Enzymy = biokatalyzátory
|
|
- Hynek Šmíd
- před 10 lety
- Počet zobrazení:
Transkript
1 Enzymy = biokatalyzátory
2 Enzymy biologické katalyzátory Analogie s chemickými katalyzátory Katalyzátor je jiná látka než reaktant a produkt reakce Zvyšuje rychlost reakce v obou směrech, snižuje aktivační energii obou reakcí; reakce vedena jinudy (ilustrace tok řeky) Z toho plyne, že zkracuje dobu potřebnou k dosažení rovnováhy ale neovlivňuje tuto rovnováhu!!!!!! Vystupuje z reakce nezměněn
3 bílkoviny ( vyjímka ribozymy, např. 2S-rRNA) aktivní místo - vazebné skupiny - katalytické skupiny vazba substrátu - zámek a klíč - indukované přizpůsobení úloha "zbytku molekuly"
4 Aktivační energie rozkladu peroxidu vodíku H 2 2 2H Katalyzátor Reakční rychlost (mol.l - 1.s -1 ) E a (kj.mol -1 ) Žádný ,1 HBr ,2 Fe(H) 2 -triethylen tetraamin ,3 Katalasa ,4
5 Enzymy biologické katalyzátory Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc: účinné snížení aktivační energie specifita regulovatelnost účinnosti (aktivity)
6 Enzymy = biokatalyzátory Každá (metabolická) reakce má svůj enzym
7 Co umí enzymy účinné snížení aktivační energie specifita účinku specifita substrátová regulovatelnost účinnosti (aktivity)
8 Snížení aktivační energie
9
10 Enzym = buď jednoduchá bílkovina nebo apoenzym (peptidový řetězec) + kofaktor = holoenzym Kofaktor: nepeptidová součást enzymu, která se přímo účastní chemické reakce (bez něj by to nešlo), častá souvislost s vitaminy Prosthetická skupina - pevně vázána na peptidový řetězec Koenzym - volně vázaná molekula
11 prosthetická skupina (př. FAD, PLP, hem) E-Pr + S1 E-Pr* + P1 E-Pr* + S2 E-Pr + P2 E-Pr S1 + S2 P1 + P2 koenzym (druhý substrát) (př. NAD(P),CoA, ATP) E1 S1 + K P1 + K* E2 K* + S2 K + P2 S1 + S2 P1 + P2
12 Prosthetická skupina x Koenzym
13 AKTIVNÍ MÍST ENZYMŮ relativně malá kapsa (štěrbina) uvnitř nebo při povrchu enzymu, často hydrofóbní, umožňující vazbu substrátu(ů), ev. nebílkovinné části enzymu slabšími přechodnými, většinou nekovalentními vazbami: - vodíkovými můstky (výrazně směrovaná) - elektrostatickým přitahováním - hydrofóbními interakcemi - van der Waalsovými silami bsahuje postranní řetězce sekvenčně vzdálených aminokyselin, které představují kontaktní, orientující a katalytické zbytky a vytvářejí biospecifickou trojrozměrnou strukturu (konformaci). -efekt zvýšení koncentrace Vzniká dočasně a reverzibilně komplex enzym-substrát (ES).
14
15 AKTIVNÍ MÍST ENZYMŮ
16 Teorie zámku a klíče
17 Změna konformace hexokinasy způsobená vazbou substrátu
18 Kofaktory - prosthetická skupina 1. prosthetická skupina (př. FAD, PLP, hem) E-Pr + S 1 E-Pr * + P 1 E-Pr * + S 2 E-Pr + P 2 E-Pr S 1 + S 2 P 1 + P 2
19 přenos elektronů, riboflavin B 2 Prosthetická skupina - FAD
20 Prosthetická skupina - PLP
21 Prosthetická skupina - hem
22 Kofaktory - koenzym 2. koenzym (druhý substrát) (př. NAD(P),CoA, ATP) E 1 S 1 + K P 1 + K * E 2 K * + S 2 K + P 2 S 1 + S 2 P 1 + P 2
23 Koenzymy NAD +, NADP +
24 Koenzymy CoA
25 Koenzymy ATP
26 Kofaktory - ostatní 3. "nespecifické" organické sloučeniny - kyselina askorbová (komplex s Fe) - některé další vitaminy 4. kovy přímo se účastnící reakce (metaloenzymy, Zn, Fe, Se, Cu...) 5. specifické kovy, působící "nepřímo" (Mg a ATP)
27 Jednotky vyjadřování enzymové aktivity katal (zkratka kat): množství enzymové aktivity, které katalyzuje přeměnu l molu substrátu za sekundu; l0-6 kat = µkat ; l0-9 kat = nkat starší mezinárodní jednotka: U : množství enzymové aktivity, které katalyzuje přeměnu l µmolu substrátu za minutu; l0-3 U = mu PŘEVD: U=16,67 nkat 60 U=1 µkat Faktory ovlivňující enzymovou aktivitu koncentrace substrátu (K m, V, k cat ) teplota ph iontová síla aktivátory a inhibitory
28 Názvosloví enzymů triviální (pepsin, trypsin, elastasa, invertasa...) doporučené ("polosystematické") (alkoholdegydrogenasa...)
