Y36SAP http://service.felk.cvut.cz/courses/y36sap/
Y36SAP http://service.felk.cvut.cz/courses/y36sap/ Úvod Návrhový proces Architektura počítače 2007-Kubátová Y36SAP-Úvod 1 Struktura předmětu Číslicový počítač, struktura, jednotky a jejich propojení. Logické
Struktura a architektura počítačů (BI-SAP) 1
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 1 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Struktura a architektura počítačů
Struktura a architektura počítačů Úvod Architektura počítače Návrhový proces České vysoké učení technické Fakulta elektrotechnická Ver.1.30 J. Zděnek / M. Chomát 2014 Přednáší Ing. Miroslav Chomát, CSc.
Úvod Struktura počítače Logické obvody
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Úvod Struktura počítače Logické obvody České vysoké učení technické Fakulta elektrotechnická A1B14MIS Mikroprocesory pro výkonové systémy 01 Ver.1.20 J. Zděnek, 2013
LOGICKÉ OBVODY X36LOB
LOGICKÉ OBVODY X36LOB Doc. Ing. Hana Kubátová, CSc. Katedra počítačů FEL ČVUT v Praze 26.9.2008 Logické obvody - 1 - Úvod 1 Obsah a cíle předmětu Číslicový návrh (digital design) Číslicové obvody logické
Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010
Přednášky o výpočetní technice Hardware teoreticky Adam Dominec 2010 Rozvržení Historie Procesor Paměť Základní deska přednášky o výpočetní technice Počítací stroje Mechanické počítačky se rozvíjely už
Profilová část maturitní zkoušky 2014/2015
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika
Pohled do nitra mikroprocesoru Josef Horálek
Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy
Témata profilové maturitní zkoušky
Obor: 18-20-M/01 Informační technologie Předmět: Databázové systémy Forma: praktická 1. Datový model. 2. Dotazovací jazyk SQL. 3. Aplikační logika v PL/SQL. 4. Webová aplikace. Obor vzdělání: 18-20-M/01
Polovodičov. ové prvky. 4.přednáška
Polovodičov ové prvky 4.přednáška Polovodiče Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku (Si). Čisté krystaly křemíku mají za pokojové teploty jen
Historie počítačů. 0.generace. (prototypy)
Historie počítačů Historie počítačů se dělí do tzv. generací, kde každá generace je charakteristická svou konfigurací, rychlostí počítače a základním stavebním prvkem. Generace počítačů: Generace Rok Konfigurace
Algoritmizace a programování
Algoritmizace a programování Struktura počítače České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Struktura předmětu Systémová struktura počítače, procesor, paměti, periferní
Mikrokontroléry. Doplňující text pro POS K. D. 2001
Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou
FPGA + mikroprocesorové jádro:
Úvod: V tomto dokumentu je stručný popis programovatelných obvodů od firmy ALTERA www.altera.com, které umožňují realizovat číslicové systémy s procesorem v jenom programovatelném integrovaném obvodu (SOPC
Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer
Přednáška A3B38MMP Bloky mikropočítače vestavné aplikace, dohlížecí obvody 2015, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL Praha 1 Hlavní bloky procesoru
ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14
ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv
VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl
Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
Integrované obvody. Obvody malé, střední a velké integrace Programovatelné obvody
Integrované obvody Obvody malé, střední a velké integrace Programovatelné obvody Integrovaný obvod zkratka: IO anglický termín: integrated circuit = IC Co to je? elekrotechnická součástka na malé ploše
Integrované obvody. Obvody malé, střední a velké integrace Programovatelné obvody
Integrované obvody Obvody malé, střední a velké integrace Programovatelné obvody Integrovaný obvod zkratka: IO anglický termín: integrated circuit = IC Co to je? elekrotechnická součástka na malé ploše
Algoritmizace a programování
Algoritmizace a programování Struktura počítače České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Struktura předmětu Systémová struktura počítače, procesor, paměti, periferní
SYSTÉMY NAČIPU MI-SOC
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti SYSTÉMY NAČIPU MI-SOC doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii ČVUT v Praze Hana Kubátová
MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 TECHNICKÉ VYBAVENÍ POČÍTAČŮ
MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 TECHNICKÉ VYBAVENÍ POČÍTAČŮ 1) INFORMACE VE VÝPOČETNÍ TECHNICE 3 2) POČÍTAČOVÉ ARCHITEKTURY, POČÍTAČ JAKO ČÍSLICOVÝ STROJ 3 3) SIGNÁLY 3
Témata profilové maturitní zkoušky
Obor vzdělání: 26-41-M/01 elektrotechnika Předmět: technika počítačů 1. Kombinační logické obvody a. kombinační logický obvod b. analýza log. obvodu 2. Čítače a. sekvenční logické obvody b. čítače 3. Registry
Číselné vyjádření hodnoty. Kolik váží hrouda zlata?
Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží
PROGRAMOVATELNÉ LOGICKÉ OBVODY
PROGRAMOVATELNÉ LOGICKÉ OBVODY (PROGRAMMABLE LOGIC DEVICE PLD) Programovatelné logické obvody jsou číslicové obvody, jejichž logická funkce může být programována uživatelem. Výhody: snížení počtu integrovaných
Obsah DÍL 1. Předmluva 11
DÍL 1 Předmluva 11 KAPITOLA 1 1 Minulost a současnost automatizace 13 1.1 Vybrané základní pojmy 14 1.2 Účel a důvody automatizace 21 1.3 Automatizace a kybernetika 23 Kontrolní otázky 25 Literatura 26
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:
Struktura a architektura počítačů (BI-SAP) 4
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 4 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Témata profilové maturitní zkoušky
Obor vzdělání: 18-20-M/01 informační technologie Předmět: programování 1. Příkazy jazyka C# 2. Datové konstrukce 3. Objektově orientované programování 4. Tvorba vlastních funkcí Obor vzdělání: 18-20-M/01
Základní pojmy. Program: Algoritmus zapsaný v programovacím jazyce, který řeší nějaký konkrétní úkol. Jedná se o posloupnost instrukcí.
Základní pojmy IT, číselné soustavy, logické funkce Základní pojmy Počítač: Stroj na zpracování informací Informace: 1. data, která se strojově zpracovávají 2. vše co nám nebo něčemu podává (popř. předává)
Architektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Digitální
Kubatova 19.4.2007 Y36SAP - 13. procesor - control unit obvodový a mikroprogramový řadič RISC. 19.4.2007 Y36SAP-control unit 1
Y36SAP - 13 procesor - control unit obvodový a mikroprogramový řadič RISC 19.4.2007 Y36SAP-control unit 1 Von Neumannova architektura (UPS1) Instrukce a data jsou uloženy v téže paměti. Paměť je organizována
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:
LOGICKÉ SYSTÉMY PRO ŘÍZENÍ
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická LOGICKÉ SYSTÉMY PRO ŘÍZENÍ Doc. Ing. Jiří Bayer, CSc Dr.Ing. Zdeněk Hanzálek Ing. Richard Šusta 2000 Vydavatelství ČVUT Předmluva Skriptum
Úvod SISD. Sekvenční výpočty SIMD MIMD
Úvod SISD Single instruction single data stream Sekvenční výpočty MISD 1. Přednáška Historie Multiple instruction single data stream SIMD Single instruction multiple data stream MIMD Multiple instruction
Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky.
