ENZYMY. Enzymy - jednoduché nebo složené proteiny, které katalyzují chemické přeměny v organismech
|
|
- Antonín Sedlák
- před 6 lety
- Počet zobrazení:
Transkript
1 ENZYMY Enzymy - jednoduché nebo složené proteiny, které katalyzují chemické přeměny v organismech Šest hlavních kategorií enzymů: EC 1 Oxidoreduktasy: katalyzují oxidačně/redukční reakce EC 2 Transferasy: přenášejí funkční skupiny (například methyl-, acetyl- nebo fosfátovou skupinu) EC 3 Hydrolasy: katalyzují hydrolýzu chemických vazeb EC 4 Lyasy: štěpí chemické vazby jiným způsobem než hydrolýzou či redoxní reakcí EC 5 Isomerasy: katalyzují isomerisační reakce EC 6 Ligasy: spojují dvě molekuly kovalentní vazbou 1
2 ENZYMY 1. Bílkovinná povaha ( + některé RNA-enzymy - ribozymy) 2. Větší účinnost (faktor minimálně l0 6 ) 3. Specifičnost - substrátová mechanismu účinku 4. Regulovatelnost - na úrovni genomu (indukce, represe) proteolyticky (prekursory - zymogeny) na úrovni enzymu (allosterický efekt, kovalentně) 5. Kompartmentace 6. Snižují aktivační energii, neovlivňují rovnovážnou konstantu přiblížení reaktantů, stabilizace aktivovaného komplexu Thomas R. Cech 1989 Nobelova cena 2
3 ENZYMY Čísla přeměny některých enzymů (k cat ) mol.mol -1.s -1 Karbonátdehydratasa acetylcholinesterasa laktátdehydrogenasa 1000 chymotrypsin 100 DNA- polymerasa 15 lysozym 0,5 3
4 1) Oxidoreduktasy katalyzují různé oxidoredukční reakce, často s využitím koenzymů jako např. NADH, NADPH, FADH2,nebo hemu. Triviální názvy v této třídě: dehydrogenasy, oxidasy, cytochromy, peroxidasa, katalasa. 2) Transferasy Katalyzují přenos skupin: amino-, methyl-, acyl-, glykosyl-, fosforyl-. Kinasy katalyzují přenos fosfátové skupiny z ATP nebo jiných nukleosidtrifosfátů. Triviální názvy v této třídě: aminotransferasy (transaminasy), acyltransferasy, fosfotransferasy. 3) Hydrolasy Katalyzují štěpení vazeb mezi atomem uhlíku a jinými atomy prostřednictvím spotřebované molekuly vody. Obvyklé triviální názvy: esterasy, peptidasy, amylasy, fosfatasy, lipasy, proteasy (pepsin, trypsin, chymotrypsin). 4
5 4) Lyasy Katalyzují adiční reakci na dvojné vazbě nebo eliminační reakci mezi dvěma C atomy za vzniku dvojné vazby. Příklady: fumaráthydratasa (fumarasa), karbonátdehydratasa (karboanhydrasa), aldolasa, citrátlyasa, dekarboxylasy. 5) Isomerasy Katalyzují racemizaci optických isomerů nebo vytváření polohových isomerů: epimerasy, racemasy, mutasy. 6) Ligasy Katalyzují tvorbu vazeb mezi uhlíkem a jinými atomy spojenou se štěpením ATP (spřažení exergonické a endergonické reakce): karboxylasy, synthetasy (glutaminsynthetasa). 5
6 Nebílkovinné složky enzymů kofaktory (dvojmocné kationty: Zn 2+, Mg 2+, Cu 2+, Mn 2+, Ca 2+ ) koenzymy (vztah k vitaminům) - připojeny nekovalentně prosthetická skupina (hem) - vázána kovalentně Vitamin koenzym funkce oxidoreduktas (přenos elektronů, H) Niacin (P-P) NAD, NADP přenos 2 e - + H + B 2 (riboflavin) FAD, FMN přenos 2 H přenosu skupin B 1 (thiamin) thiamindifosfát (TDP) oxidační dekarboxylace B 6 (pyridoxin) pyridoxalfosfát transaminace H (biotin) biotinový koenzym karboxylace kys. listová (folacin) THF (obsahuje PABA) přenos 1 C zbytku B 12 kobamid přenos 1 C zbytku pantothenát (B 5 ) koenzym A (CoA) přenos acylu 6
7 Redukce Oxidace 7