29 Slovník biochemických pojmů: enzymy - názvosloví {1} enzyme nomenclature a) triviální (např. pepsin, trypsin, thrombin, elastasa {EC , EC } ), b) tzv. doporučené, tvořené názvem substrátu, typem reakce a příponou -asa (např. alkoholdehydrogenasa, glukosaoxidasa, alaninaminotransferasa {EC }, alaninracemasa {EC } ), c) systémové (též systematické), vytvářené podle daných pravidel. Systémové názvosloví je založeno (až na výjimky) pouze na účinkové a substrátové specifitě enzymů a vychází z rozdělení enzymů do šesti tříd (viz enzymy - rozdělení do tříd). Vedle tohoto jednoznačného, byť v běžné praxi poněkud nepohodlného názvosloví má každý enzym ještě své katalogové číslo (viz EC, enzymový katalog). Názvy enzymů mají, kromě nejstarších triviálních názvů, příponu -asa.
30 Příklady: ENTRY EC NAME -Fructofuranosidase Invertase Saccharase CLASS Hydrolases Glycosidases Hydrolysing -glycosyl compounds SYSNAME -D-Fructofuranoside fructohydrolase REACTIN Hydrolysis of terminal non-reducing -D-fructofuranoside residues in -D-fructofuranosides SUBSTRATE -D-Fructofuranoside Sucrose H 2 PRDUCT -D-Fructose PZNÁMKA: Termín invertasa vznikl proto, že při hydrolyse sacharosy se obrací (invertuje) optická rotace z pravotočivého na levotočivý smysl. Enzym se využívá k výrobě invertního cukru (směs glukosy a fruktosy), který je mnohem sladší a stravitelnější než sacharosa; používá se jako umělý med, jako sladidlo do zmrzliny, čokolád apod.
31 1) xidoreduktasy Třídy enzymů katalyzují různé oxidoredukční reakce, často s využitím koenzymů jako např. NADH, NADPH, FADH2,nebo hemu. Triviální názvy v této třídě: dehydrogenasy, oxidasy, cytochromy, peroxidasa, katalasa. 2) Transferasy Katalyzují přenos skupin: amino-, methyl-, acyl-, glykosyl-, fosforyl-. Kinasy katalyzují přenos fosfátové skupiny z ATP nebo jiných nukleosidtrifosfátů. Triviální názvy v této třídě: aminotransferasy (transaminasy), acyltransferasy, fosfotransferasy. 3) Hydrolasy Katalyzují štěpení vazeb mezi atomem uhlíku a jinými atomy prostřednictvím spotřebované molekuly vody. bvyklé triviální názvy: esterasy, peptidasy, amylasy, fosfatasy, lipasy, proteasy (pepsin, trypsin, chymotrypsin).
32 Třídy enzymů 4) Lyasy Katalyzují adiční reakci na dvojné vazbě nebo eliminační reakci mezi dvěma C atomy za vzniku dvojné vazby. Příklady: fumaráthydratasa (fumarasa), karbonátdehydratasa (karboanhydrasa), aldolasa, citrátlyasa, dekarboxylasy..5) Isomerasy Katalyzují racemizaci optických isomerů nebo vytváření polohových isomerů: epimerasy, racemasy, mutasy. 6) Ligasy Katalyzují tvorbu vazeb mezi uhlíkem a jinými atomy spojenou se štěpením ATP (spřažení exergonické a endergonické reakce): karboxylasy, synthetasy (glutaminsynthetasa).
33 1. XIDREDUKTASY donor + akceptor oxidovaný donor + redukovaný akceptor Systematický název: donor : akceptor-oxidoreduktasa angl.: donor : acceptor oxidoreductase Triviální názvy: dehydrogenasa reduktasa (důležitější redukce substrátu) transhydrogenasa (vzácné, glutathion-cystin-transhyhrogenasa) oxidasa (přenos dvou elektronů na 2, obvykle vznik H 2 2 ) oxygenasa (1 nebo 2 atomy jsou inkorporovány do substrátu(ů), monooxygenasa: vzniká voda, dioxygenasa: nevzniká) peroxidasa (peroxid vodíku je akceptorem elektronů) katalasa (disproporcionace peroxidu vodíku)
34 donor akceptor 1.1. CH _ H (alkohol) 1.n.1 NAD + nebo NADP CH (aldehyd) 1.n.2 cytochrom 1.3. CH _ CH 1.n.3 molekulový kyslík 1.4. CH _ NH 2 1.n.4 disulfidová sloučenina 1.5. CH _ NH (sekundární amin) 1.n.5 chinon nebo příbuzné látky 1.6. NADH nebo NADPH 1.n.6 dusíkatá skupina 1.7. ostatní dusíkaté donory 1.n.7 FeS proteiny 1.8. sloučeniny síry 1.n.8 flavin 1.9. hemová skupina difenoly a příbuzné slouč peroxid vodíku jako akceptor vodík působící na jeden donor, do něhož se vnáší kyslík (oxygenasy) (14.) 11 až 18 (různé působící na dva donory, typy oxygenačních reakcí) které inkorporují kyslík superoxidový radikál jako akceptor kovové ionty _ CH _ 2 (vzniká alkohol) redukovaný ferredoxin redukovaný flavodoxin ostatní oxidoreduktasy 1.n.99 různé další akceptory
35 xidoreduktasy - příklady EC Methan,NAD(P)H:kyslík-oxidoreduktasa (hydroxylující) CH 4 + NAD(P)H + H CH 3 H + NAD(P) + + H 2 EC H 2 2 : H 2 2 -oxidoreduktasa, katalasa (též peroxid vodíku:peroxid vodíku - oxidoreduktasa) H H H EC donor: H 2 2 -oxidoreduktasa, peroxidasa donor + H 2 2 oxidovaný donor + 2 H 2
36 xidoreduktasy - příklady EC Alkohol:NAD + -oxidoreduktasa, alkoholdehydrogenasa CH 3 -CH 2- H + NAD + CH 3 -CH + NADH + H + EC D-Glukosa: 2-1-oxidoreduktasa, glukosaoxidasa -D-glukosa + 2 -D-glukono-1,5-lakton + H 2 2 EC Síra:kyslík-oxidoreduktasa, síradioxygenasa S + 2 S 2
37 2. TRANSFERASY donor _ SK + akceptor donor + akceptor _ SK Systematický název: donor : akceptor _ skupinatransferasa angl. donor : acceptor grouptransferase Triviální názvy: methyltransferasy, hydroxymethyltransferasy aminotransferasy (dříve transaminasy) kinasy = fosfotransferasy atd.