Polovodičové prvky V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku
1. Historie počítacích strojů Předchůdci počítačů. 2. Vývoj mikropočítačů Osmibitové mikropočítače Šestnácti a dvaatřicetibitové počítače IBM
PŘEHLED TÉMATU 1. Historie počítacích strojů Předchůdci počítačů Elektronické počítače 0. generace Elektronické počítače 1. generace Elektronické počítače 2. generace Elektronické počítače 3. generace
Práce v textovém editoru
Práce v textovém editoru 0) Otevřete NOTEPAD a okopírujte celý tento článek do NOTEPADu. [Můžete použít zkratky Ctrl-A (označit vše) Ctrl+C(kopírovat), Ctrl+V (vložit)] 1) Najděte v tomto textu slovo "myš"
2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín
První počítače mechanické kalkulátory Nejstarší počítač: Abakus
První počítače mechanické kalkulátory Nejstarší počítač: Abakus HISTORIE (počítací mechanická pomůcka, cca 3.000 let p. n. l.) Ve starém Řecku a Římě - dřevěná, nebo hliněná destička, do nichž se vkládaly
Struktura a architektura počítačů (BI-SAP) 10
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Architektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics 2/36 Digitální
Programovatelná logika
Programovatelná logika Přehled historie vývoje technologie programovatelných obvodů. Obvody PLD, GAL,CPLD, FPGA Příklady systémů a vývojových prostředí. Moderní elektrotechnický průmysl neustále stupňuje
Technické prostředky počítačové techniky
Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení
NSWI /2011 ZS. Principy cpypočítačůčů aoperačních systémů ARCHITEKTURA
Principy cpypočítačůčů aoperačních systémů ARCHITEKTURA Literatura W.Stallings: Computer Organization & Architecture J.L.Hennessy, P.A.Patterson: Patterson: Computer Architecture: a Quantitative Approach
Aplikace elektroniky. Čím se budeme zabývat? Struktury integrovaných systémů A2M34SIS. Čím se budeme zabývat - cvičení?
Čím se budeme zabývat? Struktury integrovaných systémů A2M34SIS Přednášející: Cvičící: Jiří Jakovenko Vladimír Janíček Jan Novák Historický přehled vývoje integrovaných obvodů, Moorovy zákony, metody návrhu,
Zpracování obrazu v FPGA. Leoš Maršálek ATEsystem s.r.o.
Zpracování obrazu v FPGA Leoš Maršálek ATEsystem s.r.o. Základní pojmy PROCESOROVÉ ČIPY Křemíkový čip zpracovávající obecné instrukce Různé architektury, pracují s různými paměti Výkon instrukcí je závislý
C2115 Praktický úvod do superpočítání
C2115 Praktický úvod do superpočítání IX. lekce Petr Kulhánek, Tomáš Bouchal kulhanek@chemi.muni.cz Národní centrum pro výzkum biomolekul, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, CZ-61137
Trocha obrázků na začátek..
Trocha obrázků na začátek.. Elementární pojmy LCD panel tower myš klávesnice 3 Desktop vs. Tower tower desktop 4 Desktop nebo Tower? 5 Obraz jako obraz? 6 A něco o vývoji.. Předchůdci počítačů Počítadlo
Struktura a architektura počítačů (BI-SAP) 7
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 7 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Měření na unipolárním tranzistoru
Měření na unipolárním tranzistoru Teoretický rozbor: Unipolární tranzistor je polovodičová součástka skládající se z polovodičů tpu N a P. Oproti bipolárnímu tranzistoru má jednu základní výhodu. Bipolární
Návrh. číslicových obvodů
Návrh číslicových obvodů SW Aritmetika HW Periférie CPU function AddSub(a,b,s); var c; a b k k a+b mpx c if (s==1) c=a+b; else c=a-b; a-b return c; End; PAMĚŤ s Princip: univerzální stroj Výhoda: univerzalita
Úvod do informačních technologií
Úvod do informačních technologií Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Úvod Jan Outrata (Univerzita Palackého v Olomouci) Úvod do informačních technologií Olomouc, září
Seznam témat z předmětu ELEKTRONIKA. povinná zkouška pro obor: L/01 Mechanik elektrotechnik. školní rok 2018/2019
Seznam témat z předmětu ELEKTRONIKA povinná zkouška pro obor: 26-41-L/01 Mechanik elektrotechnik školní rok 2018/2019 1. Složené obvody RC, RLC a) Sériový rezonanční obvod (fázorové diagramy, rezonanční
Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus
Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná
Vestavné systémy BI-VES Přednáška 5
Vestavné systémy BI-VES Přednáška 5 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011 ZS2010/11 Evropský
OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ
OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ Odlišnosti silových a ovládacích obvodů Logické funkce ovládacích obvodů Přístrojová realizace logických funkcí Programátory pro řízení procesů Akční členy ovládacích
Bipolární tranzistory
Bipolární tranzistory Historie V prosinci 1947 výzkumní pracovníci z Bellových laboratořích v New Jersey zjistili, že polovodičová destička z germania se zlatými hroty zesiluje slabý signál. Vědci byli
PB002 Základy informačních technologií
Operační systémy 25. září 2012 Struktura přednašky 1 Číselné soustavy 2 Reprezentace čísel 3 Operační systémy historie 4 OS - základní složky 5 Procesy Číselné soustavy 1 Dle základu: dvojková, osmičková,
Témata profilové maturitní zkoušky
Obor vzdělání: 26-41-M/01 elektrotechnika Předmět: automatizační technika 1. Senzory 2. S7-1200, základní pojmy 3. S7-1200, bitové instrukce 4. S7-1200, časovače, čítače 5. Vizualizační systémy 6. S7-1200,
Architektura počítače
Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích
Z{kladní struktura počítače
Z{kladní struktura počítače Cílem této kapitoly je sezn{mit se s různými strukturami počítače, které využív{ výpočetní technika v současnosti. Klíčové pojmy: Von Neumannova struktura počítače, Harvardská
Časový harmonogram MZ 2016/2017 pro SPŠEI
Časový harmonogram MZ 2016/2017 pro SPŠEI 11. 4. Písemná práce SČ MZ z CJL 25. 4. Uzavření klasifikace IV. ročníků, 12.00 hod. 26. 4. Klasifikační porada IV. ročníků, 10.35 hod. 28. 4. Poslední zvonění
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup
ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud
Sylabus kurzu Elektronika
Sylabus kurzu Elektronika 5. ledna 2004 1 Analogová část Tato část je zaměřena zejména na elektronické prvky a zapojení v analogových obvodech. 1.1 Pasivní elektronické prvky Rezistor, kondenzátor, cívka-
Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií
VY_32_INOVACE_31_02 Škola Střední průmyslová škola Zlín Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Inovace výuky
Logické funkce a obvody, zobrazení výstupů
Logické funkce a obvody, zobrazení výstupů Digitální obvody (na rozdíl od analogových) využívají jen dvě napěťové úrovně, vyjádřené stavy logické nuly a logické jedničky. Je na nich založeno hodně elektronických
2.1 Historie a vývoj počítačů
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín
Struktura a architektura počítačů (BI-SAP) 3
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 3 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Témata profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika)
ta profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika) 1. Cívky - vlastnosti a provedení, řešení elektronických stejnosměrných
Výstavba PC. Vývoj trhu osobních počítačů
Výstavba PC Vývoj trhu osobních počítačů Osobní počítač? Sálový počítač (Mainframe) IBM System/370 model 168 (1972) Minipočítač DEC PDP-11/70 (1975) Od 60. let počítač byl buď velký sálový nebo mini, stroj,
Základy digitální techniky
Základy digitální techniky Binarna aritmetika. Tabulky Karno. Operace logické a aritmetické; Binarna aritmetika. č. soust zákl. Abeceda zápis čísla binarní B=2 a={0,1} 1100 oktalová B=8 a={0,1,2,3,4,5,6,7}
Operační systémy. Přednáška 1: Úvod
Operační systémy Přednáška 1: Úvod 1 Organizace předmětu Přednášky každé úterý 18:00-19:30 v K1 Přednášející Jan Trdlička email: trdlicka@fel.cvut.z kancelář: K324 Cvičení pondělí, úterý, středa Informace
Osnova. Základy informatiky. 1. Přednáška Historie. Úvod. Kategorie počítačů z pohledu hardware
Osnova Lenka Carr Motyčková 1. Přednáška Historie 1 1. Historie vývoje počítačů 2. Struktura počítačů 3. číselné soustavy 4. Logika, logické operace 5. teorie informace, k odování 6. Operační systémy 7.
