Zápočtová písemka z Matematiky III (BA04) skupina A

Rozměr: px
Začít zobrazení ze stránky:

Download "Zápočtová písemka z Matematiky III (BA04) skupina A"

Transkript

1 skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost P (X (4, 10)). Rozptyl a modus. danou tabulkou x \y /1 1/3 /4 /1 1/1 c Obor hodnot Ω náhodného vektoru (X, Y ) a konstantu c. Marginální náhodnou veličinu X: rozdělovací funkci p 1 (x), její distribuční funkci F 1 (x) a nakreslete jejich grafy. Pravděpodobnost P (X Y ).

2 skupina B 0 pro x < 1, a x pro x 1, ), 4 Pravděpodobnost P (X 3) a P (X =.). D (X), D ( X 1). Hustotu funkci transformované náhodné veličiny Y = ln X. F(x) = sin x pro x ( ) 0, π, Hustotu f(x). Pravděpodobnost P (X ( π 4, π )). Střední hodnotu a modus. danou tabulkou x \y 1 1 c/10 c/5 c/10 c/5 3 c/10 c/10 Obor hodnot Ω náhodného vektoru (X, Y ) a konstantu c. Marginální náhodnou veličinu X: rozdělovací funkci p 1 (x), její distribuční funkci F 1 (x) a nakreslete jejich grafy. Pravděpodobnost P (X < Y ).

3 skupina C danou tabulkou: x p(x) c/15 c/5 c/5 c/5 c/15 Konstantu c. Distribuční funkci F (x) a nakreslete její graf. Pravděpodobnost P (X = ), P (X =.) a P (X ). ( ( Střední hodnotu, E X ) ) 5, modus. F(x) = a 1 x+1 pro x (0, ). P (X < 5) Hustotu transformované náhodné veličiny Y = e X. Určete f(x, y) = 1 e 1 xex pro [x, y] (0, 1) (0, ), Obor hodnot Ω (i nakreslit) náhodného vektoru (X, Y ). Pravděpodobnost P (Y 1), P ([X, Y ] = [0.5, 0.5]).

4 skupina D danou tabulkou: x p(x) c/3 0 1/3 1/ Konstantu c. Distribuční funkci F (x) a nakreslete její graf. Pravděpodobnost P (X = 1), P (X =.1) a P (X 3). Střední hodnotu, E (( )) X 6, modus. F(x) = a 1 e pro x (0, ). x Pravděpodobnost P (1 X ). Hustotu transformované náhodné veličiny Y = X 3 +. Určete f(x, y) = x pro [x, y] ( 0, 1 ) (0, 4), Obor hodnot Ω (i nakreslit) náhodného vektoru (X, Y ). Pravděpodobnost P (Y 1), P ([X, Y ] = [0.5, 0.5]).

5 skupina E p(x) = ( a ) x 3 x = 0, 1,, 3,..., Pravděpodobnost P (X = 3 ), P (X 1). Hustotu transformované náhodné veličiny Y = 4X. F(x) = a + b cos x pro x (0, π), Hustotu f(x). Pravděpodobnost P (X = π ), P (X π ). Střední hodnotu, E ( ) X 1 3, modus náhodné veličiny X. f(x, y) = 8y(x+) 10 pro x (0, 1) (0, 1), Pravděpodobnost P (X >, Y < 1), P (X > 0, Y < 1 3 ). Distribuční funkci marginální náhodné veličiny X.

6 skupina F p(x) = Pravděpodobnost P (X = 0), P (X 1). ( a 1 ) x+1 3 x = 1,, 3,..., Hustotu transformované náhodné veličiny Y = X 3. 0 pro x 1, F(x) = a + b ln (e x) pro x ( 1, e ), Hustotu f(x). Pravděpodobnost P (X = e ), P (X e). Střední hodnotu, E ( X ln X ), modus náhodné veličiny X. f(x, y) = x+3y 9 pro x (0, 1) (0, ), Pravděpodobnost P (X >, Y < 1), P (X > 0, Y < 1). Distribuční funkci marginální náhodné veličiny Y.

7 skupina G 1 6 sin x 3 pro x (0, 3π), Distribuční funkci F (x). Pravděpodobnost P (X 3π ) a P (X 3π ). Střední hodnotu, E ( 1 (X 1)) a modus náhodné veličiny X. Konstanty c 1, c. Pravděpodobnost P (X = 1). F(x) = c 1 + c arctg x pro x > 0. Hustotu transformované náhodné veličiny Y = ln X. danou tabulkou x \y /8 1/ 1/4 1/8 c Konstantu c a obor hodnot Ω náhodného vektoru (X, Y ). Pravděpodobnost P (X > 1, Y > 1), P ([X, Y ] = [1, 0]). Rozptyl (dispersi) marginální náhodné veličiny Y.

8 skupina I Konstantu c a modus náhodné veličiny X. Pravděpodobnost P (X = 1 ), P (X 1 ). c(x + 1) pro x ( 1, 1, Střední hodnotu transformované náhodné veličiny E (sin X). F(x) = a + 0 pro x, b x x pro x (, ). Pravděpodobnost P (X 4), P (X (, 4)). E ( ) X 3 víte-li, že E (X) = 6. danou tabulkou x \y 1 0 1/6 1/3 1/1 1/ /4 Pravděpodobnost P ((X Y ) 1), P (X = 1). Distribuční funkci marginální náhodné veličiny X.

9 skupina J Konstantu a a modus náhodné veličiny X. a(x ) pro x 0, ), Pravděpodobnost P (X = 0), P ( X ( 1, 3 )). Střední hodnotu transformované náhodné veličiny E (cos X). F(x) = a + 0 pro x, b x x pro x (, ). Pravděpodobnost P (X 4), P (X (, 4)). D ( ) 1 X 3 víte-li, že D (X) = danou tabulkou x \y /0 1/0 0 3/0 3/0 1/5 1 1/10 1/10 1/10 Pravděpodobnost P ((X Y ) > 0), P (X = 1). Distribuční funkci marginální náhodné veličiny Y.

10 skupina K cx sin x pro x (0, π), Konstantu c. Distribuční funkci F (x). Pravděpodobnost P ( X π ) a P ( X > π ). Pravděpodobnost P (X = 3), P ( X 1, e ). 0 pro x e, F(x) = a + b ln x pro x ( e, e 3), Hustotu transformované náhodné veličiny Y = ln X. p(x, y) = 15 ( ) x+y [x, y] 1,, 3,... } 1,, 3,... }, Pravděpodobnost P ((X, Y ) A), kde A = [x, y] N N; x 1, y }. Graf distribuční marginální náhodné veličiny X na intervalu 0, 3.5.

11 skupina L ax sin x pro x (0, π), Distribuční funkci F (x). Pravděpodobnost P (X 1) a P (X > 1). Pravděpodobnost P (X = 3), P ( X 1, e ). 0 pro x e, F(x) = a + b ln x pro x ( e, e 3), Hustotu transformované náhodné veličiny Y = e X. p(x, y) = ( 8 1 ) x+3y+ [x, y] 1,, 3,... } 1,, 3,... }, Pravděpodobnost P ((X, Y ) A), kde A = [x, y] N N; x, y 1}. Graf distribuční marginální náhodné veličiny Y na intervalu 0, 3.5.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Řešení. Označme po řadě F (z) Odtud plyne, že

Řešení. Označme po řadě F (z) Odtud plyne, že Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

8.4. Shrnutí ke kapitolám 7 a 8

8.4. Shrnutí ke kapitolám 7 a 8 8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 7

Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení

Více

NÁHODNÁ VELIČINA. 3. cvičení

NÁHODNÁ VELIČINA. 3. cvičení NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému 2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka

Více

Poznámky k předmětu Aplikovaná statistika, 4. téma

Poznámky k předmětu Aplikovaná statistika, 4. téma Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické

Více

Poznámky k předmětu Aplikovaná statistika, 4. téma

Poznámky k předmětu Aplikovaná statistika, 4. téma Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Vícerozměrná rozdělení

Vícerozměrná rozdělení Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

Matematika II. (LS 2009) FS VŠB-TU Ostrava. Bud te. A = a + 1 2, B = 1. b + 1. y = x 2 + Bx 3A. a osou x.

Matematika II. (LS 2009) FS VŠB-TU Ostrava. Bud te. A = a + 1 2, B = 1. b + 1. y = x 2 + Bx 3A. a osou x. Program 2. Aplikace určitého integrálu zadání 1. y = x 2 + Bx 3A y = ln(bx), x = 1/A a x = 3A Vypočítejte její obsah. 3. Určete obsah plochy ohraničené parametricky zadanou křivkou (tzv. cykloidou) x(t)

Více

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru.

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. Varianta I 1. Definujte pravděpodobnostní funkci. 2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. 3. Definujte Fisher-Snedecorovo rozdělení.

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y = Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0. Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo

Více

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2,

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2, 4. Parciální derivace a diferenciál. řádu 0-a3b/4dvr.tex Příklad. Určete parciální derivace druhého řádu funkce f v obecném bodě a v daných bodech. Napište obecný tvar. diferenciálu, jeho hodnotu v daných

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz). 1 Cvičení z předmětu KMA/PST1 Pro získání zápočtu je nutno mimo docházky (max. 3 absence) uspět minimálně ve dvou ze tří písemek, které budou v průběhu semestru napsány. Součástí třetí písemky bude též

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Příklady ke čtvrtému testu - Pravděpodobnost

Příklady ke čtvrtému testu - Pravděpodobnost Příklady ke čtvrtému testu - Pravděpodobnost 6. dubna 0 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a vyřešte příklad podobný. Tím se ujistíte, že příkladu

Více

Vzorová písemka č. 1 (rok 2015/2016) - řešení

Vzorová písemka č. 1 (rok 2015/2016) - řešení Vzorová písemka č. rok /6 - řešení Pavla Pecherková. května 6 VARIANTA A. Náhodná veličina X je určena hustotou pravděpodobností: máme hustotu { pravděpodobnosti C x pro x ; na intervalu f x jinde jedná

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv

, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv 42206, skupina (6:5-7:45) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papíry, které odevzdáváte Škrtejte zřetelně a stejně zřetelně pište i věci, které platí Co je škrtnuto, nebude bráno v

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Cyklometrické funkce

Cyklometrické funkce 4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

1. Písemka skupina A...

1. Písemka skupina A... . Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce

Více

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (8) Funkce více proměnných Kristýna Kuncová Matematika B2 Kristýna Kuncová (8) Funkce více proměnných 1 / 19 Parciální derivace Definice Derivaci funkce f : R R v bodě a definujeme jako limitu f f (a +

Více

Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N.

Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N. 4 4. týden 4.1 supremum a infimum množiny Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? Příklad 4.2 Zkuste uhádnout sup M, inf

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Příklady na procvičení z NMFM202

Příklady na procvičení z NMFM202 Příklady na procvičení z NMFM202 Naposledy změněno: 24. října 203 Klasická pravděpodobnost. Z kartiček s čísly, 2, 3, 4, 5 náhodně vybereme tři a položíme je v pořadí, v němž jsme je vybrali. Jaká je pravděpodobnost,

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g. . Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2 4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch

Více

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu, Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie

Více

Repetitorium matematiky (pomocný učební text soubor testů s výsledky) KMA/P113, KMA/K113

Repetitorium matematiky (pomocný učební text soubor testů s výsledky) KMA/P113, KMA/K113 Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta Repetitorium matematiky (pomocný učební text soubor testů s výsledky) KMA/P113, KMA/K113 Lenka Cibochová Ústí nad Labem 016 Anotace: Tato

Více

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž

Více

K rozpoznání růstu či klesání dané funkce určitém směru nám pomůže gradient, tj. vektor., ln(1 x2 + y 2 [ = y

K rozpoznání růstu či klesání dané funkce určitém směru nám pomůže gradient, tj. vektor., ln(1 x2 + y 2 [ = y VKM/IM 017/018 Určete da funkce fx y) ln1 x +y ) v bodě A 1 1 ve směru vektorů u 1 1 0 u 0 1 u 3 1 1 a u 4 1 roste či klesá a určete rychlost měny. Řešení: Funkce fx y) je definovány pro všechny body R

Více

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální

Více

Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ

Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ Přijímací zkoušky z matematiky pro akademický rok 8/9 NMgr studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 4 5 Celkem Body Ke každému příkladu uved te

Více

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce. b) D =N a H je množina všech kladných celých čísel, Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2

Více

Veronika Chrastinová, Oto Přibyl

Veronika Chrastinová, Oto Přibyl Integrální počet II. Příklady s nápovědou. Veronika Chrastinová, Oto Přibyl 16. září 2003 Ústav matematiky a deskriptivní geometrie FAST VUT Brno Obsah 1 Dvojný integrál 3 2 Trojný integrál 7 3 Křivkový

Více

Petr Hasil

Petr Hasil Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz

Více

S1P Příklady 02. Náhodná proměnná (veličina) Mějme krabičku o rozměrech 1 x 2 x 3 cm. Na stranách jsou obrázky: :

S1P Příklady 02. Náhodná proměnná (veličina) Mějme krabičku o rozměrech 1 x 2 x 3 cm. Na stranách jsou obrázky: : S1P Příklady 02 Náhodná proměnná (veličina) Mějme krabičku o rozměrech 1 2 3 cm Na stranách jsou obrázky: : Ω ={strom, houba, kytka, slunce, dům, ryba} Pravděpodobnost jednotlivých elementárních jevů odpovídá

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Posloupnosti. n2 3n. lim. n4 + 2n. lim. n 1. n + n n. n! (n + 1)! n! lim. n ( 1)n! [1] lim. ln 2 n. lim. n n n sin n2 [0] lim. 2 n.

Posloupnosti. n2 3n. lim. n4 + 2n. lim. n 1. n + n n. n! (n + 1)! n! lim. n ( 1)n! [1] lim. ln 2 n. lim. n n n sin n2 [0] lim. 2 n. SBÍRKA PŘÍKLAŮ Z MATEMATICKÉ ANALÝZY III J. ANĚČEK, M. ZAHRANÍKOVÁ Symbolem jsou označeny obtížnější příklady. Posloupnosti Určete limitu posloupnosti n n + lim n n + 5n + lim n n n n4 + n lim n lim n

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3

Více

1. Klasická pravděpodobnost

1. Klasická pravděpodobnost Příklady 1. Klasická pravděpodobnost 1. Házíme dvakrát kostkou. Jaká je pravděpodobnost, že padne alespoň jedna šestka? 2. Základy teorie pravděpodobnosti vznikly v korespondenci mezi dvěma slavnými francouzskými

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost

Více

NÁHODNÝ VEKTOR. 4. cvičení

NÁHODNÝ VEKTOR. 4. cvičení NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015

Více

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0. Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke

Více

1. Kombinatorika 1.1. Faktoriál výrazy a rovnice

1. Kombinatorika 1.1. Faktoriál výrazy a rovnice 1. Kombinatorika 1.1. Faktoriál výrazy a rovnice 1.A) 210; B) 990; C) 29260; D) 1/5; E) 1/240; F) 157; G) 81/712; H) 1/100; I) 3,98*10 11 ; J) 86296950; K) 65824; L) 195878760; 2. A) x 3 +3x 2 +2x; x Z,

Více

1. Klasická pravděpodobnost

1. Klasická pravděpodobnost Příklady 1. Klasická pravděpodobnost 1. Házíme dvakrát kostkou. Jaká je pravděpodobnost, že padne alespoň jedna šestka? 2. Základy teorie pravděpodobnosti vznikly v korespondenci mezi dvěma slavnými francouzskými

Více

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3! Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

Q(y) dy = P(x) dx + C.

Q(y) dy = P(x) dx + C. Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato

Více

Tématické celky { kontrolní otázky.

Tématické celky { kontrolní otázky. Tématické celky kontrolní otázky. Základy teorie pravdìpodobnosti..pravdìpodobnostní míra základní pojmy... Vysvìtlete pojem náhody, náhodného pokusu, náhodného jevu a jeho mno- ¾inovou interpretaci. Popi¹te

Více

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (5) Funkce více proměnných II Kristýna Kuncová Matematika B3 Kristýna Kuncová (5) Funkce více proměnných II 1 / 20 Parciální derivace - příklad Otázka Tabulka vpravo znázorňuje hodnoty funkce f (x, y).

Více

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů 3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)

Více