38 Kofaktory transferas (koenzym)
39 Kofaktory transferas (koenzym) přenos acylových zbytků
40 2. TRANSFERASY 2.1 Přenášející jednouhlíkatou skupinu Methyltransferasy Hydroxymethyltransferasy Karboxyl _ a karbamoyltransferasy Amidinotransferasy 2.2 Přenášející aldehydické nebo ketonické skupiny Transaldolasy a transketolasy 2.3 Acyltransferasy Acyltransferasy Aminoacyltransferasy
41 2. TRANSFERASY 2.4 Glykosyltransferasy Hexosyltransferasy Pentosyltransferasy Přenášející ostatní glykosylové skupiny 2.5 Přenášející akrylové nebo arylové skupiny jiné než methyl (velmi heterogenní skupina) 2.6 Přenášející dusíkaté skupiny Aminotransferasy ximinotransferasy Přenášející jiné dusíkaté skupiny
42 2. TRANSFERASY 2.7. Přenášející skupiny obsahující fosfor Fosfotransferasy s alkoholem jako akceptorem Fosfotransferasy s karboxylem jako akceptorem Fosfotransferasy s dusíkatou skup. jako akcept Fosfotransferasy s fosfátovou skup. jako akcept Difosfotransferasy Nukleotidyltransferasy Transferasy ostatních substituovaných fosf. skup Fosfotransferasy se dvěma akceptory 2.8. Přenášející sirné skupiny Sulfurtransferasy (sirné skupiny kromě a ) Sulfotransferasy (přenášející sulfát) CoA _ transferasy
43 Transferasy - příklady EC ,4- -D-Glukan:orthofosfát- -D-glukosyltransferasa, fosforylasa (1,4- -D-glukan) n + P i (1,4- -D-glukan) n-1 + -D-glukosa-1- fosfát EC L-Alanin:2-oxoglutarát-aminotransferasa, alaninaminotransferasa (AAT) + H 3 N C CH CH 3 C C CH 2 CH 2 C + + L-Ala + 2-oxoglutarát pyruvát + L-Glu C C CH 3 + H 3 N C CH CH 2 CH 2 C
44 Transferasy - příklady EC ATP:D-hexosa-6-fosfotransferasa, hexokinasa ATP + D-hexosa ADP + D-hexosa-6-fosfát NH 2 P P P N H 2 C H N H H N N H P H H CH 2 H H H H H H H H
45 3. HYDRLASY A _ B + H 2 AH + HB Systematický název: substrát (skupina) hydrolasa angl.: substrate (group) hydrolase Triviální název: substrátasa, často zcela nesystematické názvy
46 3. HYDRLASY 3.1 Esterasy Estery karboxylových kyselin (lipasy) Monoestery fosforečné kyseliny (fosfatasy) Diestery fosforečné kyseliny (fosfodiesterasy, štěpení c-amp) _ 30 Endo _ a exo _ (deoxy)nukleasy 3.2 Glykosidasy Hydrolysující _ glykosidové vazby (amylasy, invertasa=sacharasa, celulasy) Hydrolysující N-glykosidové vazby 3.3 Působící na etherové vazby
47 3. HYDRLASY 3.4 Peptidasy _ Aminoacylpeptid hydrolasy (aminopeptidasy) Dipeptid hydrolasy Dipeptidylpeptid hydrolasy Peptidyldipeptid hydrolasy Serinové karboxypeptidasy Metallo _ karboxypeptidasy Cysteinové karboxypeptidasy Serinové proteinasy Cysteinové proteinasy Aspartátové proteinasy Metallo _ proteinasy Proteinasy neznámého katalyt. mechanismu 3.5 Působící na C _ N vazbu jinou než peptidovou
48 3. HYDRLASY 3.6 Působící na anhydridy kyselin Anhydridy fosforečné kyseliny (pyrrofosfatasa, nespec. ATPasy) a zprostředkující membránový transport (transportní ATPasy) umožňující pohyb (aktomyosinový komplex, složky cytoskeletu) 3.7 Působící na vazbu C _ C 3.8 Působící na vazby halogenů 3.9 Působící na P _ N vazby 3.10 Působící na S _ N vazbu 3.11 Působící na C _ P vazbu
49 4. LYASY substrát 1 (+ substrát 2) produkt 1 + produkt 2 (malý) Systematický název: substrát 1 (substrát 2)- produkt 2lyasa angl: substrate l (substrate 2)- product 2 lyase Triviální název: dekarboxylasa, hydrolyasy (=dehydratasa), ammonialyasa, aldolasa, synthasa (velmi riskantní)
50 4. LYASY 4.1 C _ C lyasy Karboxylyasy (dekarboxylasy) Aldehydlyasy (aldolasy) xo _ acid lyasy (např. citrátsynthasa) statní C _ C lyasy 4.2 C _ lyasy Hydrolyasy (např. fumarasa) Působící na polysacharidy (štěpí za vzniku deoxysacharidů) statní C _ lyasy 4.3 C _ N lyasy Ammonia _ lyasy (např. aspartátamonialyasa) 4.4 C _ S lyasy 4.5 C _ halogen lyasy 4.6 P _ lyasy 4.99 statní lyasy
51 4. LYASY Lyasy - příklady: EC pyruvát-karboxylyasa, pyruvátdekarboxylasa CH 3 -C-CH CH 3 -CH + C 2 EC karbonát-hydrolyasa, karbonátanhydrasa, karbonátdehydratasa H 2 C 3 C 2 + H 2
52 EC ATP-pyrrofosfátlyasa (cyklisující), adenylátcyklasa ATP camp + PP i H P H H H H H 2 C H N N N N NH 2 P P H P H H H CH 2 H N N N N NH 2 P P 4. LYASY +
53 5. ISMERASY Triviální názvy: (různé typy isomerací _ v systematickém názvu) podobně i racemasy, cis _ trans _ isomerasy, ketolisomerasy, mutasy, atd. Systematický název: substráttyp angl.: substrate type
54 5. ISMERASY 5.2 Cis _ trans _ isomerasy 5.3 Intramolekulární oxidoreduktasy Přeměňující aldehydy na ketony (ketolisomerasy) Přeměňující ketoskupiny na enoly (keto _ enolisomerasy) Posunující C=C vazbu ( n _ m isomerasy) Posunující S _ S vazbu (proteindisulfid _ isomerasa) statní intramolekulární oxidoreduktasy
55 5. ISMERASY 5.4 Intramolekulární transferasy (mutasy) Přenášející acylovou skupinu (acylmutasy) Fosfotransferasy (fosfomutasy) Přesunující aminoskupinu (aminomutasy) 5.5 Intramolekulární lyasy (decyklisující, intramolekulární adice) 5.99 statní isomerasy (např. DNA-topoisomerasy)
56 Isomerasy - příklady: EC Aspartátracemasa (s poloviční rychlostí působí též na Ala) EC Laktátracemasa EC D-Glyceraldehyd-3-fosfátketolisomerasa, triosafosfátisomerasa HC H H CH H 2 C C H 2 C P H 2 C P D-glyceraldehyd-3-fosfát dihydroxyacetonfosfát EC D-Fosfoglycerát-2,3-fosfomutasa, fosfoglycerátmutasa C C H CH P CH H 2 C P H 2 C H 3-fosfo-D-glycerát 2-fosfo-D-glycerát
57 6. LIGASY substrát 1 + substrát 2 + A(G) TP substrát 1 + substrát 2 + ATP substrát 1 _ substrát 2 + ADP + P i nebo substrát 1 _ substrát 2 + AMP + PP i Systematický název: substrát1: substrát 2 _ ligasa (tvořící ADP, AMP nebo GDP) angl.: substrate l : substrate 2 ligase (ADP, AMP or GDP _ forming) Triviální názvy: pokud možno substrát 1 _ substrát 2 _ ligasa (synthetasy jsou možné, často se však vyskytují i synthasy)
58 6. LIGASY 6.1 Tvořící C _ vazby (aminoacyl _ trna _ ligasy a podobné estery) 6.2 Tvořící C _ S vazby (kyselina _ thiol _ ligasy) 6.3 Tvořící C _ N vazby Acid _ ammonia (or amine) ligases (asparaginsynthetasa) Acid _ amino _ acid ligases (např. peptidsynthetasy) Cyklisující ligasy statní C _ N ligasy C _ N ligasy s glutaminem jako donorem dusíku (např. karbamoylfosfátsynthetasa) 6.4 Tvořící C _ C vazby (např. karboxylasy) 6.5 Tvořící estery kyseliny fosforečné (např. DNA-ligasa)
59 Ligasy - příklady EC L-Tyrosin:tRNA Tyr -ligasa (AMP-tvořící), tyrosin-trna-ligasa L-Tyr + trna Tyr + ATP L-Tyr-tRNA Tyr + AMP + PP i EC Acetát:CoA-ligasa (AMP-tvořící), acetát-coa ligasa CH 3 C - + HSCoA + ATP acetyl-scoa + AMP + PP i EC L-Aspartát:amoniak-ligasa (ADP-tvořící), asparaginsynthetasa L-Asp + NH 3 + ATP L-Asn + ADP + P i (EC AMP-tvořící) EC Pyruvát:oxid uhličitý-ligasa (ADP-tvořící), pyruvátkarboxylasa CH 3 -C-C - + HC 3- +ATP - C-CH 2 -C-C - + ADP + P i EC Poly(deoxyribonukleotid): poly(deoxyribonukleotid)-ligasa (AMPtvořící), DNA-ligasa ATP + (deoxyribonukleotid) n + (deoxyribonukleotid) m (deoxyribonukleotid) n+m + AMP + PP i
60
1. OXIDOREDUKTASY (14.) 11 až 18 (různé typy oxygenačních
1. OXIDOREDUKTASY donor + akceptor oxidovaný donor + redukovaný akceptor Systematický název: donor : akceptor-oxidoreduktasa angl.: donor : acceptor oxidoreduktase Triviální názvy: dehydrogenasa reduktasa
Enzymy = biokatalyzátory
Enzymy = biokatalyzátory Enzymy biologické katalyzátory Analogie s chemickými katalyzátory -katalyzátor je jiná látka než reaktant a produkt reakce -zvyšuje rychlost reakce v obou směrech, snižuje aktivační
Historie poznání enzymů
Historie poznání enzymů 1835 Jacob Berzelius katalytická fce diastasy pol. 18.stol. Luis Pasteur vitalismus 1878 Frederic W. Kühn enzym 1894 Emil Fischer teorie zámku a klíče 1897 Büchnerův pokus 1926
Enzymy: Struktura a mechanismus působení. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK
Enzymy: Struktura a mechanismus působení Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK 1 ENZYMY JAKO HOMOGENNÍ BIOKATALYZÁTORY 1. Bílkovinná povaha ( + některé RNA-enzymy - ribozymy) 2.
Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)
Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Dělení bílkovin podle jejich funkce stavební a podpůrné kolageny, elastin, keratiny (fibrilární) bílkoviny cytoskeletu (tubulin, vimentin,
Enzymy. Prof. MUDr. Jiří Kraml, DrSc.
Enzymy Prof. MUDr. Jiří Kraml, DrSc. ENZYMY JAKO HOMOGENNÍ BIOKATALYZÁTORY 1. Bílkovinná povaha ( + některé RNA-enzymy - ribozymy) 2. Větší účinnost (faktor minimálně 10 6 ) 3. Specifičnost - substrátová
Enzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018
Enzymologie Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar akad. rok 2017/2018 Osnova I. Základní principy enzymových reakcí II. Termodynamické a kinetické aspekty enzymové
Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)
Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Lidský genom 20 tis. Genů (genom) stovky tisíc proteinů (proteom) Dělení bílkovin podle jejich funkce stavební a podpůrné kolageny, elastin,
ENZYMY. Enzymy - jednoduché nebo složené proteiny, které katalyzují chemické přeměny v organismech
ENZYMY Enzymy - jednoduché nebo složené proteiny, které katalyzují chemické přeměny v organismech Šest hlavních kategorií enzymů: EC 1 Oxidoreduktasy: katalyzují oxidačně/redukční reakce EC 2 Transferasy:
Název: Systematický (5Z,8Z,11Z,14Z)-ikosa-5,8,11,14-tetraenoát,donor vodíku:kyslík-oxidoreduktasa
Názvosloví enzymů: http://www.chem.qmul.ac.uk/iubmb/enzyme/ http://enzyme.expasy.org/ Název: Systematický (5Z,8Z,11Z,14Z)-ikosa-5,8,11,14-tetraenoát,donor vodíku:kyslík-oxidoreduktasa Polo-triviální prostaglandin-endoperoxidsynthasa
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. ENZYMY I úvod, názvosloví, rozdělení do tříd
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ENZYMY I úvod, názvosloví, rozdělení do tříd Úvod z řeckého EN ZYME (v kvasinkách) biologický katalyzátor, protein (RNA) liší se od chemických
Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů.
ENZYMOLOGIE 1 Enzymologie Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. Jak je možné, že buňka dokáže utřídit hrozivou změť chemických procesů, které v ní v každém okamžiku
>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu
Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo
7. Enzymy. klasifikace, názvosloví a funkce
7. Enzymy klasifikace, názvosloví a funkce Jsou to přírodní katalyzátory, živočišné i rostlinné Umožňují průběh biochemických reakcí Nachází se ve veškerých živých systémech Enzymy vykazují druhovou specifitu
ENZYMY. RNDr. Lucie Koláčná, Ph.D.
ENZYMY RNDr. Lucie Koláčná, Ph.D. Enzymy: katalyzátory živé buňky jednoduché nebo složené proteiny Apoenzym: proteinová část Kofaktor: nízkomolekulová neaminokyselinová struktura nezbytně nutná pro funkci
Aminokyseliny, proteiny, enzymologie
Aminokyseliny, proteiny, enzymologie Aminokyseliny Co to je? Organické látky karboxylové kyseliny, které mají na sousedním uhlíku navázanou aminoskupinu Jak to vypadá? K čemu je to dobré? AK jsou stavební
ENZYMOLOGIE. Pracovní sešit k přednáškám z biochemie pro studenty biologických kombinací ZDENĚK GLATZ
EZYMLGIE Pracovní sešit k přednáškám z biochemie pro studenty biologických kombinací II ZDEĚK GLATZ 2004 Katalýza - Berzelius 1838 2 EZYMLGIE katalyzátor - látky urychlující chemické reakce - nemění rovnováhu
Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace
Enzymy Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace COO - - COO NH 2 OH - COO NH 2 - COO O OH - COO Chorismate mutase - OOC O OH - COO -
Redoxní děj v neživých a živých soustavách
Enzymy Enzymy Katalyzují chemické reakce, kdy se mění substrát na produkt Katalytickým působením se snižuje aktivační energie reagujících molekul substrátu, tím se reakce urychlí Za přítomnosti enzymu
Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno:
Bruno Sopko Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Z předchozí rovnice vyplývá: Pokud katalýza při 25
HISTORIE ENZYMOLOGIE
ENZYMY HISTORIE ENZYMOLOGIE 1. Berzelius (18.stol.) v rostlinách i živočiších probíhají tisíce katalyzovaných reakcí FERMENTY fermentace (Fabrony) 2. W.Kühne en zýme = v kvasnicích enzymy 3. J. Sumner
Kofaktory enzymů. T. Kučera. (upraveno z J. Novotné)
Kofaktory enzymů T. Kučera (upraveno z J. Novotné) Kofaktory enzymů neproteinová, nízkomolekulární složka enzymu ko-katalyzátor potřebný k aktivitě enzymu pomocné molekuly v enzymové reakci holoenzym (aktivní)
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu
Test pro přijímací řízení magisterské studium Biochemie 2018 1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY
Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.
BIOKATALYZÁTORY I. ENZYMY
BIOKATALYZÁTORY I. Obecné pojmy - opakování: Katalyzátory látky, které ovlivňují průběh katalyzované reakce a samy se přitom nemění. Dělíme je na: pozitivní (aktivátory) urychlující reakce negativní (inhibitory)
POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
kofaktory nejsou: - stabilizující sloučeniny - allosterické aktivátory - post-translační modifikace mimo aktivní místo - proteinové podjednotky
Kofaktory, koenzymy a prosthetické skupiny kofaktory nízkomolekulární sloučeniny potřebné pro enzymovou katalýzu, účastní se katalýzy - koenzymy - prosthetické skupiny - kovalentní modifikace aminokyselinových
Stanovení vybraných enzymů. Roman Kanďár
Stanovení vybraných enzymů Roman Kanďár Takže prvně malé opakování ENZYM Protein (RNA) s katalytickou aktivitou Protein (RNA) kofaktor (prosthetická skupina, koenzym) Jaký je vlastně rozdíl mezi prosthetickou
Bp1252 Biochemie. #8 Metabolismus živin
Bp1252 Biochemie #8 Metabolismus živin Chemické reakce probíhající v organismu Katabolické reakce přeměna složitějších látek na jednoduché, jsou většinou exergonické. Anabolické reakce syntéza složitějších
Historie. Pozor! né vždy jen bílkovinná část
Enzymy a hormony Enzymy = biokatalyzátory jejich působení je umožněn souhrn chemických přeměn v organismu (metabolismus) jednoduché, složené bílkoviny globulární v porovnání s katalyzátory účinnější, netoxické,
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa
8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika
Aminokyseliny. Aminokyseliny. Peptidy & proteiny Enzymy Lipidy COOH H 2 N. Aminokyseliny. Aminokyseliny. Postranní řetězec
optická aktivita Peptidy & proteiny Enzymy Lipidy α-uhlík je asymetrický pouze L-aminokyseliny 2 α R rozdělení dle polarity podle počtu karboxylových skupin podle počtu bazických skupin podle polarity
ENZYMY. Klasifikace enzymů
ENZYMY Enzymy jsou bílkoviny, které katalyzují chemické reakce probíhající v živých organismech. Byly identifikovány tisíce enzymů, mnohé z nich byly izolovány čisté. Klasifikace enzymů Vzhledem k tomu,
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy Obtížnost A Vyjmenujte kofaktory, které využívá multienzymový komplex pyruvátdehydrogenasy; které z nich řadíme mezi koenzymy
Využití enzymů pro analytické a výzkumné účely
Využití enzymů pro analytické a výzkumné účely Enzymy jako analytická činidla Stanovení enzymových aktivit Diagnostika (klinická biochemie) Indikátory technologických a jakostních změn v potravinářství
Enzymy. Názvosloví enzymů
Enzymy Enzymy jsou bílkoviny, které působí jako biologické katalyzátory. Podobně jako ostatní katalyzátory snižují aktivační energii chemické reakce a tím urychlují její průběh. Enzymy neovlivňují hodnotu
Obecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 becný metabolismus. Mechanismy enzymové katalýzy (7). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie Přírodovědecká
Enzymy (katalýza biochemických reakcí)
Enzymy (katalýza biochemických reakcí) Enzymy (fermenty) Biokatalyzátory chemických reakcí (globulární proteiny) Ve velmi malých množstvích specificky urychlují průběh chemických reakcí tak, že snižují
CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV
CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV a) Chemické složení a. biogenní prvky makrobiogenní nad 0,OO5% (C, O, N, H, S, P, Ca.) - mikrobiogenní pod 0,005%(Fe,Zn, Cu, Si ) b. voda 60 90% každého organismu - 90% příjem
1. ročník Počet hodin
SOUSTAVY LÁTEK A JEJICH SLOŽENÍ rozdělení přírodních látek a vlastnosti chemických látek soustavy látek a jejich složení STAVBA ATOMU historie pohledu na atom složení a struktura atomu stavba atomu VELIČINY
Metabolismus bílkovin. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
Enzymy charakteristika a katalytický účinek
Enzymy charakteristika a katalytický účinek Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek enzymy 28.7.2012 3. ročník čtyřletého G Charakteristika
Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK
Úvod do buněčného metabolismu Citrátový cyklus Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK METABOLISMUS = přeměna látek v organismu - má stránku chemickou (látkovou) - reakce anabolické
AMINOKYSELINY REAKCE
CHEMIE POTRAVIN - cvičení AMINOKYSELINY REAKCE Milena Zachariášová (milena.zachariasova@vscht.cz) Ústav chemie a analýzy potravin, VŠCHT Praha REAKCE AMINOKYSELIN část 1 ELIMINAČNÍ REAKCE DEKARBOXYLACE
nepolární polární kyselý bazický
opticky aktivní rozdělení α-uhlík je asymetrický pouze L-aminokyseliny (D-aminokyseliny: bakterie, antibiotika, ) 2 α R podle počtu karboxylových skupin podle počtu aminoskupin podle polarity postranního
Didaktické testy z biochemie 1
Didaktické testy z biochemie 1 Trávení Milada Roštejnská elena Klímová Trávení br. 1. Trávicí soustava Rubrika A Z pěti možných odpovědí (alternativ) vyberte tu nejsprávnější. A B D E 1 Mezi monosacharidy
ENZYMY. Charakteristika enzymaticky katalyzovaných reakcí:
ENZYMY Definice: Enzymy (biokatalyzátory) jsou jednoduché či složené makromolekulární bílkoviny s katalytickou aktivitou. Urychlují reakce v organismech tím, že snižují aktivační energii (Ea) potřebnou
Katabolismus - jak budeme postupovat
Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův
Co jsou to enzymy? pozoruhodné chemické katalyzátory
Enzymy Co jsou to enzymy? pozoruhodné chemické katalyzátory Vyšší reakční rychlost (6-12 řádů) Mírnější podmínky reakce (nižší teplota, atmosférický tlak, neutrální ph) Vyšší specifita reakce (specifické
Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
4. Enzymy. Obtížnost A
4. Enzymy btížnost A Enzymy a) zvyšují rychlost chemických reakcí tím, že zvyšují jejich aktivační energii; b) zvyšují rovnovážný výtěžek chemické reakce tím, že zvyšují hodnotu rovnovážné konstanty; c)
Metabolismus proteinů a aminokyselin
Metabolismus proteinů a aminokyselin Proteiny jsou nejdůležitější složkou potravy všech živočichů, nelze je nahradit ani cukry, ani lipidy. Je to proto, že organismus živočichů nedokáže ve svých metabolických
Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K
Test pro přijímací řízení magisterské studium Biochemie 2017 1. Napište vzorce aminokyselin Q a K Dále zakroužkujte správné tvrzení (pouze jedna správná odpověď) 2. Enzym tyrozinkinasu řadíme do třídy
Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu
Metabolismus Obecné znaky metabolismu Získání a využití energie - bioenergetika Buněčné dýchání (glykolysa + CKC + oxidativní fosforylace) Biosynthesa sacharidů + fotosynthesa Metabolismus lipidů Metabolismus
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 Molekulární interakce SAR Možné interakce jednotlivých funkčních skupin 1. Interakce alkoholů
13. Enzymy aktivační energie katalýza makroergické sloučeniny
13. Enzymy Průběh chemických reakcí závisí též na schopnosti molekul přiblížit se dostatečně blízko a překonat repulsní energetickou bariéru. K tomu je zapotřebí energie typické pro každou reakci, tzv.
Historie poznávání enzymů
Enzymy (en-zýme -- v kvasnicích) Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech-jejich působením
Karbonylové sloučeniny
Karbonylové sloučeniny více než 120 o 120 o C O C C d + d - C O C sp 2 C sp 2 R C O H R 1 C O R 2 1.aldehydy, ketony Nu E R C O R C O 2. karboxylové kyseliny a funkční deriváty O H 3. deriváty kys. uhličité
Obecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Enzymy biokatalyzátory (6). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie, Přírodovědecká
Enzymy. Názvosloví enzymů
Enzymy Enzymy jsou bílkoviny, které působí jako biologické katalyzátory. Podobně jako ostatní katalyzátory snižují aktivační energii chemické reakce a tím urychlují její průběh. Enzymy neovlivňují hodnotu
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Citrátový a glyoxylátový cyklus Buněčná respirace I. Fáze Energeticky bohaté látky jako glukosa, mastné kyseliny a některé aminokyseliny
ENZYMY enzymová katalýza
Základy biochemie KB / B EZYMY enzymová katalýza Inovace studia biochemie prostřednictvím e-learningu Z.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Testové úlohy aminokyseliny, proteiny. post test
Testové úlohy aminokyseliny, proteiny post test 1. Které aminokyseliny byste hledali na povrchu proteinů umístěných uvnitř fosfolipidových membrán a které na povrchu proteinů vyskytujících se ve vodném
Chemická reaktivita NK.
Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově
Enzymy biologické katalyzátory. regulovatelnost účinnosti (aktivity) Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc:
Enzymy biologické katalyzátory Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc: účinné snížení aktivační energie specifita regulovatelnost účinnosti (aktivity) Regulace účinnosti
11. Metabolismus lipidů
11. Metabolismus lipidů Obtížnost A Následující procesy a metabolické reakce, vedoucí ke zkrácení řetězce mastné kyseliny, vázané v triacylglycerolu, a vzniku acetyl-coa, seřaďte ve správném pořadí: a)
Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová
Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní
1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu
Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
MATURITNÍ OTÁZKY Z CHEMIE
MATURITNÍ OTÁZKY Z CHEMIE 1 Složení a struktura atomu Vývoj představ o složení a struktuře atomu, elektronový obal atomu, modely atomu, pojem orbital, typy orbitalů, jejich znázorňování a pravidla pro
Metabolizmus aminokyselin I
Metabolizmus aminokyselin I Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol MUDr. Bc. Matej Kohutiar, Ph.D. matej.kohutiar@lfmotol.cuni.cz Praha 2018 snova I. přednáška: Metabolizmus a meziorgánové
9. Dýchací řetězec a oxidativní fosforylace. mitochondriální syntéza ATP a fotosyntéza
9. Dýchací řetězec a oxidativní fosforylace mitochondriální syntéza ATP a fotosyntéza CHEMIOSMOTICKÁ TEORIE SYNTÉZY ATP Heterotrofní organismy získávají hlavní podíl energie (cca 90%) uložené ve struktuře
TEST + ŘEŠENÍ. PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2010
30 otázek maximum: 60 bodů TEST + ŘEŠEÍ PÍSEMÁ ČÁST PŘIJÍMACÍ ZKUŠKY Z CEMIE bakalářský studijní obor Bioorganická chemie 2010 1. apište názvy anorganických sloučenin: (4 body) 4 BaCr 4 kyselina peroxodusičná
Klinicko-biochemická diagnostika
Klinicko-biochemická diagnostika 1. Kvalitativní analýza 2. Semikvantitativní analýza diagnostické proužky 3. Kvantitativní analýza Spektroskopické metody - Absorpční Fotometrie UV/VIS (kolorimetrie) -
Obsah. 2. Mechanismus a syntetické využití nejdůležitějších organických reakcí 31 2.1. Adiční reakce 31 2.1.1. Elektrofilní adice (A E
Obsah 1. Typy reakcí, reakčních komponent a jejich roztřídění 6 1.1. Formální kritérium pro klasifikaci reakcí 6 1.2. Typy reakčních komponent a způsob jejich vzniku jako další kriterium pro klasifikaci
OXIDATIVNÍ FOSFORYLACE
OXIDATIVNÍ FOSFORYLACE OBSAH Mitochondrie Elektronový transport Oxidativní fosforylace Kontrolní systém oxidativního metabolismu. Oxidace a syntéza ATP jsou spojeny transmembránovým tokem protonů Dýchací
Enzymy. aneb. Není umění dělat co tě baví, ale najít zalíbení v tom, co udělati musíš. Luboš Paznocht
Enzymy aneb Není umění dělat co tě baví, ale najít zalíbení v tom, co udělati musíš. Luboš Paznocht Umožňují rychlý a koordinovaný průběh chemických přeměn v organismu Kinetika biochemických reakcí řád
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Organická chemie, biochemie 3. ročník a septima 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný
DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal
DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,
BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím
ZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA CHEMIE Enzymy ve výuce na vyšším stupni gymnázia DIPLOMOVÁ PRÁCE Jakub Král Učitelství pro střední školy, obor Ch - Ge Vedoucí práce: Mgr. Milan
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus dusíkatých látek
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolismus dusíkatých látek Oxidace aminokyselin Podíl AK na metabolické E se silně liší dle organismu a jeho momentálních potřeb, např.
Gymnázium Jana Nerudy. Závěrečná práce studentského projektu. Enzymatická aktivita
Gymnázium Jana Nerudy Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Závěrečná práce studentského projektu Enzymatická aktivita Vedoucí práce: Mgr. Jiří Vozka RNDr. Lenka Simonianová
V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Informace Seminář z biochemie II Laboratorní cvičení z biochemie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Informace Seminář z biochemie II Laboratorní cvičení z biochemie Pravidla pro udělení klasifikovaného zápočtu ze Semináře z Biochemie
10. Metabolismus sacharidů
10. Metabolismus sacharidů Obtížnost A Vysvětlete rozdíly v následujících dvojicích pojmů: aldosa/ketosa; redukující/neredukující sacharid; škrob/glykogen; homopolysacharid/heteropolysacharid; amylosa/amylopektin.
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních
Sacharidy a polysacharidy (struktura a metabolismus)
Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana
Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)
Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Lidský genom 20 tis. Genů (genom) stovky tisíc proteinů (proteom) Dělení bílkovin podle jejich funkce stavební a podpůrné kolageny, elastin,
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
METABOLISMUS SACHARIDŮ
METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve
Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy
Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba
Pentosový cyklus. osudy glykogenu. Eva Benešová
Pentosový cyklus a osudy glykogenu Eva Benešová Pentosový cyklus pentosafosfátová cesta, fosfoglukonátová cesta nebo hexosamonofosfátový zkrat Funkce: 1) výroba NADPH 2) výroba ribosa 5-fosfátu 3) zpracování
Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA Nespecifické Další látky Vitaminy?? specifická funkce??
YDRFILÍ VITAMIY Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA especifické Další látky Vitaminy?? specifická funkce?? deficience?? potřeba?? Thiamin Vitamin B1 + 3 2
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_419 Jméno autora: Třída/ročník: Mgr. Alena
12-Fotosyntéza FRVŠ 1647/2012
C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,