Vytěžování znalostí z dat
|
|
- Emil Bařtipán
- před 6 lety
- Počet zobrazení:
Transkript
1 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 1/31 Vytěžování znalostí z dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Přednáška 11: Kombinování modelů BI-VZD, 09/2011 MI-POA Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
2 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 2/31 Princip kombinování modelů Princip kombinování modelů Skupina modelů(např. rozhodovacích stromů) se naučí na stejný (podobný) úkol. Výstupy naučených modelů se kombinují. Vstupní proměnné Model 1 Model 2 Model 3 Model N Výstupní proměnná Kombinace Výstupní proměnná Skupinový (ensemble) výstup
3 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 3/31 Princip kombinování modelů Různorodost ensemble modelů Co se stane, když budou všechny modely totožné? =>Degradace na jeden model. Jak zajistíme, aby byly modely různorodé? Různé množiny trénovacích dat (počáteční podmínky) Různé metody konstrukce modelů Jak se dá měřit různorodost modelů? Odchylky výstupů na jednotlivých testovacích datech. Strukturální odlišnosti
4 Princip kombinování modelů Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 4/31 Funguje to vůbec? Chceme zjistit, za jakých předpokladů se vyplatí modely kombinovat. Zajímá nás proč ensembling funguje. Potřebujeme k tomu analyzovat, čím je chyba modelů způsobena
5 Dekompozice bias/variance Dekompozicebias/variance Chybu modelu můžeme rozložit na 3 složky: E{E y x {(y-ŷ(x))^2}}=noise(x)+bias 2 (x)+variance(x) Šum(x)= E y x {(y-h B (x)) 2 } Kvantifikuje odchylku výstupu y od optimálního modelu h B (x) = E y x {y}. Bias 2 (x)= (h B (x)-e LS {ŷ(x)}) 2 : Chyba průměrného modelu vzhledem k optimálnímu. Variance(x)= E LS {(ŷ(x)-e LS {ŷ(x)) 2 } : Jak moc se predikceŷ(x)liší pro různé učící množiny LS. Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 5/31
6 Dekompozice bias/variance Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 6/31 Příklad (1) Najděte algoritmus produkující co nejlepší modely pro následující data: y x
7 Dekompozice bias/variance Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 7/31 Příklad (2) Optimální model: Vstup x, náhodná proměnná rovnoměrně rozložená v intervalu [0,1] y=h(x)+ε, kde ε N(0,1) je Bayesovský model y a šum y h(x)=e y x {y} x
8 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 8/31 Dekompozice bias/variance Příklad algoritmus lineární regrese Modely mají malý rozptyl (variance), ale velké zaujetí (bias) nedoučení E LS {ŷ(x)}
9 Dekompozice bias/variance Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 9/31 Příklad algoritmus RBFN s počtem neuronů = mohutnost LS Nízké zaujetí (bias), velký rozptyl (variance) modelů přeučení E LS {ŷ(x)}
10 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 10/31 Dekompozice bias/variance Zpět ke kombinování modelů Co se stane, když naučím 2 jednoduché modely na různých podmnožinách LS? y y=f1(x) y=f2(x) y= f1(x)+f2(x) 2 x
11 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 11/31 Dekompozice bias/variance Ensembling snižujevarianci Trénovací data pro model 1 ensemble model Trénovací data pro model 2
12 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 12/31 Dekompozice bias/variance Ensemblingsnižujebias model 2 model 1 ensemble model
13 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 13/31 Dekompozice bias/variance Tedy:
14 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 14/31 Dekompozice bias/variance Podobně pro klasifikaci? model 1 model 2 model 3 ensemble model třída 1 třída 1 a třída 2 b třída 2 hranice tříd Obrázky z TCD AI Course, 2005 Snižuje se bias nebo variance?
15 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 15/31 Dekompozice bias/variance Jaké modely kombinovat? Co se stane, když zkombinují optimálně naučené modely? model 3 model 2 model 1 ensemble model Výhodně se dají kombinovat jednoduché modely (tzv. weaklearners). redukujeme bias Modely musí být různorodé! Musejí vykazovat různé chyby na jednotlivých trénovacích vzorech. redukujeme varianci
16 Populární ensemble metody Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 16/31 Populární ensemble metody Bagging (Bootstrap Aggregating) omodely naučím nezávisle a jednoduše zkombinuji jejich výstup Boosting omodely se učí sekvenčně, trénovací data jsou závislá na chybách předchozích modelů Stacking omodely se učí nezávisle, kombinují naučením speciálního modelu
17 Bagging Bagging Myšlenka:průměrný modele LS {ŷ(x)} má stejný biasjako původní metoda, ale nulovou varianci Bagging(Bootstrap AGGregatING): o K vypočteníe LS {ŷ(x)}, potřebujeme nekonečně mnoho skupin LS(velikosti N) o Máme však jen jednu skupinuls, musíme si sami nějak pomoc Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 17/31
18 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 18/31 Bagging Bootstrapping: trocha historie Rudolf Raspe, Baron Munchausen s Narrative of his Marvellous Travels and Campaings in Russia, 1785 He hauls himself and his horse out of the mud by lifting himself by his own hair. This term was also used to refer to doing something on your own, without the use of external help since 1860s Since 1950s it refers to the procedure of getting a computer to start (to boot, to reboot)
19 Bagging Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 19/31 X=(3.12, 0, 1.57, 19.67, 0.22, 2.20) Mean=4.46 Co je Bootstrap? X1=(1.57,0.22,19.67, 0,0,2.2,3.12) Mean=4.13 X2=(0, 2.20, 2.20, 2.20, 19.67, 1.57) Mean=4.64 X3=(0.22, 3.12,1.57, 3.12, 2.20, 0.22) Mean=1.74 statistika: odhad intervalu spolehlivosti
20 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 20/31 Bagging Příkladbootstrap (Opitz, 1999) Trénovací vzory vzorek vzorek vzorek M
21 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 21/31 Bagging Bagging LS LS 1 LS 2 LS T x ŷ 1 (x) ŷ 2 (x) ŷ T (x) Pro regresi: ŷ(x) = 1/k * (ŷ 1 (x)+ŷ 2 (x)+ +ŷ T (x)) Pro klasifikaci: ŷ(x) = majoritní třída z {ŷ 1 (x),,ŷ T (x)}
22 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 22/31 Bagging Bagging(Bootstrapagregating) Výběrem s opakovánímutvořte M trénovacích souborů o nvzorech (místo jednoho původního souboru o n vzorech). Postavte model pro každý trénovací soubor. Zkombinujte modely. Bootstrap samples! výběr s opakováním vzorek 1 trénovací algoritmus Model 1 průměrování nebo hlasování Trénovací data vzorek 2 trénovací algoritmus Model 2 Ensemble model výstup... vzorek M trénovací algoritmus Model M vynálezce: Breiman (1996)
23 Bagging Náhodné (rozhodovací) lesy randomforests K bagginguse ještě přidá to, že náhodně vybíráme podmnožinu vstupních atributů Tedy: Postav rozhodovací strom z bootstrap vzorku Najdi best split mezi náhodnou podmnožinoukatributů, ne mezi všemi jako normálně (= bagging, když k je rovno počtu attributů) Odhadnete vliv k? Menší k redukuje varianci a zvyšuje bias Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 23/31
24 Boosting Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 24/31 Boosting Iterativní procedura adaptivně měnící rozložení učicích dat zvýrazňujíce špatně klasifikované vzory Používá se zejména ke kombinaci slabých modelů (weak learners), které mají velké zaujetí Výrazně redukuje bias náchylnost k přeučení
25 Boosting Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 25/31 LS Boosting (2) LS 1 LS 2 LS T x ŷ 1 (x) ŷ 2 (x) ŷ T (x) Pro regresi: ŷ(x) = β 1 *ŷ 1 (x)+ β 2 *ŷ 2 (x)+ + β T *ŷ T (x)) Pro klasifikaci: ŷ(x) = majorita tříd z {ŷ 1 (x),,ŷ T (x)} s použitím vah {β 1,β 2,,β T }
26 Boosting Algoritmus AdaBoost Při inicializaci jsou váhy vzorů stejné, puntíky mají stejnou velikost. Vzory se mají klasifikovat do modré a červené třídy. Po 1. iteraci AdaBoostu rostou váhy špatně klasifikovaných vzorů na pomezí tříd 3. iterace Po naučení 20 klasifikátorů jsou váhy vzorů mimo hranici tříd téměř nulové (nejsou vybírány do trénovací množiny) fromelder, John. From Trees to Forests and Rule Sets -A Unified Overview of Ensemble Methods Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 26/31
27 Stacking Stacking Používá meta model pro kombinaci výstupů ensemble modelů (oproti jednoduchému průměrování,nebohlasování) o Výstupy ensemble modelů jsou použity jako trénovací data pro meta model Ensemblemodelyjsouvětšinounaučenyrůznými algoritmy Teoretická analýza stackingu je obtížná, jedná se o blackmagic Slide from Ensembles of Classifiers by Evgueni Smirnov Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 27/31
28 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 28/31 Argumenty proti kombinování modelů? Argumenty proti kombinování modelů? Okamova břitva v jednoduchosti je síla o Je lepší mít jednoduchý optimální model, než kombinaci mnoha modelů o ale jak najít optimálnímodel? o Domingos, P. Occam s two razors: the sharp and the blunt. KDD Kombinováním modelů se často kamufluje nedokonalost metod produkujících nedoučené nebo přeučené modely Kombinováním dostanu model s horšími výsledky na testovacích datech, než mají kombinované modely
29 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 29/31 Argumenty proti kombinování modelů? Argumenty pro kombinování Většinou zlepším výsledky na testovacích datech Algoritmy jsou implicitně nastaveny, je třeba experimentovat s jejich konfigurací, aby produkované modely byly optimální konkrétních datech Dostanu povědomí o jistotě modelu když se pro jeden vstupní vektor jednotlivé modely hodně liší, zřejmě jsme mimo oblast trénovacích dat Netflix prize
30 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 30/31 Příklady použití ensemble metod Otázky Jakou novou informaci získáme použitím skupiny modelů oproti použití pouze jednoho modelu? Může ensemble zpřesnit předpověď, pro jaké modely? Jaké jsou nevýhody ensemble předpovědi?
31 Další vylepšení Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 31/31 Další vylepšení Hierarchické kombinování modelů Meta-learning templates Šlechtění topologie ensemblu na konkrétních datech více v MI-MVI
Přednáška 10: Kombinování modelů
České vysoké učení technické v Praze Fakulta informačních technologií Katedra teoretické informatiky Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-ADM Algoritmy data miningu (2010/2011)
VíceMiroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL)
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VíceVytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
VíceVytěžování znalostí z dat
Vytěžování znalostí z dat Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Přednáška 5: Hodnocení kvality modelu BI-VZD, 09/2011 MI-POA Evropský sociální
VíceObsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
VíceVytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 9 1/16 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
VíceKombinování klasifikátorů Ensamble based systems
Kombinování klasifikátorů Ensamble based systems Rozhodování z více hledisek V běžném životě se často snažíme získat názor více expertů, než přijmeme závažné rozhodnutí: Před operací se radíme s více lékaři
VíceProjekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 1 1/32 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VíceKybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
VíceStatistická analýza dat
Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte
VíceZáklady vytěžování dat
Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 6 1/18 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VíceMiroslav Čepek 16.12.2014
Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 16.12.2014
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 4 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 1 1/18 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VíceObsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí
1 Obsah přednášy 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacing 5. Boosting 6. Shrnutí 2 Meta learning = Ensemble methods Cíl použít predici ombinaci více různých modelů Meta learning (meta
VíceVytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 3 1/29 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 1 1/29 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VícePřednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
VícePředzpracování dat. Pavel Kordík. Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague
Předzpracování dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Cvičení 1: Visualizace MI-PDD, 09/2011 MI-POA Evropský sociální fond
VíceKatedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
VíceVytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 10 1/21 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
VíceOptimální rozdělující nadplocha 4. Support vector machine. Adaboost.
Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační
VíceStrojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
VíceZadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:
Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst
VíceO kurzu MSTU Témata probíraná v MSTU
O kurzu MSTU Témata probíraná v MSTU 1.: Úvod do STU. Základní dělení, paradigmata. 2.: Základy statistiky. Charakteristiky, rozložení, testy. 3.: Modely: rozhodovací stromy. 4.: Modely: učení založené
VícePokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
VíceStatistická teorie učení
Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální
VíceMatematické modelování Náhled do ekonometrie. Lukáš Frýd
Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)
Vícepřetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
VíceMěření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-02-28 12:20 Obsah
VícePravděpodobně skoro správné. PAC učení 1
Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného
VíceAVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
VíceTéma 9: Vícenásobná regrese
Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 6 1/25 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VíceOdhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
VíceLDA, logistická regrese
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VícePokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Klasifikační a regresní lesy Pokročilé neparametrické metody Klasifikační a regresní lesy Klasifikační les Klasifikační les je klasifikační model vytvořený
VíceMěření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-03-21 16:45 Obsah
VíceMgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Více1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
VíceÚloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
VíceZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
VíceInstance based learning
Učení založené na instancích Instance based learning Charakteristika IBL (nejbližších sousedů) Tyto metody nepředpokládají určitý model nejsou strukturované a typicky nejsou příliš užitečné pro porozumění
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VíceKlasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
VíceKLASIFIKAČNÍ A REGRESNÍ LESY
ROBUST 2004 c JČMF 2004 KLASIFIKAČNÍ A REGRESNÍ LESY Jan Klaschka, Emil Kotrč Klíčová slova: Klasifikační stromy, klasifikační lesy, bagging, boosting, arcing, Random Forests. Abstrakt: Klasifikační les
VíceSPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 5 Aproximační techniky 2012 Spolehlivost
VíceTestování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? 2 Osnova Úvod různé klasifikační modely a jejich kvalita Hodnotící míry (kriteria kvality) pro zvolený model. Postup vyhodnocování
VícePokročilé neparametrické metody. Klára Kubošová
Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Víceoddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
VíceStavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
VíceNG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
VíceAVDAT Mnohorozměrné metody, metody klasifikace
AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 13 1/14 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VíceTestování modelů a jejich výsledků. tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? Osnova Úvod Trénovací, Testovací a Validační datové soubory Práce s nebalancovanými daty; ladění parametrů Křížová validace
VíceStrojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
VíceBodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
VíceStatSoft Úvod do neuronových sítí
StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Vícelogistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VíceAlgoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
VíceAVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
VíceAnalýza dat pomocí systému Weka, Rapid miner a Enterprise miner
Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování
VíceOdhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
VíceTestování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? Osnova Úvod Trénovací, Testovací a Validační datové soubory Práce s nebalancovanými daty; ladění parametrů Křížová validace
VíceZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
VíceDesign Experimentu a Statistika - AGA46E
Design Experimentu a Statistika - AGA46E Czech University of Life Sciences in Prague Department of Genetics and Breeding Summer Term 2015 Matúš Maciak (@ A 211) Office Hours: T 9:00 10:30 or by appointment
VíceDiagnostika regrese pomocí grafu 7krát jinak
StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi
VíceNávrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
VíceTestování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VíceAplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
VíceTestování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
VíceFIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
VícePSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
VíceLineární diskriminační funkce. Perceptronový algoritmus.
Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace
VíceSTATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
VícePSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Víceodpovídá jedna a jen jedna hodnota jiných
8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě
VíceANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceSTATISTICKÝ SOUBOR. je množina sledovaných objektů - statistických jednotek, které mají z hlediska statistického zkoumání společné vlastnosti
ZÁKLADNÍ STATISTICKÉ POJMY HROMADNÝ JEV Statistika pracuje s tzv. HROMADNÝMI JEVY cílem statistického zpracování dat je podání informace o vlastnostech a zákonitostech hromadných jevů: velkého počtu jedinců
Více11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
VíceANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT RNDr. Eva Janoušová INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ HODNOCENÍ ÚSPĚŠNOSTI KLASIFIKACE A SROVNÁNÍ KLASIFIKÁTORŮ ÚVOD Vstupní data Subjekt Objem hipokampu Objem komor Skutečnost
VíceUČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
VíceRozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005
Rozpoznávání písmen Jiří Šejnoha Rudolf Kadlec (c) 2005 Osnova Motivace Popis problému Povaha dat Neuronová síť Architektura Výsledky Zhodnocení a závěr Popis problému Jedná se o praktický problém, kdy
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí
Vícelogistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Více