8 JEDNOTKY VYJADŘOVANÍ ENZYMOVÉ AKTIVITY katal (zkratka kat): množství enzymu, které urychlí (katalyzuje) biochemickou reakci za vzniku 1 molu produktu za sekundu; l0-6 kat = µkat ; l0-9 kat = nkat starší mezinárodní jednotka: 1 U : množství enzymové aktivity, které katalyzuje přeměnu 1 µmolu substrátu za minutu; l0-3 U = mu PŘEVOD: 1 U=16,67 nkat 60 U=1 µkat FAKTORY OVLIVŇUJÍCÍ ENZYMOVOU AKTIVITU 1. koncentrace substrátu (K m, V, k cat ) 2. teplota 3. ph 4. iontová síla 5. aktivátory a inhibitory 8
9 Michaelis-Mentenová-Henri K M v v S K [ ] [ ] max M S [ S] K v v M max [ S] K v M v K maxs [ M ] 9
10 10
11 Regulace činnosti enzymů 1. Alosterický efekt 2. Kompartmentace místní oddělení enzymatických komplexů a distribuce substrátů 3. Regulace změnou struktury kovalentní regulace (rozpad kvarterní struktury, chemická modifikace např. fosforylace, oxidace SH na S-S). 4. Reakcí s metabolity zpětná vazba (často allostrericky). 5. Řízení produkce a odbourávání enzymu. 11
12 Historie poznání enzymů 18 století: trávicí účinek žaludeční šťávy 1878: KŰHNE zavedl název ENZYM (En Zyme - v kvasnicích) BUCHNER - extrakt kvasinek katalyzuje kvašení SUMNER - bílkovinná povaha enzymů - ureasa 12
13 Enzymové technologie Použití isolovaných enzymů, enzymových komplexů a buněk Isolace enzymů Imobilizace enzymů, enzymových komplexů a buněk Enzymové procesy v nevodných systémech, micelách, dvoufázových systémech 13
14 Technické enzymy Proteasy (bakteriální) Syřidla Glukoamylasy Alfa-amylasy Glukosaisomerasy 14
15 Hormony Hormony Chemické látky zprostředkující přenos informací mezi buňkami. Dělení: Podle chemické stavby: Peptidy a bílkoviny Steroidy Deriváty tyrosinu Oxidační produkty arachidonové kyseliny Podle vzniku, působení a charakteru účinku: Žlázové hormony Neurohormony Adenotropní hormony Tkáňové hormony Mediátory 15
16 Hierarchie řízení produkce hormonů Nervové vlivy Hypothalamus Adenohypofysa Endokrynní žláza Cílové orgány a tkáně neurohormon glandotropní hormon hormon buněčný efekt 16
17 Mechanismus působení hormonů Lipofilní hormony (steroidy, hormony štítné žlázy) OH indukce biosyntézy specifických proteinů O Testosteron I HO I I I H 2 N Thyroxin O OH 17
18 Mechanismus působení hormonů Hydrofilní hormony (peptidové hormony, katecholaminy) aktivace specifických bílkovin v buňce HO OH HO HN CH3 Adrenalin Druhotné přenašeče: camp, cgmp, (Ca 2+ ) O -O P O O -O P O O -O P O -O O OH N N NH 2 N N O OP O O- O N N camp NH 2 N N 18
19 Neurotransmitery Neurotransmitery lokální hormony vylučované v nervových zakončeních - - synapsích, ketré vyvolávají interakci v sousedních cílových buňkách. 19
20 Neurotransmitery Synaptická transmise Zakončení axonu Synaptická štěrbina Zakončení dendritu 20
21 Neurotransmitery malé molekuly proteiny acetylcholin - monoaminy (norepinefrin, dopamin, serotonin...) - aminokyseliny (glutamová, GABA, aspartová) - puriny (adenosin, ATP, GTP a deriváty) vassopresin, somatostatin, neurotensin ionty Zn 2+ excitační (budivé) neurotransmitery (vyvolávají excitační synaptický poteciál) - acetylcholin, noradrenalin, serotonin, vyvolávají změnu membránového potenciálu v postsynaptické membráně (zvyšují propustnost pro Na+) - na několik ms se otevřou sodíko-draslíkové pumpy a Na+ přechází dovnitř buňky, membránový potenciál se v oblasti dendritů nebo těla neuronu asi na 10 ms zvětší z -70 na -50 mv (depolarizace), než se kanály uzavřou a potenciál se vrátí k původní hodnotě, zvyšuje se vzrušivost membrány inhibiční (tlumivé) neurotransmitery (dochází k inhibičnímu synaptickému potenciálu) - GABA (kys. γ-aminomáselná), glycin, zvyšují propustnost pro Cl- a K+, sníží se membránový potenciál z -70 na -80 mv i až na -90 mv (hyperpolarizace), snižuje vzrušivost membrány. Excitační a inhibiční neurotransmitery působí proti sobě. Podobný účinek jako neurotransmitery mají drogy. 21
22 Na+/K+ ATPasa (aka sodíková pumpa ) 2 2 struktura ( podjednotka 120 kd, podjednotka 35 kd) udržuje uvnitř buňky nízkou koncetraci Na + a vysokou K + velmi významné zejména pro nervovou tkáň a mozek hydrolýza ATP pohání 3Na + ven a 2K + dovnitř buňky 22
23 23
Enzymy: Struktura a mechanismus působení. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK
Enzymy: Struktura a mechanismus působení Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK 1 ENZYMY JAKO HOMOGENNÍ BIOKATALYZÁTORY 1. Bílkovinná povaha ( + některé RNA-enzymy - ribozymy) 2.
Enzymy. Prof. MUDr. Jiří Kraml, DrSc.
Enzymy Prof. MUDr. Jiří Kraml, DrSc. ENZYMY JAKO HOMOGENNÍ BIOKATALYZÁTORY 1. Bílkovinná povaha ( + některé RNA-enzymy - ribozymy) 2. Větší účinnost (faktor minimálně 10 6 ) 3. Specifičnost - substrátová
Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů.
ENZYMOLOGIE 1 Enzymologie Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. Jak je možné, že buňka dokáže utřídit hrozivou změť chemických procesů, které v ní v každém okamžiku
Enzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018
Enzymologie Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar akad. rok 2017/2018 Osnova I. Základní principy enzymových reakcí II. Termodynamické a kinetické aspekty enzymové
ENZYMY. RNDr. Lucie Koláčná, Ph.D.
ENZYMY RNDr. Lucie Koláčná, Ph.D. Enzymy: katalyzátory živé buňky jednoduché nebo složené proteiny Apoenzym: proteinová část Kofaktor: nízkomolekulová neaminokyselinová struktura nezbytně nutná pro funkci
HISTORIE ENZYMOLOGIE
ENZYMY HISTORIE ENZYMOLOGIE 1. Berzelius (18.stol.) v rostlinách i živočiších probíhají tisíce katalyzovaných reakcí FERMENTY fermentace (Fabrony) 2. W.Kühne en zýme = v kvasnicích enzymy 3. J. Sumner
Enzymy (katalýza biochemických reakcí)
Enzymy (katalýza biochemických reakcí) Enzymy (fermenty) Biokatalyzátory chemických reakcí (globulární proteiny) Ve velmi malých množstvích specificky urychlují průběh chemických reakcí tak, že snižují
Redoxní děj v neživých a živých soustavách
Enzymy Enzymy Katalyzují chemické reakce, kdy se mění substrát na produkt Katalytickým působením se snižuje aktivační energie reagujících molekul substrátu, tím se reakce urychlí Za přítomnosti enzymu
>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu
Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo
Aminokyseliny, proteiny, enzymologie
Aminokyseliny, proteiny, enzymologie Aminokyseliny Co to je? Organické látky karboxylové kyseliny, které mají na sousedním uhlíku navázanou aminoskupinu Jak to vypadá? K čemu je to dobré? AK jsou stavební
Historie. Pozor! né vždy jen bílkovinná část
Enzymy a hormony Enzymy = biokatalyzátory jejich působení je umožněn souhrn chemických přeměn v organismu (metabolismus) jednoduché, složené bílkoviny globulární v porovnání s katalyzátory účinnější, netoxické,
Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno:
Bruno Sopko Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Z předchozí rovnice vyplývá: Pokud katalýza při 25
1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu
Test pro přijímací řízení magisterské studium Biochemie 2018 1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY
Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.
Kofaktory enzymů. T. Kučera. (upraveno z J. Novotné)
Kofaktory enzymů T. Kučera (upraveno z J. Novotné) Kofaktory enzymů neproteinová, nízkomolekulární složka enzymu ko-katalyzátor potřebný k aktivitě enzymu pomocné molekuly v enzymové reakci holoenzym (aktivní)
7. Enzymy. klasifikace, názvosloví a funkce
7. Enzymy klasifikace, názvosloví a funkce Jsou to přírodní katalyzátory, živočišné i rostlinné Umožňují průběh biochemických reakcí Nachází se ve veškerých živých systémech Enzymy vykazují druhovou specifitu
CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV
CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV a) Chemické složení a. biogenní prvky makrobiogenní nad 0,OO5% (C, O, N, H, S, P, Ca.) - mikrobiogenní pod 0,005%(Fe,Zn, Cu, Si ) b. voda 60 90% každého organismu - 90% příjem
ENZYMOLOGIE. Pracovní sešit k přednáškám z biochemie pro studenty biologických kombinací ZDENĚK GLATZ
EZYMLGIE Pracovní sešit k přednáškám z biochemie pro studenty biologických kombinací II ZDEĚK GLATZ 2004 Katalýza - Berzelius 1838 2 EZYMLGIE katalyzátor - látky urychlující chemické reakce - nemění rovnováhu
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. ENZYMY I úvod, názvosloví, rozdělení do tříd
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ENZYMY I úvod, názvosloví, rozdělení do tříd Úvod z řeckého EN ZYME (v kvasinkách) biologický katalyzátor, protein (RNA) liší se od chemických
1. OXIDOREDUKTASY (14.) 11 až 18 (různé typy oxygenačních
1. OXIDOREDUKTASY donor + akceptor oxidovaný donor + redukovaný akceptor Systematický název: donor : akceptor-oxidoreduktasa angl.: donor : acceptor oxidoreduktase Triviální názvy: dehydrogenasa reduktasa
Regulace metabolických drah na úrovni buňky
Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace
Bp1252 Biochemie. #8 Metabolismus živin
Bp1252 Biochemie #8 Metabolismus živin Chemické reakce probíhající v organismu Katabolické reakce přeměna složitějších látek na jednoduché, jsou většinou exergonické. Anabolické reakce syntéza složitějších
Enzymy = biokatalyzátory
Enzymy = biokatalyzátory Enzymy biologické katalyzátory Analogie s chemickými katalyzátory -katalyzátor je jiná látka než reaktant a produkt reakce -zvyšuje rychlost reakce v obou směrech, snižuje aktivační
Bunka a bunecné interakce v patogeneze tkánového poškození
Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce
Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK
Úvod do buněčného metabolismu Citrátový cyklus Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK METABOLISMUS = přeměna látek v organismu - má stránku chemickou (látkovou) - reakce anabolické
Nervová soustává č love ká, neuron r es ení
Nervová soustává č love ká, neuron r es ení Pracovní list Olga Gardašová VY_32_INOVACE_Bi3r0110 Nervová soustava člověka je pravděpodobně nejsložitěji organizovaná hmota na Zemi. 1 cm 2 obsahuje 50 miliónů
BIOKATALYZÁTORY I. ENZYMY
BIOKATALYZÁTORY I. Obecné pojmy - opakování: Katalyzátory látky, které ovlivňují průběh katalyzované reakce a samy se přitom nemění. Dělíme je na: pozitivní (aktivátory) urychlující reakce negativní (inhibitory)
9. Léčiva CNS - úvod (1)
9. Léčiva CNS - úvod (1) se se souhlasem souhlasem autora autora ál školy koly -techlogic techlogické Jeho Jeho žit bez bez souhlasu souhlasu autora autora je je ázá Nervová soustava: Centrální nervový
Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace
Enzymy Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace COO - - COO NH 2 OH - COO NH 2 - COO O OH - COO Chorismate mutase - OOC O OH - COO -
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus dusíkatých látek
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolismus dusíkatých látek Oxidace aminokyselin Podíl AK na metabolické E se silně liší dle organismu a jeho momentálních potřeb, např.
1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu
Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
Název: Systematický (5Z,8Z,11Z,14Z)-ikosa-5,8,11,14-tetraenoát,donor vodíku:kyslík-oxidoreduktasa
Názvosloví enzymů: http://www.chem.qmul.ac.uk/iubmb/enzyme/ http://enzyme.expasy.org/ Název: Systematický (5Z,8Z,11Z,14Z)-ikosa-5,8,11,14-tetraenoát,donor vodíku:kyslík-oxidoreduktasa Polo-triviální prostaglandin-endoperoxidsynthasa
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Citrátový a glyoxylátový cyklus Buněčná respirace I. Fáze Energeticky bohaté látky jako glukosa, mastné kyseliny a některé aminokyseliny
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy Obtížnost A Vyjmenujte kofaktory, které využívá multienzymový komplex pyruvátdehydrogenasy; které z nich řadíme mezi koenzymy
POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
Historie poznání enzymů
Historie poznání enzymů 1835 Jacob Berzelius katalytická fce diastasy pol. 18.stol. Luis Pasteur vitalismus 1878 Frederic W. Kühn enzym 1894 Emil Fischer teorie zámku a klíče 1897 Büchnerův pokus 1926
ENZYMY. Klasifikace enzymů
ENZYMY Enzymy jsou bílkoviny, které katalyzují chemické reakce probíhající v živých organismech. Byly identifikovány tisíce enzymů, mnohé z nich byly izolovány čisté. Klasifikace enzymů Vzhledem k tomu,
Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K
Test pro přijímací řízení magisterské studium Biochemie 2017 1. Napište vzorce aminokyselin Q a K Dále zakroužkujte správné tvrzení (pouze jedna správná odpověď) 2. Enzym tyrozinkinasu řadíme do třídy
Intermediární metabolismus. Vladimíra Kvasnicová
Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,
Stanovení vybraných enzymů. Roman Kanďár
Stanovení vybraných enzymů Roman Kanďár Takže prvně malé opakování ENZYM Protein (RNA) s katalytickou aktivitou Protein (RNA) kofaktor (prosthetická skupina, koenzym) Jaký je vlastně rozdíl mezi prosthetickou
Enzymy = biokatalyzátory
Enzymy = biokatalyzátory Enzymy biologické katalyzátory Analogie s chemickými katalyzátory Katalyzátor je jiná látka než reaktant a produkt reakce Zvyšuje rychlost reakce v obou směrech, snižuje aktivační
ENZYMY. Charakteristika enzymaticky katalyzovaných reakcí:
ENZYMY Definice: Enzymy (biokatalyzátory) jsou jednoduché či složené makromolekulární bílkoviny s katalytickou aktivitou. Urychlují reakce v organismech tím, že snižují aktivační energii (Ea) potřebnou
Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
11. Metabolismus lipidů
11. Metabolismus lipidů Obtížnost A Následující procesy a metabolické reakce, vedoucí ke zkrácení řetězce mastné kyseliny, vázané v triacylglycerolu, a vzniku acetyl-coa, seřaďte ve správném pořadí: a)
Historie poznávání enzymů
Enzymy (en-zýme -- v kvasnicích) Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech-jejich působením
Enzymy. Názvosloví enzymů
Enzymy Enzymy jsou bílkoviny, které působí jako biologické katalyzátory. Podobně jako ostatní katalyzátory snižují aktivační energii chemické reakce a tím urychlují její průběh. Enzymy neovlivňují hodnotu
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
Sylabus pro předmět Biochemie pro jakost
Sylabus pro předmět Biochemie pro jakost Kód předmětu: BCHJ Název v jazyce výuky: Biochemie pro Jakost Název česky: Biochemie pro Jakost Název anglicky: Biochemistry Počet přidělených ECTS kreditů: 6 Forma
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Nervová soustava Společná pro celou sadu oblast
kofaktory nejsou: - stabilizující sloučeniny - allosterické aktivátory - post-translační modifikace mimo aktivní místo - proteinové podjednotky
Kofaktory, koenzymy a prosthetické skupiny kofaktory nízkomolekulární sloučeniny potřebné pro enzymovou katalýzu, účastní se katalýzy - koenzymy - prosthetické skupiny - kovalentní modifikace aminokyselinových
Reakční kinetika enzymových reakcí
Reakční kinetika enzymových reakcí studuje časový průběh enzymových reakcí za různých reakčních podmínek zabývá se faktory, které ovlivňují rychlost reakcí katalyzovaných enzymy - uvažujme monomolekulární
Sacharidy a polysacharidy (struktura a metabolismus)
Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana
Obecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,
Metabolismus proteinů a aminokyselin
Metabolismus proteinů a aminokyselin Proteiny jsou nejdůležitější složkou potravy všech živočichů, nelze je nahradit ani cukry, ani lipidy. Je to proto, že organismus živočichů nedokáže ve svých metabolických
Regulace enzymové aktivity
Regulace enzymové aktivity MUDR. MARTIN VEJRAŽKA, PHD. Regulace enzymové aktivity Organismus NENÍ rovnovážná soustava Rovnováha = smrt Život: homeostáza, ustálený stav Katalýza v uzavřené soustavě bez
Katabolismus - jak budeme postupovat
Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův
Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech
Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - anabolismus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - anabolismus LIPIDY Zásobárna energie Hlavní složka buněčných membrán Pigmenty (retinal, karoten), kofaktory (vitamin
Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)
Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,
Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)
Buňka Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,
13. Enzymy aktivační energie katalýza makroergické sloučeniny
13. Enzymy Průběh chemických reakcí závisí též na schopnosti molekul přiblížit se dostatečně blízko a překonat repulsní energetickou bariéru. K tomu je zapotřebí energie typické pro každou reakci, tzv.
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.
Vzdělávací materiál vytvořený v projektu VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
AMINOKYSELINY REAKCE
CHEMIE POTRAVIN - cvičení AMINOKYSELINY REAKCE Milena Zachariášová (milena.zachariasova@vscht.cz) Ústav chemie a analýzy potravin, VŠCHT Praha REAKCE AMINOKYSELIN část 1 ELIMINAČNÍ REAKCE DEKARBOXYLACE
METABOLISMUS SACHARIDŮ
METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve
Metabolismus bílkovin. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)
Enzymy. aneb. Není umění dělat co tě baví, ale najít zalíbení v tom, co udělati musíš. Luboš Paznocht
Enzymy aneb Není umění dělat co tě baví, ale najít zalíbení v tom, co udělati musíš. Luboš Paznocht Umožňují rychlý a koordinovaný průběh chemických přeměn v organismu Kinetika biochemických reakcí řád
Glykolýza Glukoneogeneze Regulace. Alice Skoumalová
Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých
Hormony, neurotransmitery. Obecné mechanismy účinku. Biochemický ústav LF MU 2016 (E.T.)
Hormony, neurotransmitery. Obecné mechanismy účinku. Biochemický ústav LF MU 2016 (E.T.) Komunikace mezi buňkami. Obecné mechanismy účinku hormonů a neurotransmiterů. Typy signálních molekul v neurohumorálních
Enzymy charakteristika a katalytický účinek
Enzymy charakteristika a katalytický účinek Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek enzymy 28.7.2012 3. ročník čtyřletého G Charakteristika
5. Lipidy a biomembrány
5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě
Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách
Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách Difuze Vyrovnávání koncentrací látek na základě náhodného pohybu Osmóza (difuze rozpouštědla) Dva roztoky o rúzné koncentraci oddělené
Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Glykolýza a neoglukogenese z řečtiny glykos sladký, lysis uvolňování sled metabolických reakcí od glukosy přes fruktosa-1,6-bisfosfát
Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu
Metabolismus Obecné znaky metabolismu Získání a využití energie - bioenergetika Buněčné dýchání (glykolysa + CKC + oxidativní fosforylace) Biosynthesa sacharidů + fotosynthesa Metabolismus lipidů Metabolismus
Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa
8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika
Metabolismus. Source:
Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA Nespecifické Další látky Vitaminy?? specifická funkce??
YDRFILÍ VITAMIY Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA especifické Další látky Vitaminy?? specifická funkce?? deficience?? potřeba?? Thiamin Vitamin B1 + 3 2
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
Enzymy biologické katalyzátory. regulovatelnost účinnosti (aktivity) Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc:
Enzymy biologické katalyzátory Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc: účinné snížení aktivační energie specifita regulovatelnost účinnosti (aktivity) Regulace účinnosti
Obecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Enzymy biokatalyzátory (6). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie, Přírodovědecká
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie
Doučování IV. Ročník CHEMIE
1. Chemie přírodních látek Biochemie a) LIPIDY 1. Triacylglyceroly se štěpí účinkem: a) ligas b) lyas c) lipas d) lihlas Doučování IV. Ročník CHEMIE 2. Žluknutí tuků je z chemického hlediska: a) polymerace
Metabolismus lipidů. (pozn. o nerozpustnosti)
Metabolismus lipidů (pozn. o nerozpustnosti) Trávení lipidů Lipidy v potravě - většinou v hydrolyzovatelné podobě, především jako triacylglayceroly (TAG), fosfatidáty a sfingolipidy. V trávicím traktu
Enzymy. RNDr. Bohuslava Trnková ÚKBLD 1.LF UK. ls 1
Enzymy RNDr. Bohuslava Trnková ÚKBLD 1.LF UK ls 1 z řeckého "zymé" -kvasnice specifické katalyzátory chemických reakcí v živých organismech i v nejjednodušší buňce více než 3000 enzymů, druhová specifita
živé organismy získávají energii ze základních živin přeměnou látek v živinách si syntetizují potřebné sloučeniny, dochází k uvolňování energie některé látky organismy nedovedou syntetizovat, proto musí
Procvičování aminokyseliny, mastné kyseliny
Procvičování aminokyseliny, mastné kyseliny Co je hlavním mechanismem pro odstranění aminoskupiny před odbouráváním většiny aminokyselin: a. oxidativní deaminace b. transaminace c. dehydratace d. působení
DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal
DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
Biologické membrány a bioelektrické jevy
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých
NUTRACEUTIKA PROTEINY
NUTRAEUTIKA PROTEINY VYUŽITÍ Proteiny, aminokyseliny, koncentráty většinou pro sportovní výživu Funkční potraviny hydrolyzáty Bílkovinné izoláty i v medicíně Fitness a wellness přípravky PROTEINY Sušená
Enzymy. Názvosloví enzymů
Enzymy Enzymy jsou bílkoviny, které působí jako biologické katalyzátory. Podobně jako ostatní katalyzátory snižují aktivační energii chemické reakce a tím urychlují její průběh. Enzymy neovlivňují hodnotu