Historie výpočetní techniky. Autor: Ing. Jan Nožička SOŠ a SOU Česká Lípa VY_32_INOVACE_1121_Histrorie výpočetní techniky_pwp
Historie výpočetní techniky Autor: Ing. Jan Nožička SOŠ a SOU Česká Lípa VY_32_INOVACE_1121_Histrorie výpočetní techniky_pwp Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity:
Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií
VY_32_INOVACE_31_04 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední
Paměťové prvky. ITP Technika personálních počítačů. Zdeněk Kotásek Marcela Šimková Pavel Bartoš
Paměťové prvky ITP Technika personálních počítačů Zdeněk Kotásek Marcela Šimková Pavel Bartoš Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Osnova Typy
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.05 Integrovaná střední škola technická Mělník, K učilišti 2566,
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 9 SYSTÉMOVÝ NÁVRH, IP-CORES doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii ČVUT v Praze
PV094 - Technické vybavení počítačů
PV094 - Technické vybavení počítačů RNDr. Jaroslav PELIKÁN, Ph.D. katedra informačních technologií Fakulta informatiky Masarykovy univerzity Botanická 68a, 602 00 BRNO kanc.: B314, : +420 549 495 751 E-mail:
Princip funkce počítače
Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování
Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace
Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace Číslo projektu Číslo materiálu Autor Průřezové téma Předmět CZ.1.07/1.5.00/34.0565 VY_32_INOVACE_286_Historie_počítačů
Základní pojmy informačních technologií
Základní pojmy informačních technologií Informační technologie (IT): technologie sloužící k práci s daty a informacemi počítače, programy, počítač. sítě Hardware (HW): jednoduše to, na co si můžeme sáhnout.
Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2
Základy informatiky 2. Přednáška HW Lenka Carr Motyčková February 22, 2011 Základy informatiky 1 February 22, 2011 Základy informatiky 2 February 22, 2011 Základy informatiky 3 February 22, 2011 Základy
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Algoritmizace, vy_32_inovace_ma_03_10
Logické řízení. Náplň výuky
Logické řízení Logické řízení Náplň výuky Historie Logické funkce Booleova algebra Vyjádření Booleových funkcí Minimalizace logických funkcí Logické řídicí obvody Blokové schéma Historie Číslicová technika
VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl
Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
4. Elektronické logické členy. Elektronické obvody pro logické členy
4. Elektronické logické členy Kombinační a sekvenční logické funkce a logické členy Elektronické obvody pro logické členy Polovodičové paměti 1 Kombinační logické obvody Způsoby zápisu logických funkcí:
Klasifikace počítačů a technologické trendy Modifikace von Neumanova schématu pro PC
Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Obsah: Historie počítačů Počítačové generace Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Klasifikace počítačů
Organizace předmětu, podmínky pro získání klasifikovaného zápočtu
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Organizace předmětu, podmínky pro získání klasifikovaného zápočtu Kurz A0B38FPGA Aplikace
PROCESOR. Typy procesorů
PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních částí počítače včetně
Témata profilové maturitní zkoušky
Střední průmyslová škola elektrotechniky, informatiky a řemesel, Frenštát pod Radhoštěm, příspěvková organizace Témata profilové maturitní zkoušky Obor: Elektrotechnika Třída: E4A Školní rok: 2010/2011
Přednáška. Vstup/Výstup. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Vstup/Výstup. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
Architektura počítačů
Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem
Číslicové obvody základní pojmy
Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:
MODERNÍ TRENDY V PROGRAMOVATELNÉ LOGICE, APLIKACE V AUTOMATIZAČNÍ A MĚŘICÍ TECHNICE
MODERNÍ TRENDY V PROGRAMOVATELNÉ LOGICE, APLIKACE V AUTOMATIZAČNÍ A MĚŘICÍ TECHNICE Soběslav Valach UAMT FEEC VUT Brno, Kolejní 2906/4, 612 00 Brno, valach@feec.vutbr.cz Abstract: Článek popisuje základní
VÝUKOVÝ MATERIÁL. 3. ročník učebního oboru Elektrikář Přílohy. bez příloh. Identifikační údaje školy
VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková