Kapitola 2. Výpočet rotorů v Enigmě 1. Konstrukce přístroje Enigma- obsah. KonstrukcepřístrojeEnigma Počátky Konstrukce přístroje.
|
|
- Alexandra Pokorná
- před 6 lety
- Počet zobrazení:
Transkript
1 Konstrukce přístroje Enigma- obsah Kapitola 2 KonstrukcepřístrojeEnigma Počátky Konstrukce přístroje 2-1 Konstrukce přístroje Enigma 2-2 Polsko 1926 Odposlechnuté zprávy Wehrmachtu MFNOJ WYFHJ EXZZD BJNDS BECFE NGQOU CFWZE RBSFQ WCUCQ XCKTT RDOAC VDYPM XYOFF HMSOZ THOSD HFPDI UKWRD MNDZX BYMIA FXXTA WWFYS NEVGW YCJUM IYFCW JXMDR TBIFU PQDMH RPCOX WYXTJ YQXZG CQMSP CJHGA OMHEV QFCGX SXATA HXFHV HZBED VALPY ZPMPW JNPDY RZXKJ DDQZO NEVGW YIPUC AVKHH FTAPT ZVYXV KRJIG APWAT LWBQH UJASR JMBSF KDVRN IUOXV FKLQG MPSWY EDYHP LSICW ALFPZ XOOFZ BNZUX DCEKG PXJON Index koincidence MFNOJ WYFHJ EXZZD BJNDS BECFE NGQOU CFWZE RBSFQ WCUCQ NEVGW YCJUM IYFCW JXMDR TBIFU PQDMH RPCOX WYXTJ YQXZG XCKTT RDOAC VDYPM XYOFF HMSOZ THOSD HFPDI UKWRD MNDZX CQMSP CJHGA OMHEV QFCGX SXATA HXFHV HZBED VALPY ZPMPW BYMIA FXXTA WWFYS JNPDY RZXKJ DDQZO NEVGW YCJUM IYFCW JXMDR TBIFU PQDMH RPCOX WYXTJ YQXZG NEVGW YIPUC AVKHH FTAPT ZVYXV KRJIG APWAT LWBQH UJASR CQMSP CJHGA OMHEV QFCGX SXATA HXFHV HZBED VALPY ZPMPW JMBSF KDVRN IUOXV FKLQG MPSWY EDYHP LSICW ALFPZ XOOFZ JNPDY RZXKJ DDQZO BNZUX DCEKG PXJON závěry: Konstrukce přístroje Enigma 2-3 Konstrukce přístroje Enigma 2-4
2 Špionáž Enigma francouzská špionáž získala manuál pro operátory vojenského přístroje Enigma komcem roku 1931(generál Gustave Bertrand) německým agentem byl Hans-Thilo Schmidt( ) později předal francouzské špionáži také denní klíče pro měsíce záříaříjen1932 počátkem prosince 1932 dostalo polské Biuro Szyfrów kopie těchto dokumentů na základě dohody o vojenské spolupráci mezi Polskem, Francií a Velkou Británií v Německu si zakoupili volně prodejnou komerční variantu přístroje Enigma Konstrukce přístroje Enigma 2-5 Konstrukce přístroje Enigma 2-6 Schéma rotoru Elektrické schéma přístroje Konstrukce přístroje Enigma 2-7 Konstrukce přístroje Enigma 2-8
3 Nastavování přístroje- obsah Denní klíče denníklíčříkal,jakmábýtnastavenýpřístrojenigmavdanémdni na začátku šifrování libovolné zprávy Nastavovánípřístroje Denní klíče Kerckhoffovy principy denní klíč sestával z pořadírotorů,např.ii, III, I,bylovtédoběstejnépo celý čtvrt roku, polohy abecedních kroužků na rotorech, např. KUB propojení v propojovací desce, např. AU, CR, DK, JZ, LN, PS základní nastavení, tj. jaká písmena jsou vidět v malých okénkách, např. UFW Nastavování přístroje 2-9 Nastavování přístroje 2-10 Klíč zprávy Porušení pravidel bezpečnosti po nastavení přístroje podle denního klíče měla obsluha zvolit náhodnou trojici písmen, kupříkladu HTS tojeklíčzprávy potéjinapsatdvakrátzasebou,tj.hts HTS pak tuto šestici zašifrovat pomocí přístroje nastaveného podle denního klíče, výsledkem bylo NEV GWY poté ručně přenastavit rotory tak, aby v okénkách byl vidět klíč zprávy a začít šifrovat samotnou zprávu tak například zpráva AHOJ byla zašifrována jako JCRI všechny klíče zpráv byly ve stejném dni šifrovány pomocí stejného klíče(stejného nastavení přístroje) každý konkrétní klíč zprávy byl šifrován dvakrát pomocí dvou různých klíčů(tj. různých nastavení přístroje) porušení pravidel bezpečnosti bylo počátkem matematické analýzy šifry Nastavování přístroje 2-11 Nastavování přístroje 2-12
4 Konec roku 1932 Matematický model Enigmy- obsah MatematickýmodelEnigmy Model rotoru Opakování permutací Statický model tři nejlepší absolventi kurzu kryptoanalýzy, který uspořádalo Biuro Szyfrów v roce 1928 pro posluchače matematiky na univerzitě v Poznani Nastavování přístroje 2-13 Matematický model Enigmy 2-14 Matematický model rotoru Násobení rotorů Matematický model Enigmy 2-15 Matematický model Enigmy 2-16
5 Grafické znázornění permutace Graf složené permutace a b c d e f g h i j k l m n o p q r s t u v w x y z b d a c i h e k j m f n g o l q r t v p s u z y x w a b c d e f g b c a e f g d b c a e f g d e f g a d c b a b c d e f g e f g a d c b Matematický model Enigmy 2-17 Matematický model Enigmy 2-18 Změna jmen prvků permutované množiny ŘešitelnostrovniceU =X 1 VX,nutnápodmínka a b c d e f g b c a e f g d Matematický model Enigmy 2-19 Matematický model Enigmy 2-20
6 PokudmajíU,Vstejnýtyp Kdy jsou dvě permutace konjugované věta: jsou-li U,V dvě permutace na konečné množině Ω, pak existuje permutace X na množině Ω, pro kterou platí, že U=X-1VX právě když permutace U,V mají stejný cyklický typ kolik takových permutací X existuje? Matematický model Enigmy 2-21 Matematický model Enigmy 2-22
Ukázky aplikací matematiky. Jaro 2014, 2. přednáška
Ukázky plikcí mtemtiky Jro 2014, 2. přednášk Polsko 1926 Odposlechnuté rdiové zprávy Wehrmchtu MFNOJ WYFHJ EXZZD BJNDS BECFE NGQOU CFWZE RBSFQ WCUCQ XCKTT RDOAC VDYPM XYOFF HMSOZ THOSD HFPDI UKWRD MNDZX
Enigma. 4. března Úvod do kryptologie. L. Balková (ČVUT FJFI) Kryptologie 4. března / 44
Enigma podle učebního textu Doc. RNDr. Jiřího Tůmy, DrSc. L ubomíra Balková Úvod do kryptologie 4. března 2010 L. Balková (ČVUT FJFI) Kryptologie 4. března 2010 1 / 44 Program 1 Složení a funkce Enigmy
Enigma. 4. března Úvod do kryptologie. L. Balková (ČVUT FJFI) Kryptologie 4. března / 44
Enigma podle učebního textu doc. RNDr. Jiřího Tůmy, DrSc. L ubomíra Balková Úvod do kryptologie 4. března 2013 L. Balková (ČVUT FJFI) Kryptologie 4. března 2013 1 / 44 Program 1 Složení a funkce Enigmy
Šifrová ochrana informací historie PS4
Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací historie PS4 1 Osnova úvod, definice pojmů; substituční šifry; transpoziční šifry; první prakticky používané šifrové systémy;
Šifrová ochrana informací historie KS4
VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací historie KS4 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova
Šifrová ochrana informací historie PS4
VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací historie PS4 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova
Algebra - druhý díl. Lenka Zalabová. zima Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita
Algebra - druhý díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Permutace 2 Grupa permutací 3 Více o permutacích
Ukázkyaplikacímatematiky
Ukázkyaplikacímatematiky Jiří Tůma 2015 http://www.karlin.mff.cuni.cz/ tuma/aplikace15.htm tuma@karlin.mff.cuni.cz 0-1 Kapitola1 Úvod do šifrování 1-1 Základní pojmy- obsah Základnípojmy Ceasarova šifra
Ukázky aplikací matematiky. Kapitola 1. Jiří Tůma. Úvod do šifrování. Základní pojmy- obsah. Historie šifrování
Ukázky aplikací matematiky Jiří Tůma 2015 http://www.karlin.mff.cuni.cz/ tuma/aplikace15.htm tuma@karlin.mff.cuni.cz Kapitola 1 0-1 1-1 Základní pojmy- obsah Historie šifrování Základnípojmy Ceasarova
Cyklické grupy a grupy permutací
Cyklické grupy a grupy permutací Jiří Velebil: A7B01MCS 5. prosince 2011: Cyklické grupy, permutace 1/26 Z minula: grupa je důležitý ADT Dnešní přednáška: hlubší pohled na strukturu konečných grup. Aplikace:
2000 zveřejnění dobové zprávy General Report on Tunny informací nedostatek k odvození konstrukce šifrátoru Lorenz cíl: odvození pravděpodobného
Luštění německého šifrovacího stroje Lorenz podle bakalářské práce Petra Veselého, MFF UK 22. února 2012 2000 zveřejnění dobové zprávy General Report on Tunny informací nedostatek k odvození konstrukce
2000 zveřejnění dobové zprávy General Report on Tunny
Luštění německého šifrovacího stroje Lorenz podle bakalářské práce Petra Veselého, MFF UK 25. února 2010 2000 zveřejnění dobové zprávy General Report on Tunny 2000 zveřejnění dobové zprávy General Report
Permutační grupy Cykly a transpozice Aplikace. Permutace. Rostislav Horčík: Y01DMA 11. května 2010: Permutace 1/17
Permutace Rostislav Horčík: Y01DMA 11. května 2010: Permutace 1/17 Motivace Permutace jsou důležitou částí matematiky viz použití v pravděpodobnosti, algebře (např. determinanty) a mnoho dalších. Jsou
Substituční šifry a frekvenční analýza. Mgr. Radim Janča ijanca@fit.vutbr.cz
Substituční šifry a frekvenční analýza Mgr. Radim Janča ijanca@fit.vutbr.cz Harmonogram Celkově 4 cvičení v P256 Prezentace z cvičení budou zveřejňovány na http://buslab.fit.vutbr.cz/kib/ 3 samostatné
Složitost a moderní kryptografie
Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie
Zajímavosti z kryptologie
chch Zajímavosti z kryptologie Vít Hrubý 22. 8. 2011 Kryptologie Hledání způsobu bezpečné komunikace, která by zajistila, že nikdo nepovolaný se ke zprávě nedostane Steganografie - ukrytí zprávy Kryptografie
Fakulta elektrotechniky a informatiky Vysoká škola báňská - Technická univerzita Ostrava. Diskrétní matematika 2012/2013.
Fakulta elektrotechniky a informatiky Vysoká škola báňská - Technická univerzita Ostrava Diskrétní matematika 2012/2013 Projekt číslo 3 jméno: Jiří Znoj login: zno0011 hodnotící: Mgr. Pavel Skalný Příklad:
Diskrétní matematika. DiM /01, zimní semestr 2016/2017
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Zásady formálního zpracování diplomové práce
Zásady formálního zpracování diplomové práce Stránkový rozsah diplomové práce, musí být odvozen od jejího obsahu, to je věcného splnění zadání. Diplomová práce má být napsána na počítači na bílém neprůsvitném
Kryptografie, elektronický podpis. Ing. Miloslav Hub, Ph.D. 27. listopadu 2007
Kryptografie, elektronický podpis Ing. Miloslav Hub, Ph.D. 27. listopadu 2007 Kryptologie Kryptologie věda o šifrování, dělí se: Kryptografie nauka o metodách utajování smyslu zpráv převodem do podoby,
8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc.
Bezpečnost 8. RSA, kryptografie s veřejným klíčem doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů
Diskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
základní informace o kurzu základní pojmy literatura ukončení, požadavky, podmiňující předměty,
základní informace o kurzu ukončení, požadavky, podmiňující předměty, základní pojmy kód x šifra kryptologie x steganografie kryptografie x kryptoanalyza literatura klasická x moderní kryptologie základní,
Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní
Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča
Asymetrická kryptografie a elektronický podpis Ing. Dominik Breitenbacher ibreiten@fit.vutbr.cz Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Kryptoanalýza
Jak funguje asymetrické šifrování?
Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil
Téma 2 Principy kryptografie
XXV/1/Téma 2 1 Téma 2 Principy kryptografie Substitučně-permutační sítě a AES V on-line světě každý den odešleme i přijmeme celou řadu šifrovaných zpráv. Obvykle se tak děje bez toho, abychom si to jakkoli
na klávesnici, propojovací deska a tři okna nad žárovkami. To jsou viditelné části přístroje. Jejich skutečný vzhled vidíte na prvním obrázku.
Kapitola 6 Enigma Když se Německo začalo chystat ve třicátých létech minulého století na novou válku, hledalo velení ozbrojených sil nový šifrovací systém. Vedly je k tomu nejenom nezdary v průběhu první
ZŠ ÚnO, Bratří Čapků 1332
MS Access 2002 Grada - po spuštění je třeba kliknout do středu obrazovky - v dalším dialogovém okně (Přihlášení) vybrat uživatele, zřídit Nového uživatele nebo zvolit variantu Bez přihlášení (pro anonymní
kryptosystémy obecně další zajímavé substituční šifry klíčové hospodářství kryptografická pravidla Hillova šifra Vernamova šifra Knižní šifra
kryptosystémy obecně klíčové hospodářství klíč K, prostor klíčů T K kryptografická pravidla další zajímavé substituční šifry Hillova šifra Vernamova šifra Knižní šifra klíč K různě dlouhá posloupnost znaků
Prezentace. RNDr. Vladimír Kostka. Vysoká škola technická a ekonomická v Českých Budějovicích
Prezentace a vystupování učitele RNDr. Vladimír Kostka Vysoká škola technická a ekonomická v Českých Budějovicích úvod kvalifikační standard učitele učitel získá pedagogické kompetence, odborné znalosti,
Opakovací test. Kombinatorika A, B
VY_32_INOVACE_MAT_193 Opakovací test Kombinatorika A, B Mgr. Radka Mlázovská Období vytvoření: listopad 2012 Ročník: čtvrtý Tematická oblast: matematické vzdělávání Klíčová slova: maturita, přijímací zkoušky,
MATEMATIKA V ÚPRAVĚ PRO NESLYŠÍCÍ DIDAKTICKÝ TEST 12 SP-3-T SP-3-T-A
MATEMATIKA V ÚPRAVĚ PRO NESLYŠÍCÍ DIDAKTICKÝ TEST 12 SP-3-T SP-3-T-A Obsah testového sešitu je chráněn autorskými právy. Jakékoli jeho uži, jakož i uži jakékoli jeho čás pro komerční účely či pro jejich
Základní příručka programu Crypta 2
Identifikace Číslo jednací Nahrazuje Klasifikace Veřejný Platnost 8. 11. 2015 Účinnost 8. 11. 2015 Příloha č. 1 Základní příručka programu Crypta 2 Česká pošta, s.p., se sídlem Politických vězňů 909/4,
Řízení modelu letadla pomocí PLC Mitsubishi
Řízení modelu letadla pomocí PLC Mitsubishi Jakub Nosek TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Matematické základy šifrování a kódování
Matematické základy šifrování a kódování Permutace Pojem permutace patří mezi základní pojmy a nachází uplatnění v mnoha oblastech, např. kombinatorice, algebře apod. Definice Nechť je n-prvková množina.
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
pravděpodobnosti a Bayesova věta
NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,
4.3.2 Koeficient podobnosti
4.. Koeficient podobnosti Předpoklady: 04001 Př. 1: Která z následujících tvrzení jsou správná? a) Každé dvě úsečky jsou podobné. b) Každé dva pravoúhlé trojúhelníky jsou podobné. c) Každé dva rovnostranné
Tonda Beneš Ochrana informace jaro 2011
Literatura PFLEEGER, "Security in Computing", Prentice-Hall, 1989 SCHNEIER, "Applied Cryptography", John Wiley & Sons, 1994 IBYL, "Ochrana dat v informatice", scriptum VUT, 1993 Frequently Asked Questions
Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC
Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC Kondenzátor i cívka kladou střídavému proudu odpor, který nazýváme kapacitance
Kvalifikovaný odhad. Polsko, 1932
3 Kvalifikovaný odhad Polsko, 1932 Většina pracovníků Deuxième Bureau, kteří věděli o Hansi-Thilo Schmidtovi, došla v roce 1938 k závěru, že jeho dokumenty nikdy nepovedou k prolomení šifry Enigma. Proto
KANCELÁŘSKÉ APLIKACE
KANCELÁŘSKÉ APLIKACE Kurzy MS Office 2003, 2007 a OpenOffice jsou určeny zejména těm uživatelům PC, kteří běžně pracují s kancelářskými aplikacemi, ale chtěli by svoje znalosti a dovednosti prohloubit
Středoškolská technika 2015. Encryption Protection System
Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Encryption Protection System Jaroslav Vondrák Vyšší odborná a Střední škola Varnsdorf Mariánská 1100, Varnsdorf 1
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.
Asymetrické šifry Pavla Henzlová FJFI ČVUT v Praze 28.3.2011 Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.2011 1 / 16 Obsah 1 Asymetrická kryptografie 2 Diskrétní logaritmus 3 Baby step -
kryptoanalýza druhy útoků proti klasickým šifrám příklad útok hrubou silou frekvenční analýza Kasiskiho metoda index koincidence Jakobsenův algoritmus
kryptoanalýza druhy útoků proti klasickým šifrám usnadnění útoku útok hrubou silou slovníkový, hybridní frekvenční analýza metoda ad hoc Kasiskiho metoda index koincidence přirozený jazyk struktura Jakobsenův
Celostátní kolo soutěže Baltík 2008, kategorie C
Pokyny: 1. Pracujte pouze v ikonkových reţimech! 2. Řešení úloh ukládejte do sloţky, která se nachází na pracovní ploše počítače. Její název je stejný, jako je kód, který dostal váš tým přidělený (např.
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Matematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
2
2 4 5 6 7 8 9 1 2 4 4 1 2 10 11 1 2 4 4 1 2 7241B 12 1 1 2 4 4 2 1 14 15 1 2 4 4 1 2 7241B 16 17 1 2 4 4 1 2 18 19 1 2 4 4 1 2 20 21 1 2 4 4 2 1 22 2 1 2 4 4 1 2 7241B 24 25 1 2 4 4 1 2 26 27 1 2 4 4
Šifrování Kafková Petra Kryptografie Věda o tvorbě šifer (z řečtiny: kryptós = skrytý, gráphein = psát) Kryptoanalýza Věda o prolamování/luštění šifer Kryptologie Věda o šifrování obecné označení pro kryptografii
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Náhodný vektor a jeho charakteristiky
Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich
Symetrické šifry, DES
Symetrické šifry, DES Jiří Vejrosta Fakulta jaderná a fyzikálně inženýrská, ČVUT Jiří Vejrosta (FJFI) UKRY 1 / 20 Klíče Symetrická šifra tajný klíč klíč stejný u odesilatele i příjemce Asymetrická šifra
1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu
1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu Cíle kapitoly: Cílem úlohy je ověřit teoretické znalosti při provozu dvou a více transformátorů paralelně. Dalším úkolem bude změřit
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
vnější profesionál vnitřní profesionál organizace opakuje podsouvá
Útoky proti metodám kryptografické ochrany Co je cílem útoku: utajení autenticita integrita vzájemnost Kdo je potenciální útočník: laik venkovní laik domácí hacker Jak se útočník chová: zachycuje pozměňuje
Intuitivní pojem pravděpodobnosti
Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost
GRAFICKÝ MANUÁL pro publikace MFF UK
GRAFICKÝ MANUÁL pro publikace MFF UK Patitul - Tato strana není povinná KAREL NOVÁK MATEMATIKA VČERA DNES A ZÍTRA hřbet publikace První lichá strana publikace - v současné době se používá zřídka. Obsahuje
Konstrukce šifer. Andrew Kozlík KA MFF UK
Konstrukce šifer Andrew Kozlík KA MFF UK Kerckhoffsův princip V roce 1883 stanovil Auguste Kerckhoffs 6 principů, kterými by se měl řídit návrh šifrovacích zařízení. Například, že zařízení by mělo být
Počet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování.
Název předmětu: Matematika pro informatiky Zkratka předmětu: MIE Počet kreditů: 5 Forma studia: kombinovaná Forma zkoušky: kombinovaná (písemná a ústní část) Anotace: Předmět seznamuje se základy dělitelnosti,
1.1 Měření hodinového úhlu transformátorů
1.1 Měření hodinového úhlu transformátorů Cíle kapitoly: Jedním z cílů úlohy je se seznámit s reálným zapojením vstupních a výstupních svorek třífázového transformátoru. Cílem je stanovit napěťové poměry
Teorie pravěpodobnosti 1
Teorie pravěpodobnosti 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodný jev a pravděpodobnost Každou zákonitost sledovanou v přírodě lze zjednodušeně charakterizovat jako
Kryptografie a počítačová bezpečnost
Kryptografie a počítačová bezpečnost Symetrické algoritmy (cont.) KPB 2017/18, 6. přednáška 1 Teoretické základy blokových algoritmů Koncept moderní kryptografie navrhli C. Shannon a H. Feistel. Claude
KRYPTOGRAFIE VER EJNE HO KLI Č E
KRYPTOGRAFIE VER EJNE HO KLI Č E ÚVOD Patricie Vyzinová Jako téma jsem si vybrala asymetrickou kryptografii (kryptografie s veřejným klíčem), což je skupina kryptografických metod, ve kterých se pro šifrování
MFF UK Praha, 22. duben 2008
MFF UK Praha, 22. duben 2008 Elektronický podpis / CA / PKI část 1. http://crypto-world.info/mff/mff_01.pdf P.Vondruška Slide2 Přednáška pro ty, kteří chtějí vědět PROČ kliknout ANO/NE a co zatím všechno
Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě
Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob
KOMBINATORIKA. 1. cvičení
KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU
Pravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
Směrnice děkana č. 5/2015
Směrnice děkana č. 5/2015 Podmínky pro přijetí ke studiu na Ekonomickou fakultu TUL v bakalářských, navazujících magisterských a doktorských studijních programech v akademickém roce 2016/2017 Článek I.
Základy šifrování a kódování
Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Základy šifrování a kódování
Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013
Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové
Bezpečnostní technika
technika modul pro nouzové zastavení BL 5931 safemaster Grafické znázornění spínacího postupu Tlačítko Síť nebo nouzové zastavení (vypnutí) Při zkratu v obvodu zapínacího tlačítka () u typu BL 5931.64/002
A B C D E 2 F G H I J 3 K L M N O 4 P Q R S T 5 U/V W X Y Z
ŠIFROVACÍ KROUŽEK - 4. hodina 1. Polybiův čtverec Polybios (cca 230 př.n.l. cca 120 př.n.l.) byl starověký řecký politik, historik, matematik a spisovatel. Polibiův čtverec je matice 5x5, do které vepíšeme
( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204
9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými
Crypto-World Informační sešit GCUCMP ISSN 1801-2140
Crypto-World Informační sešit GCUCMP ISSN 1801-2140 Ročník 8, číslo 1/2006 15. leden 2006 1/2006 Připravil: Mgr. Pavel Vondruška Sešit je přednostně distribuován registrovaným čtenářům. Starší sešity jsou
0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).
Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace
Bakalářské a diplomové práce. katedra matematiky
Bakalářské a diplomové práce katedra matematiky 31.10.2011 Závěrečné práce obecné informace databáze VŠKP výběr a zadání témat -kdy -jak zpracování práce odevzdání a obhajoba práce -kdy -jak okruhy témat
Kryptografie a informační bezpečnost
Kryptografie a informační bezpečnost Mgr. Kamil Malinka, Ph.D. malinka@fit.vutbr.cz FIT VUT bezpečnost, Kamil Malinka 1 Odkazy Hlavní informační zdroj předmětu KIB aktuality předmětu http://securityfit.cz/kib/
Online schéma. Hotline: Sunpower tel.: 603 516 197 ; e-mail: office@sunpower.cz ; fax: 384 388 167. Programování s TAPPS
Online schéma Hotline: Sunpower tel.: 603 516 197 ; e-mail: office@sunpower.cz ; fax: 384 388 167 Programování s TAPPS CS Online schéma Bootloader nabízí možnost online vizualizace, při které může být
A 2.C. Datum: 13.5.2010
Jméno: Řešení Datum: 13.5.2010 A 2.C 1) Vojenskou kolonu budou tvořit dva terénní vozy UAZ, tři auta Praga V3S a čtyři Tatry 138. Kolika způsoby lze kolonu seřadit, jestliže: a) Na pořadí vozidel nejsou
NÁHODNÁ VELIČINA. Podle typu výběrového prostoru rozlišujeme dva základní druhy NV Diskrétní (nespojitou) náhodnou veličinu Spojitou náhodnou veličinu
NÁHODNÁ VELIČINA NÁHODNÁ VELIČINA Provedeme náhodný pokus (vybereme nějaké lidi, výrobky) A jejich výsledkem je nějaké reálné číslo (počet VŠ, počet vadných výrobků) Kdyţ je moţné přiřadit číslo můţeme
Střední zdravotnická škola. Beroun. Manuál k vypracování seminární práce
Střední zdravotnická škola Beroun Manuál k vypracování seminární práce Předmět: Ošetřování nemocných Obor: Zdravotnický asistent Školní rok: 2015/2016 I. Základní kritéria 1. Termíny před zahájením souvislé
Příloha č. 06 usnesení 61. Rady města Stříbra ze dne 10.02.2014 Ž Á D O S T
s 4 odst. 3 Číslo smlouvy: 9270310299 ze dne 24.06./29.06.2005 Číslo a datum kolaudačního rozhodnutí: 572/OVÚP/05/147/Ha ze dne 08.04.2005, nabytí právní moci dne 30.04.2005 1. Smlouva č.: 9270310299 o
Automobilový průmysl. REFERENCE Leden 2018
Automobilový průmysl REFERENCE Leden 2018 www.myscada.org myscada Technologies s.r.o. 2018 ÚVOD Výrobce automobilových součástek Vibracoustic a.s. projevil zájem o modernizaci stávající výrobní haly v
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
EU-OPVK:VY_32_INOVACE_FIL13 Vojtěch Filip, 2014
Číslo projektu CZ.1.07/1.5.00/34.0036 Tématický celek Inovace výuky ICT na BPA Název projektu Inovace a individualizace výuky Název materiálu Kryptografie Číslo materiálu VY_32_INOVACE_FIL13 Ročník První
Školní kolo soutěže Baltík 2009, kategorie C
Úloha 1 Sídliště Počet bodů: 40 b Pracujte v 3D režimu s Baltíkem. a) Bílý a šedivý Baltík si postaví šachovnici o rozměru 6x6 políček následujícím způsobem. Předměty SGP21.sgpm a SGP22.sgpm upravte na
65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03
Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška osmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Kombinatorika: pravidla součtu a součinu 2 Kombinatorika:
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení