Enzymy = biokatalyzátory

Rozměr: px
Začít zobrazení ze stránky:

Download "Enzymy = biokatalyzátory"

Transkript

1 Enzymy = biokatalyzátory

2 Enzymy biologické katalyzátory Analogie s chemickými katalyzátory -katalyzátor je jiná látka než reaktant a produkt reakce -zvyšuje rychlost reakce v obou směrech, snižuje aktivační energii obou reakcí; reakce vedena jinudy (ilustrace tok řeky) -z toho plyne, že zkracuje dobu potřebnou k dosažení rovnováhy ale neovlivňuje tuto rovnováhu!!!!!! -vystupuje z reakce nezměněn

3 Enzymy se v řadě rysů podobají chemickým katalyzátorům, ale mají něco navíc: - vysoce účinné snížení aktivační energie - striktní specifita - regulovatelnost účinnosti (aktivity) proteiny ( naprostá vyjímka ribozymy katalyticky aktivní RNA) aktivní místo - vazebné skupiny - katalytické skupiny vazba substrátu - zámek a klíč - indukované přizpůsobení úloha "zbytku molekuly"

4 Katalyzátory snižují aktivační energii Lze to tak formulovat ALE pozor. Evokuje představu, že nekatalyzovaná i katalyzovaná reakce probíhají stejným mechanismem, byť s odlišnými aktivačními energiemi. Situace je však zcela odlišná: - funkcí katalyzátoru je poskytnout výchozí látce, v biochemických reakcích označované jako substrát, možnost alternativního sledu reakcí, které vedou ke stejnému produktu, přičemž každá z dílčích reakcí má nižší aktivační energii než reakce nekatalyzovaná. - dílčí děje podmíněny těsnými interakcemi mezi reaktantem (substrátem) a katalyzátorem, a to na různých úrovních: jde o přesuny elektronů, vodíkových atomů, protonů či atomových skupin

5

6 Energetické diagramy nekatalyzované (modrá) a katalyzované (červená čára) reakce (S reaktant neboli substrát, P - produkt reakce, SK(PK) - komplex látky S resp. P s katalyzátorem, svislé šipky - příslušné aktivační energie).

7 účinné snížení aktivační energie specifita účinku specifita substrátová regulovatelnost účinnosti (aktivity)

8 Aktivační energie rozkladu peroxidu vodíku H 2 2 2H Katalyzátor Reakční rychlost (mol.l -1.s -1 ) E a (kj.mol -1 ) Žádný ,1 HBr ,2 Fe(H) 2 -triethylen tetraamin ,3 Katalasa ,4

9 Každá (metabolická) reakce má svůj enzym

10 AKTIVNÍ MÍST ENZYMŮ relativně malá kapsa (štěrbina) uvnitř nebo při povrchu enzymu, často hydrofóbní, umožňující vazbu substrátu(ů), ev. nebílkovinné části enzymu slabšími přechodnými, většinou nekovalentními vazbami: - vodíkovými můstky (výrazně směrovaná) - elektrostatickým přitahováním - hydrofóbními interakcemi - van der Waalsovými silami bsahuje postranní řetězce sekvenčně vzdálených aminokyselin, které představují kontaktní, orientující a katalytické zbytky a vytvářejí biospecifickou trojrozměrnou strukturu (konformaci). -efekt zvýšení koncentrace Vzniká dočasně a reverzibilně komplex enzym-substrát (ES).

11 Aktivní místo enzymu Zdroj:

12 Teorie zámku a klíče (Lock and key model) Teorie indukovaného přizpůsobení (induced fit model)

13 Změna konformace hexokinasy způsobená vazbou substrátu

14 Základní modely dvousubstrátových reakcí a) Model ping-pingový - první substrát A reaguje s enzymem E tak, že vznikne modifikovaná forma enzymu E* a oddělí se první produkt reakce P; Následně E* reaguje s druhým substrátem B a vzniká druhý produkt Q za současné regenerace původní formy enzymu E. b) Model sekvenční - v určitém okamžiku jsou oba substráty navázány v aktivním místě. - k výměně přenášených skupin, atomů či elektronů může docházet přímo mezi molekulami obou substrátů (náhodný/uspořádaný).

15 Enzym = buďto jednoduchá bílkovina nebo apoenzym (peptid. řetězec) + kofaktor = holoenzym Kofaktor: nepeptidová součást enzymu, která se přímo účastní chemické reakce (bez něj by to nešlo), častá souvislost s vitaminy Prosthetická skupina relativně pevně vázána na peptidový řetězec (kovalentně/nekovalentně) -během katalytického cyklu neopouští aktivní centrum Koenzym - volně vázaná molekula Pozn.:Ionty kovů, pevně vázané na enzym, nebývají řazeny mezi prostetické skupiny, i když způsob jejich začlenění do reakce je obdobný. Enzymy této skupiny nazýváme metalloenzymy. Častými účastníky reakcí jsou Zn 2+ a Cu 2+.

16 Prosthetická skupina (př. FAD, PLP, hem) E-Pr + S1 E-Pr* + P1 E-Pr* + S2 E-Pr + P2 E-Pr S1 + S2 P1 + P2 Koenzym (druhý substrát) (př. NAD(P), ATP) E1 S1 + K P1 + K* E2 K* + S2 K + P2 S1 + S2 P1 + P2

17 Prostetická skupina - FAD Flavinadenindinukleotid (FAD) přenos H atomů z jednoho substrátu na druhý

18 Koenzymy NAD +, NADP + - dehydrogenace (glykolysa, citrátový cyklus, β-oxidace mastných kyselin atd.) regenerace v dýchacím řetězci NADPH (fotosytéza, pentósový cyklus) (redukovadlo v synt. reakcích)

19 NADH (modře) a NAD + (červeně) - redukované formy obou koenzymů (NADH i NADPH) absorbují ultrafialové záření při 340 nm, zatímco oxidované formy nikoli; možnost sledovat aktivitu NAD + i NADP-dependentních enzymů (často v klinické biochemii)

20 Prostetická skupina - PLP Pyridoxalfosfát (PLP) - prostetická skupina enzymů, přeměňujících aminokyseliny (např. dekarboxylace, transaminace)

21 Prosthetická skupina - hem Hem - základem je tzv. porfyrinový kruh, tvořený čtyřmi pyrrolovými jádry (umí syntetyzovat i člověk) uprostřed ion Fe; -v cytochromech přenos elektronů (reverzibilní redukce Fe 3+ na Fe 2+ ) -prostetickou skupinou peroxidas i katalas, -v hemoglobinu a myoglobinu může na centrální atom Fe 2+ reverzibilně vázat molekulu 2 a tím zajistit její transport v organismu respektive uchovávání ve svalových tkáních. Vždy jde o prostetickou skupinu (i když bílkovina, např. hemoglobin, myoglobin či cytochrom-c, nemusí být enzymem).

22 Koenzym CoA - aktivace karboxylových kyselin (od kyseliny octové po vyšší mastné kyseliny), aby mohly vstoupit do různých metabolických procesů; označujeme je acyl-coa a nejběžnější z nich, acetyl-coa, patří ke klíčovým metabolitům

23 Koenzym ATP ATP fosforylace (význam např. pro aktivaci); může v enzymových reakcích nejrůznějšího typu ztratit jeden nebo dva fosfátové zbytky a přejít na adenosindifosfát (ADP) nebo adenosinmonofosfát (AMP). ATP regeneruje řadou cest (viz metabolismus).

24 ofaktory enzymů organické povahy kofaktor * užívaná zkratka vzorec (odst. XY) typ kofaktoru vitamin askorbát (kyselina askorbová) K C hydroxylace substrátů biotin P H, též B 7 karboxylační reakce hlavní funkce flavinadenindinukleotid, FAD, FMN 4.5 P riboflavin (B 2 ) součást molekul mnohých oxidoreduktas flavinadeninmononukleotid 3 -fosfoadenosyl-5 -fosfosulfát PAPS --- K --- přenašeč sulfátových skupin hem P ---- přenašeč elektronů v oxidoreduktasách kobalamin P B 12 přenos jednouhlíkatých štěpů, isomerace koenzym A CoA, též 4.5 K pantothenát aktivace karboxylových kyselin HSCoA (B 5 ) lipoová kyselina (lipoamid) P --- oxidační dekarboxylace 2-oxokyselin nikotinamidadenindinukleotid nikotinamidadenindinukleotidfosfát nukleosidtrifosfáty NAD +, NADP + NTP (ATP, GTP, UTP, CTP) 4.5 K niacin (B 3 ) dehydrogenace (glykolysa, citrátový cyklus, β-oxidace mastných kyselin atd.) regenerace v dýchacím řetězci NADPH (redukovadlo v synt. reakcích) 4.5, 6.2 K --- donor fosfátového zbytku (kinasy), aktivační reakce, dodávání energie pro různé procesy (ligasy) plastochinon PQ 8.4 K --- přenašeč vodíku ve světlé fázi fotosyntezy pyridoxalfosfát PLP 4.5 P pyridoxin (B 6 ) metabolismus aminokyselin štěpení glykogenu S-adenosylmethionin AdoMet, SAM 11.7 K --- přenašeč methylových skupin tetrahydrofolát THF --- K kyselina listová přenos jednouhlíkatých štěpů (methyl, (B 9 ) hydroxymethyl, formyl) thiamindifosfát TPP 9.2 P thiamin (B 1 ) dekarboxylace 2-oxokyselin ubichinon CoQ 8.2 K --- přenašeč vodíku v dýchacím řetězci mitochondrií

25 Jednotky vyjadřování enzymové aktivity Katal (zkratka kat): množství enzymové aktivity, které katalyzuje přeměnu 1 molu substrátu za sekundu; 10-6 kat = µkat ; 10-9 kat = nkat starší mezinárodní jednotka: Unit (U): množství enzymové aktivity, které katalyzuje přeměnu 1 µmolu substrátu za minutu; 10-3 U = mu PŘEVD: U=16,67 nkat 60 U=1 µkat Říkáme, že enzymový preparát má katalytickou aktivitu 1 kat, jestliže za 1 sekundu přemění 1 mol substrátu při nasycení příslušným substrátem, při definované teplotě, v ph optimu a za optimálních koncentrací iontů a jiných aktivátorů.

26 Faktory ovlivňující enzymovou aktivitu -koncentrace substrátu -teplota -ph -iontová síla -aktivátory a inhibitory

27 Regulace enzymové aktivity Významným způsobem, jak ovlivňovat vnitřní procesy, je regulace aktivity jednotlivých enzymů. rganismy mohou regulovat účinnost enzymové katalýzy na několika úrovních (příklady): - na úrovni transkripce (induktivní enzymy) - isoenzymy bílkoviny se stejnou substrátovou a účinkovou specifitou, ale s odlišnou primární strukturou - liší fyzikálně-chemickými parametry (optimem teploty, teplotní stabilitou, IEB,) buněčnou lokalizací (mitochondrie vs. cytoplasma),distribucí mezi tkáněmi (př. srdce vs. játra) - kompartmentace (Eukaryota) různé prostředí v různých organelách -proenzymy (zymogeny) typické pro trávicí enzymy - vratné kovalentní modifikace (např. fosforylace; viz obr.) - vratné nekovalentní modifikace (i reg. zpět. vazbou) - rychlost roste v závislosti na koncentraci substrátu (lze považovat za způsob regulace)

28 Názvosloví enzymů -dříve triviální názvy, často s koncovkou -in ( dodnes např. trypsin, pepsin) -později koncovka -asa a název byl tvořen podle substrátu, jehož přeměnu enzym katalyzoval (amylasa, peptidasa, lipasa) nebo podle charakteru katalyzované reakce (oxidasa, hydrolasa, transaminasa) -Enzymová komise založená v roce 1956 Mezinárodní biochemickou unií (IUB) zavedla tzv. doporučené názvy, které jsou voleny tak, aby co nejlépe vystihovaly charakter enzymu a přitom byly stručné; až na výjimky mají koncovku -asa vedle doporučených a triviálních názvů zavedeno i systémové rozdělení a z něho vyplývající systémové názvosloví enzymů; zahrnuje substrát(y) i typ katalyzované reakce a obsahují velmi mnoho informací o probíhající reakci; v důsledku této obsažnosti však jsou tyto názvy dlouhé a mnohdy těžko vyslovitelné. Navržená jednotná nomenklatura a klasifikace enzymů je průběžně revidována a doplňována. Současný stav tzv. enzymového katalogu (EC) je dostupný např. na adrese -podle mezinárodní nomenklatury bylo vytvořeno i české názvosloví enzymů zachována koncovka asa; názvy (až na výjimky) se píší jako jedno slovo -základem jednotné klasifikace a nomenklatury enzymů je rozdělení do šesti hlavních tříd podle typu katalyzované reakce:

29 Systematický název Systémové názvy enzymů jsou pokusem o systematické pojmenování enzymů skutečným popisem reakcí, jež katalyzují. Název se skládá ze tří součástí: -označení substrátu/ů; -označení reakce; -koncovka asa Příklad: enzym L-alanin:2-oxoglutarát-aminotransferasa EC substrát: L-alanin, 2-oxoglutarát; -reakce: transfer amino skupiny; -koncovka asa L-alanin + 2-oxoglutarát pyruvát + L-glutamát Doporučený triviální název: alaninaminotransferasa (ALT)

30 Reakce: ethanol + NAD + acetaldehyd + NADH + H + Doporučený triviální název: alkoholdehydrogenasa Systematický název: EC ethanol:nad + -oxidoreduktasa

31 Třídy enzymů 1) xidoreduktasy katalyzují různé oxidoredukční reakce, často s využitím koenzymů jako např. NADH, NADPH, FADH2,nebo hemu. Triviální názvy v této třídě: dehydrogenasy, oxidasy, cytochromy, peroxidasa, katalasa. donor + akceptor (donor vodíků/elektronů) 2) Transferasy oxidovaný donor + redukovaný akceptor Katalyzují přenos skupin: amino-, methyl-, acyl-, glykosyl-, fosforyl-. Kinasy katalyzují přenos fosfátové skupiny z ATP nebo jiných nukleosidtrifosfátů. Triviální názvy v této třídě: aminotransferasy (transaminasy), acyltransferasy, fosfotransferasy 3) Hydrolasy donor-sk + akceptor donor + akceptor-sk Katalyzují štěpení vazeb mezi atomem uhlíku a jinými atomy prostřednictvím spotřebované molekuly vody. bvyklé triviální názvy: esterasy, peptidasy, amylasy, fosfatasy, lipasy, proteasy (pepsin, trypsin, chymotrypsin). A-B + H 2 AH + HB

32 4) Lyasy Katalyzují adiční reakci na dvojné vazbě nebo eliminační reakci mezi dvěma C atomy za vzniku dvojné vazby. Příklady: fumaráthydratasa (fumarasa), karbonátdehydratasa (karboanhydrasa), aldolasa, citrátlyasa, dekarboxylasy. 5) Isomerasy Katalyzují racemizaci optických isomerů nebo vytváření polohových isomerů: epimerasy, racemasy, mutasy. Např. intramolekulární oxidoreduktasy (přeměňují aldosy na ketosy) 6) Ligasy Katalyzují tvorbu vazeb mezi uhlíkem a jinými atomy spojenou se štěpením ATP (spřažení exergonické a endergonické reakce): karboxylasy, synthetasy (glutaminsynthetasa). S 1 + S 2 + NTP + H 2 S 1 -S 2 + NDP + P i

33 Úkol: znát enzymové třídy (čísla i názvy), najít příklady enzymů Metabolismus zařazovat enzymy jednotlivých drah

34

35

36

37 1. XIDREDUKTASY donor + akceptor oxidovaný donor + redukovaný akceptor Systematický název: donor : akceptor-oxidoreduktasa angl.: donor : acceptor oxidoreductase Triviální názvy: dehydrogenasa reduktasa (důležitější redukce substrátu) transhydrogenasa (vzácné, glutathion-cystin-transhyhrogenasa) oxidasa (přenos dvou elektronů na 2, obvykle vznik H 2 2 ) oxygenasa (1 nebo 2 atomy jsou inkorporovány do substrátu(ů), monooxygenasa: vzniká voda, dioxygenasa: nevzniká) peroxidasa (peroxid vodíku je akceptorem elektronů) katalasa (disproporcionace peroxidu vodíku)

38 donor akceptor 1.1. CH _ H (alkohol) 1.n.1 NAD + nebo NADP CH (aldehyd) 1.n.2 cytochrom 1.3. CH _ CH 1.n.3 molekulový kyslík 1.4. CH _ NH 2 1.n.4 disulfidová sloučenina 1.5. CH _ NH (sekundární amin) 1.n.5 chinon nebo příbuzné látky 1.6. NADH nebo NADPH 1.n.6 dusíkatá skupina 1.7. ostatní dusíkaté donory 1.n.7 FeS proteiny 1.8. sloučeniny síry 1.n.8 flavin 1.9. hemová skupina difenoly a příbuzné slouč peroxid vodíku jako akceptor vodík působící na jeden donor, do něhož se vnáší kyslík (oxygenasy) (14.) 11 až 18 (různé působící na dva donory, typy oxygenačních reakcí) které inkorporují kyslík superoxidový radikál jako akceptor kovové ionty _ CH _ 2 (vzniká alkohol) redukovaný ferredoxin redukovaný flavodoxin ostatní oxidoreduktasy 1.n.99 různé další akceptory

39 xidoreduktasy - příklady EC Methan,NAD(P)H:kyslík-oxidoreduktasa (hydroxylující) CH 4 + NAD(P)H + H CH 3 H + NAD(P) + + H 2 EC H 2 2 : H 2 2 -oxidoreduktasa, katalasa (též peroxid vodíku:peroxid vodíku - oxidoreduktasa) H H H EC donor: H 2 2 -oxidoreduktasa, peroxidasa donor + H 2 2 oxidovaný donor + 2 H 2

40 xidoreduktasy - příklady EC Alkohol:NAD + -oxidoreduktasa, alkoholdehydrogenasa CH 3 -CH 2- H + NAD + CH 3 -CH + NADH + H + EC D-Glukosa: 2-1-oxidoreduktasa, glukosaoxidasa -D-glukosa + 2 -D-glukono-1,5-lakton + H 2 2 EC Síra:kyslík-oxidoreduktasa, síradioxygenasa S + 2 S 2

41 2. TRANSFERASY donor _ SK + akceptor donor + akceptor _ SK Systematický název: donor : akceptor _ skupinatransferasa angl. donor : acceptor grouptransferase Triviální názvy: methyltransferasy, hydroxymethyltransferasy aminotransferasy (dříve transaminasy) kinasy = fosfotransferasy atd.

42 2. TRANSFERASY 2.1 Přenášející jednouhlíkatou skupinu Methyltransferasy Hydroxymethyltransferasy Karboxyl _ a karbamoyltransferasy Amidinotransferasy 2.2 Přenášející aldehydické nebo ketonické skupiny Transaldolasy a transketolasy 2.3 Acyltransferasy Acyltransferasy Aminoacyltransferasy

43 2. TRANSFERASY 2.4 Glykosyltransferasy Hexosyltransferasy Pentosyltransferasy Přenášející ostatní glykosylové skupiny 2.5 Přenášející akrylové nebo arylové skupiny jiné než methyl (velmi heterogenní skupina) 2.6 Přenášející dusíkaté skupiny Aminotransferasy ximinotransferasy Přenášející jiné dusíkaté skupiny

44 2. TRANSFERASY 2.7. Přenášející skupiny obsahující fosfor Fosfotransferasy s alkoholem jako akceptorem Fosfotransferasy s karboxylem jako akceptorem Fosfotransferasy s dusíkatou skup. jako akcept Fosfotransferasy s fosfátovou skup. jako akcept Difosfotransferasy Nukleotidyltransferasy Transferasy ostatních substituovaných fosf. skup Fosfotransferasy se dvěma akceptory 2.8. Přenášející sirné skupiny Sulfurtransferasy (sirné skupiny kromě a ) Sulfotransferasy (přenášející sulfát) CoA _ transferasy

45 Transferasy - příklady EC ,4- -D-Glukan:orthofosfát- -D-glukosyltransferasa, fosforylasa (1,4- -D-glukan) n + P i (1,4- -D-glukan) n-1 + -D-glukosa-1- fosfát EC L-Alanin:2-oxoglutarát-aminotransferasa, alaninaminotransferasa (AAT) + H 3 N C CH CH 3 C C CH 2 CH 2 C C C + + CH 3 + H 3 N C CH CH 2 CH 2 C L-Ala + 2-oxoglutarát pyruvát + L-Glu

46 Transferasy - příklady EC ATP:D-hexosa-6-fosfotransferasa, hexokinasa ATP + D-hexosa ADP + D-hexosa-6-fosfát P P P N H 2 C H NH 2 N H H N N H P H H CH 2 H H H H H H H H

47 3. HYDRLASY A _ B + H 2 AH + HB Systematický název: substrát (skupina) hydrolasa angl.: substrate (group) hydrolase Triviální název: substrátasa, často zcela nesystematické názvy

48 3. HYDRLASY 3.1 Esterasy Estery karboxylových kyselin (lipasy) Monoestery fosforečné kyseliny (fosfatasy) Diestery fosforečné kyseliny (fosfodiesterasy, štěpení c-amp) _ 30 Endo _ a exo _ (deoxy)nukleasy 3.2 Glykosidasy Hydrolysující _ glykosidové vazby (amylasy, invertasa=sacharasa, celulasy) Hydrolysující N-glykosidové vazby 3.3 Působící na etherové vazby

49 3. HYDRLASY 3.4 Peptidasy _ Aminoacylpeptid hydrolasy (aminopeptidasy) Dipeptid hydrolasy Dipeptidylpeptid hydrolasy Peptidyldipeptid hydrolasy Serinové karboxypeptidasy Metallo _ karboxypeptidasy Cysteinové karboxypeptidasy Serinové proteinasy Cysteinové proteinasy Aspartátové proteinasy Metallo _ proteinasy Proteinasy neznámého katalyt. mechanismu 3.5 Působící na C _ N vazbu jinou než peptidovou

50 3. HYDRLASY 3.6 Působící na anhydridy kyselin Anhydridy fosforečné kyseliny (pyrrofosfatasa, nespec. ATPasy) a zprostředkující membránový transport (transportní ATPasy) umožňující pohyb (aktomyosinový komplex, složky cytoskeletu) 3.7 Působící na vazbu C _ C 3.8 Působící na vazby halogenů 3.9 Působící na P _ N vazby 3.10 Působící na S _ N vazbu 3.11 Působící na C _ P vazbu

51 4. LYASY substrát 1 (+ substrát 2) produkt 1 + produkt 2 (malý) Systematický název: substrát 1 (substrát 2)- produkt 2lyasa angl: substrate l (substrate 2)- product 2 lyase Triviální název: dekarboxylasa, hydrolyasy (=dehydratasa), ammonialyasa, aldolasa, synthasa (velmi riskantní)

52 4. LYASY 4.1 C _ C lyasy Karboxylyasy (dekarboxylasy) Aldehydlyasy (aldolasy) xo _ acid lyasy (např. citrátsynthasa) statní C _ C lyasy 4.2 C _ lyasy Hydrolyasy (např. fumarasa) Působící na polysacharidy (štěpí za vzniku deoxysacharidů) statní C _ lyasy 4.3 C _ N lyasy Ammonia _ lyasy (např. aspartátamonialyasa) 4.4 C _ S lyasy 4.5 C _ halogen lyasy 4.6 P _ lyasy 4.99 statní lyasy

53 4. LYASY Lyasy - příklady: EC pyruvát-karboxylyasa, pyruvátdekarboxylasa CH 3 -C-CH CH 3 -CH + C 2 EC karbonát-hydrolyasa, karbonátanhydrasa, karbonátdehydratasa H 2 C 3 C 2 + H 2

54 EC ATP-pyrrofosfátlyasa (cyklisující), adenylátcyklasa ATP camp + PP i H P H H H H H 2 C H N N N N NH 2 P P H P H H H CH 2 H N N N N NH 2 P P 4. LYASY +

55 5. ISMERASY Triviální názvy: (různé typy isomerací _ podobně i v systematickém názvu) racemasy, cis _ trans _ isomerasy, ketolisomerasy, mutasy, atd. Systematický název: substráttyp angl.: substrate type

56 5. ISMERASY 5.2 Cis _ trans _ isomerasy 5.3 Intramolekulární oxidoreduktasy Přeměňující aldehydy na ketony (ketolisomerasy) Přeměňující ketoskupiny na enoly (keto _ enolisomerasy) Posunující C=C vazbu ( n _ m isomerasy) Posunující S _ S vazbu (proteindisulfid _ isomerasa) statní intramolekulární oxidoreduktasy

57 5. ISMERASY 5.4 Intramolekulární transferasy (mutasy) Přenášející acylovou skupinu (acylmutasy) Fosfotransferasy (fosfomutasy) Přesunující aminoskupinu (aminomutasy) 5.5 Intramolekulární lyasy (decyklisující, intramolekulární adice) 5.99 statní isomerasy (např. DNA-topoisomerasy)

58 Isomerasy - příklady: EC Aspartátracemasa (s poloviční rychlostí působí též na Ala) EC Laktátracemasa EC D-Glyceraldehyd-3-fosfátketolisomerasa, triosafosfátisomerasa HC H 2 C C H H CH H 2 C P H 2 C P D-glyceraldehyd-3-fosfát dihydroxyacetonfosfát EC D-Fosfoglycerát-2,3-fosfomutasa, fosfoglycerátmutasa H C CH H 2 C P C P CH H 2 C H 3-fosfo-D-glycerát 2-fosfo-D-glycerát

59 6. LIGASY substrát 1 + substrát 2 + A(G) TP substrát 1 _ substrát 2 + ADP + P i nebo substrát 1 + substrát 2 + ATP substrát 1 _ substrát 2 + AMP + PP i Systematický název: substrát1: substrát 2 _ ligasa (tvořící ADP, AMP nebo GDP) angl.: substrate l : substrate 2 ligase (ADP, AMP or GDP _ forming) Triviální názvy: pokud možno substrát 1 _ substrát 2 _ ligasa (synthetasy jsou možné, často se však vyskytují i synthasy)

60 6. LIGASY 6.1 Tvořící C _ vazby (aminoacyl _ trna _ ligasy a podobné estery) 6.2 Tvořící C _ S vazby (kyselina _ thiol _ ligasy) 6.3 Tvořící C _ N vazby Acid _ ammonia (or amine) ligases (asparaginsynthetasa) Acid _ amino _ acid ligases (např. peptidsynthetasy) Cyklisující ligasy statní C _ N ligasy C _ N ligasy s glutaminem jako donorem dusíku (např. karbamoylfosfátsynthetasa) 6.4 Tvořící C _ C vazby (např. karboxylasy) 6.5 Tvořící estery kyseliny fosforečné (např. DNA-ligasa)

61 Ligasy - příklady EC L-Tyrosin:tRNA Tyr -ligasa (AMP-tvořící), tyrosin-trna-ligasa L-Tyr + trna Tyr + ATP L-Tyr-tRNA Tyr + AMP + PP i EC Acetát:CoA-ligasa (AMP-tvořící), acetát-coa ligasa CH 3 C - + HSCoA + ATP acetyl-scoa + AMP + PP i EC L-Aspartát:amoniak-ligasa (ADP-tvořící), asparaginsynthetasa L-Asp + NH 3 + ATP L-Asn + ADP + P i (EC AMP-tvořící) EC Pyruvát:oxid uhličitý-ligasa (ADP-tvořící), pyruvátkarboxylasa CH 3 -C-C - + HC 3 - +ATP - C-CH 2 -C-C - + ADP + P i EC Poly(deoxyribonukleotid): poly(deoxyribonukleotid)-ligasa (AMPtvořící), DNA-ligasa ATP + (deoxyribonukleotid) n + (deoxyribonukleotid) m (deoxyribonukleotid) n+m + AMP + PP i

1. OXIDOREDUKTASY (14.) 11 až 18 (různé typy oxygenačních

1. OXIDOREDUKTASY (14.) 11 až 18 (různé typy oxygenačních 1. OXIDOREDUKTASY donor + akceptor oxidovaný donor + redukovaný akceptor Systematický název: donor : akceptor-oxidoreduktasa angl.: donor : acceptor oxidoreduktase Triviální názvy: dehydrogenasa reduktasa

Více

Enzymy = biokatalyzátory

Enzymy = biokatalyzátory Enzymy = biokatalyzátory Enzymy biologické katalyzátory Analogie s chemickými katalyzátory Katalyzátor je jiná látka než reaktant a produkt reakce Zvyšuje rychlost reakce v obou směrech, snižuje aktivační

Více

Enzymy: Struktura a mechanismus působení. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK

Enzymy: Struktura a mechanismus působení. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK Enzymy: Struktura a mechanismus působení Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK 1 ENZYMY JAKO HOMOGENNÍ BIOKATALYZÁTORY 1. Bílkovinná povaha ( + některé RNA-enzymy - ribozymy) 2.

Více

Enzymy. Prof. MUDr. Jiří Kraml, DrSc.

Enzymy. Prof. MUDr. Jiří Kraml, DrSc. Enzymy Prof. MUDr. Jiří Kraml, DrSc. ENZYMY JAKO HOMOGENNÍ BIOKATALYZÁTORY 1. Bílkovinná povaha ( + některé RNA-enzymy - ribozymy) 2. Větší účinnost (faktor minimálně 10 6 ) 3. Specifičnost - substrátová

Více

Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)

Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Dělení bílkovin podle jejich funkce stavební a podpůrné kolageny, elastin, keratiny (fibrilární) bílkoviny cytoskeletu (tubulin, vimentin,

Více

Enzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018

Enzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018 Enzymologie Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar akad. rok 2017/2018 Osnova I. Základní principy enzymových reakcí II. Termodynamické a kinetické aspekty enzymové

Více

Historie poznání enzymů

Historie poznání enzymů Historie poznání enzymů 1835 Jacob Berzelius katalytická fce diastasy pol. 18.stol. Luis Pasteur vitalismus 1878 Frederic W. Kühn enzym 1894 Emil Fischer teorie zámku a klíče 1897 Büchnerův pokus 1926

Více

Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů.

Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. ENZYMOLOGIE 1 Enzymologie Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. Jak je možné, že buňka dokáže utřídit hrozivou změť chemických procesů, které v ní v každém okamžiku

Více

ENZYMY. Enzymy - jednoduché nebo složené proteiny, které katalyzují chemické přeměny v organismech

ENZYMY. Enzymy - jednoduché nebo složené proteiny, které katalyzují chemické přeměny v organismech ENZYMY Enzymy - jednoduché nebo složené proteiny, které katalyzují chemické přeměny v organismech Šest hlavních kategorií enzymů: EC 1 Oxidoreduktasy: katalyzují oxidačně/redukční reakce EC 2 Transferasy:

Více

Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)

Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Lidský genom 20 tis. Genů (genom) stovky tisíc proteinů (proteom) Dělení bílkovin podle jejich funkce stavební a podpůrné kolageny, elastin,

Více

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. ENZYMY I úvod, názvosloví, rozdělení do tříd

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. ENZYMY I úvod, názvosloví, rozdělení do tříd Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ENZYMY I úvod, názvosloví, rozdělení do tříd Úvod z řeckého EN ZYME (v kvasinkách) biologický katalyzátor, protein (RNA) liší se od chemických

Více

Název: Systematický (5Z,8Z,11Z,14Z)-ikosa-5,8,11,14-tetraenoát,donor vodíku:kyslík-oxidoreduktasa

Název: Systematický (5Z,8Z,11Z,14Z)-ikosa-5,8,11,14-tetraenoát,donor vodíku:kyslík-oxidoreduktasa Názvosloví enzymů: http://www.chem.qmul.ac.uk/iubmb/enzyme/ http://enzyme.expasy.org/ Název: Systematický (5Z,8Z,11Z,14Z)-ikosa-5,8,11,14-tetraenoát,donor vodíku:kyslík-oxidoreduktasa Polo-triviální prostaglandin-endoperoxidsynthasa

Více

7. Enzymy. klasifikace, názvosloví a funkce

7. Enzymy. klasifikace, názvosloví a funkce 7. Enzymy klasifikace, názvosloví a funkce Jsou to přírodní katalyzátory, živočišné i rostlinné Umožňují průběh biochemických reakcí Nachází se ve veškerých živých systémech Enzymy vykazují druhovou specifitu

Více

Kofaktory enzymů. T. Kučera. (upraveno z J. Novotné)

Kofaktory enzymů. T. Kučera. (upraveno z J. Novotné) Kofaktory enzymů T. Kučera (upraveno z J. Novotné) Kofaktory enzymů neproteinová, nízkomolekulární složka enzymu ko-katalyzátor potřebný k aktivitě enzymu pomocné molekuly v enzymové reakci holoenzym (aktivní)

Více

ENZYMY. RNDr. Lucie Koláčná, Ph.D.

ENZYMY. RNDr. Lucie Koláčná, Ph.D. ENZYMY RNDr. Lucie Koláčná, Ph.D. Enzymy: katalyzátory živé buňky jednoduché nebo složené proteiny Apoenzym: proteinová část Kofaktor: nízkomolekulová neaminokyselinová struktura nezbytně nutná pro funkci

Více

1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu

1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu Test pro přijímací řízení magisterské studium Biochemie 2018 1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

ENZYMOLOGIE. Pracovní sešit k přednáškám z biochemie pro studenty biologických kombinací ZDENĚK GLATZ

ENZYMOLOGIE. Pracovní sešit k přednáškám z biochemie pro studenty biologických kombinací ZDENĚK GLATZ EZYMLGIE Pracovní sešit k přednáškám z biochemie pro studenty biologických kombinací II ZDEĚK GLATZ 2004 Katalýza - Berzelius 1838 2 EZYMLGIE katalyzátor - látky urychlující chemické reakce - nemění rovnováhu

Více

Redoxní děj v neživých a živých soustavách

Redoxní děj v neživých a živých soustavách Enzymy Enzymy Katalyzují chemické reakce, kdy se mění substrát na produkt Katalytickým působením se snižuje aktivační energie reagujících molekul substrátu, tím se reakce urychlí Za přítomnosti enzymu

Více

Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno:

Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Bruno Sopko Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Z předchozí rovnice vyplývá: Pokud katalýza při 25

Více

Aminokyseliny, proteiny, enzymologie

Aminokyseliny, proteiny, enzymologie Aminokyseliny, proteiny, enzymologie Aminokyseliny Co to je? Organické látky karboxylové kyseliny, které mají na sousedním uhlíku navázanou aminoskupinu Jak to vypadá? K čemu je to dobré? AK jsou stavební

Více

Bp1252 Biochemie. #8 Metabolismus živin

Bp1252 Biochemie. #8 Metabolismus živin Bp1252 Biochemie #8 Metabolismus živin Chemické reakce probíhající v organismu Katabolické reakce přeměna složitějších látek na jednoduché, jsou většinou exergonické. Anabolické reakce syntéza složitějších

Více

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy 9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy Obtížnost A Vyjmenujte kofaktory, které využívá multienzymový komplex pyruvátdehydrogenasy; které z nich řadíme mezi koenzymy

Více

Stanovení vybraných enzymů. Roman Kanďár

Stanovení vybraných enzymů. Roman Kanďár Stanovení vybraných enzymů Roman Kanďár Takže prvně malé opakování ENZYM Protein (RNA) s katalytickou aktivitou Protein (RNA) kofaktor (prosthetická skupina, koenzym) Jaký je vlastně rozdíl mezi prosthetickou

Více

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa 8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika

Více

Katabolismus - jak budeme postupovat

Katabolismus - jak budeme postupovat Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

HISTORIE ENZYMOLOGIE

HISTORIE ENZYMOLOGIE ENZYMY HISTORIE ENZYMOLOGIE 1. Berzelius (18.stol.) v rostlinách i živočiších probíhají tisíce katalyzovaných reakcí FERMENTY fermentace (Fabrony) 2. W.Kühne en zýme = v kvasnicích enzymy 3. J. Sumner

Více

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K Test pro přijímací řízení magisterské studium Biochemie 2017 1. Napište vzorce aminokyselin Q a K Dále zakroužkujte správné tvrzení (pouze jedna správná odpověď) 2. Enzym tyrozinkinasu řadíme do třídy

Více

kofaktory nejsou: - stabilizující sloučeniny - allosterické aktivátory - post-translační modifikace mimo aktivní místo - proteinové podjednotky

kofaktory nejsou: - stabilizující sloučeniny - allosterické aktivátory - post-translační modifikace mimo aktivní místo - proteinové podjednotky Kofaktory, koenzymy a prosthetické skupiny kofaktory nízkomolekulární sloučeniny potřebné pro enzymovou katalýzu, účastní se katalýzy - koenzymy - prosthetické skupiny - kovalentní modifikace aminokyselinových

Více

POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.

POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve

Více

Enzymy (katalýza biochemických reakcí)

Enzymy (katalýza biochemických reakcí) Enzymy (katalýza biochemických reakcí) Enzymy (fermenty) Biokatalyzátory chemických reakcí (globulární proteiny) Ve velmi malých množstvích specificky urychlují průběh chemických reakcí tak, že snižují

Více

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.

Více

Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace

Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace Enzymy Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace COO - - COO NH 2 OH - COO NH 2 - COO O OH - COO Chorismate mutase - OOC O OH - COO -

Více

BIOKATALYZÁTORY I. ENZYMY

BIOKATALYZÁTORY I. ENZYMY BIOKATALYZÁTORY I. Obecné pojmy - opakování: Katalyzátory látky, které ovlivňují průběh katalyzované reakce a samy se přitom nemění. Dělíme je na: pozitivní (aktivátory) urychlující reakce negativní (inhibitory)

Více

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Citrátový a glyoxylátový cyklus Buněčná respirace I. Fáze Energeticky bohaté látky jako glukosa, mastné kyseliny a některé aminokyseliny

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

Enzymy charakteristika a katalytický účinek

Enzymy charakteristika a katalytický účinek Enzymy charakteristika a katalytický účinek Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek enzymy 28.7.2012 3. ročník čtyřletého G Charakteristika

Více

ENZYMY. Charakteristika enzymaticky katalyzovaných reakcí:

ENZYMY. Charakteristika enzymaticky katalyzovaných reakcí: ENZYMY Definice: Enzymy (biokatalyzátory) jsou jednoduché či složené makromolekulární bílkoviny s katalytickou aktivitou. Urychlují reakce v organismech tím, že snižují aktivační energii (Ea) potřebnou

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

AMINOKYSELINY REAKCE

AMINOKYSELINY REAKCE CHEMIE POTRAVIN - cvičení AMINOKYSELINY REAKCE Milena Zachariášová (milena.zachariasova@vscht.cz) Ústav chemie a analýzy potravin, VŠCHT Praha REAKCE AMINOKYSELIN část 1 ELIMINAČNÍ REAKCE DEKARBOXYLACE

Více

1. ročník Počet hodin

1. ročník Počet hodin SOUSTAVY LÁTEK A JEJICH SLOŽENÍ rozdělení přírodních látek a vlastnosti chemických látek soustavy látek a jejich složení STAVBA ATOMU historie pohledu na atom složení a struktura atomu stavba atomu VELIČINY

Více

Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK

Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK Úvod do buněčného metabolismu Citrátový cyklus Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK METABOLISMUS = přeměna látek v organismu - má stránku chemickou (látkovou) - reakce anabolické

Více

Historie. Pozor! né vždy jen bílkovinná část

Historie. Pozor! né vždy jen bílkovinná část Enzymy a hormony Enzymy = biokatalyzátory jejich působení je umožněn souhrn chemických přeměn v organismu (metabolismus) jednoduché, složené bílkoviny globulární v porovnání s katalyzátory účinnější, netoxické,

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Aminokyseliny. Aminokyseliny. Peptidy & proteiny Enzymy Lipidy COOH H 2 N. Aminokyseliny. Aminokyseliny. Postranní řetězec

Aminokyseliny. Aminokyseliny. Peptidy & proteiny Enzymy Lipidy COOH H 2 N. Aminokyseliny. Aminokyseliny. Postranní řetězec optická aktivita Peptidy & proteiny Enzymy Lipidy α-uhlík je asymetrický pouze L-aminokyseliny 2 α R rozdělení dle polarity podle počtu karboxylových skupin podle počtu bazických skupin podle polarity

Více

Citrátový cyklus. Tomáš Kučera.

Citrátový cyklus. Tomáš Kučera. itrátový cyklus Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Schéma energetického

Více

ENZYMY A NUKLEOVÉ KYSELINY

ENZYMY A NUKLEOVÉ KYSELINY ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí

Více

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216. Vzdělávací materiál vytvořený v projektu VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Citrátový cyklus a Dýchací řetězec. Milada Roštejnská Helena Klímová

Citrátový cyklus a Dýchací řetězec. Milada Roštejnská Helena Klímová Citrátový cyklus a Dýchací řetězec Milada oštejnská elena Klímová 1 bsah 1 Citrátový cyklus Citrátový cyklus (reakce) Citrátový cyklus (schéma) espirace (dýchání) Vnější a vnitřní respirace Dýchací řetězec

Více

Metabolismus proteinů a aminokyselin

Metabolismus proteinů a aminokyselin Metabolismus proteinů a aminokyselin Proteiny jsou nejdůležitější složkou potravy všech živočichů, nelze je nahradit ani cukry, ani lipidy. Je to proto, že organismus živočichů nedokáže ve svých metabolických

Více

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje

Více

CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV

CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV a) Chemické složení a. biogenní prvky makrobiogenní nad 0,OO5% (C, O, N, H, S, P, Ca.) - mikrobiogenní pod 0,005%(Fe,Zn, Cu, Si ) b. voda 60 90% každého organismu - 90% příjem

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_419 Jméno autora: Třída/ročník: Mgr. Alena

Více

Intermediární metabolismus. Vladimíra Kvasnicová

Intermediární metabolismus. Vladimíra Kvasnicová Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,

Více

Metabolismus bílkovin. Václav Pelouch

Metabolismus bílkovin. Václav Pelouch ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus dusíkatých látek

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus dusíkatých látek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolismus dusíkatých látek Oxidace aminokyselin Podíl AK na metabolické E se silně liší dle organismu a jeho momentálních potřeb, např.

Více

4. Enzymy. Obtížnost A

4. Enzymy. Obtížnost A 4. Enzymy btížnost A Enzymy a) zvyšují rychlost chemických reakcí tím, že zvyšují jejich aktivační energii; b) zvyšují rovnovážný výtěžek chemické reakce tím, že zvyšují hodnotu rovnovážné konstanty; c)

Více

Historie poznávání enzymů

Historie poznávání enzymů Enzymy (en-zýme -- v kvasnicích) Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech-jejich působením

Více

Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA Nespecifické Další látky Vitaminy?? specifická funkce??

Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA Nespecifické Další látky Vitaminy?? specifická funkce?? YDRFILÍ VITAMIY Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA especifické Další látky Vitaminy?? specifická funkce?? deficience?? potřeba?? Thiamin Vitamin B1 + 3 2

Více

Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku?

Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku? Repetitorium chemie X. 2011/2012 Metabolické dráhy František Škanta Metabolické dráhy xidativní fosforylace xidace mastných kyselin 1. fosforylace 2. štěpení hexosy na dvě vzájemně převoditelné triosy

Více

16a. Makroergické sloučeniny

16a. Makroergické sloučeniny 16a. Makroergické sloučeniny Makroergickými sloučeninami v biochemii nazýváme skupinu látek umožňujících uvolnění značného množství energie v jednoduché reakci. Nelze je definovat prostě jako sloučeniny

Více

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím Otázka: Obecné rysy metabolismu Předmět: Chemie Přidal(a): Bára V. ZÁKLADY LÁTKOVÉHO A ENERGETICKÉHO METABOLISMU - metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy

Více

Enzymy. Názvosloví enzymů

Enzymy. Názvosloví enzymů Enzymy Enzymy jsou bílkoviny, které působí jako biologické katalyzátory. Podobně jako ostatní katalyzátory snižují aktivační energii chemické reakce a tím urychlují její průběh. Enzymy neovlivňují hodnotu

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 becný metabolismus. Mechanismy enzymové katalýzy (7). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie Přírodovědecká

Více

Pentosový cyklus. osudy glykogenu. Eva Benešová

Pentosový cyklus. osudy glykogenu. Eva Benešová Pentosový cyklus a osudy glykogenu Eva Benešová Pentosový cyklus pentosafosfátová cesta, fosfoglukonátová cesta nebo hexosamonofosfátový zkrat Funkce: 1) výroba NADPH 2) výroba ribosa 5-fosfátu 3) zpracování

Více

11. Metabolismus lipidů

11. Metabolismus lipidů 11. Metabolismus lipidů Obtížnost A Následující procesy a metabolické reakce, vedoucí ke zkrácení řetězce mastné kyseliny, vázané v triacylglycerolu, a vzniku acetyl-coa, seřaďte ve správném pořadí: a)

Více

Metabolizmus aminokyselin I

Metabolizmus aminokyselin I Metabolizmus aminokyselin I Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol MUDr. Bc. Matej Kohutiar, Ph.D. matej.kohutiar@lfmotol.cuni.cz Praha 2018 snova I. přednáška: Metabolizmus a meziorgánové

Více

CYKLUS TRIKARBOXYLOVÝCH KYSELIN A GLYOXYLÁTOVÝ CYKLUS

CYKLUS TRIKARBOXYLOVÝCH KYSELIN A GLYOXYLÁTOVÝ CYKLUS YKLUS TRIKARBXYLVÝ KYSELIN A GLYXYLÁTVÝ YKLUS BSA Základní charakteristika istorie Pyruvátdehydrogenasový komplex itátový cyklus dílčí reakce itátový cyklus výtěžek itátový cyklus regulace Anapleroticé

Více

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní

Více

NaLékařskou.cz Přijímačky nanečisto

NaLékařskou.cz Přijímačky nanečisto alékařskou.cz Chemie 2016 1) Vyberte vzorec dichromanu sodného: a) a(cr 2 7) 2 b) a 2Cr 2 7 c) a(cr 2 9) 2 d) a 2Cr 2 9 2) Vypočítejte hmotnostní zlomek dusíku v indolu. a) 0,109 b) 0,112 c) 0,237 d) 0,120

Více

Metabolismus aminokyselin I. Jana Novotná 2. LF UK, Ústav lékařské chemie a klinické biochemie

Metabolismus aminokyselin I. Jana Novotná 2. LF UK, Ústav lékařské chemie a klinické biochemie Metabolismus aminokyselin I Jana Novotná 2. LF UK, Ústav lékařské chemie a klinické biochemie Metabolismus aminokyselin PROTEINY Z POTRAVY GLYKOLÝZA KREBSŮV CYCLUS Proteosyntéza Trávení Transaminace TĚLESNÉ

Více

Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu

Více

Didaktické testy z biochemie 2

Didaktické testy z biochemie 2 Didaktické testy z biochemie 2 Metabolismus Milada Roštejnská Helena Klímová br. 1. Schéma metabolismu Zažívací trubice Sacharidy Bílkoviny Lipidy Ukládány jako glykogen v játrech Ukládány Ukládány jako

Více

ENZYMY. Klasifikace enzymů

ENZYMY. Klasifikace enzymů ENZYMY Enzymy jsou bílkoviny, které katalyzují chemické reakce probíhající v živých organismech. Byly identifikovány tisíce enzymů, mnohé z nich byly izolovány čisté. Klasifikace enzymů Vzhledem k tomu,

Více

CZ.1.07/2.2.00/ Obecný metabolismus. Energetický metabolismus (obecně) (1).

CZ.1.07/2.2.00/ Obecný metabolismus. Energetický metabolismus (obecně) (1). mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 becný metabolismus Energetický metabolismus (obecně) (1). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

ANABOLISMUS SACHARIDŮ

ANABOLISMUS SACHARIDŮ zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE

Více

Metabolismus. Source:

Metabolismus. Source: Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -

Více

12-Fotosyntéza FRVŠ 1647/2012

12-Fotosyntéza FRVŠ 1647/2012 C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Glykolýza a neoglukogenese z řečtiny glykos sladký, lysis uvolňování sled metabolických reakcí od glukosy přes fruktosa-1,6-bisfosfát

Více

Bioenergetika a makroergické sloučeniny

Bioenergetika a makroergické sloučeniny Bioenergetika a makroergické sloučeniny Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole

Více

Metabolismus lipidů. (pozn. o nerozpustnosti)

Metabolismus lipidů. (pozn. o nerozpustnosti) Metabolismus lipidů (pozn. o nerozpustnosti) Trávení lipidů Lipidy v potravě - většinou v hydrolyzovatelné podobě, především jako triacylglayceroly (TAG), fosfatidáty a sfingolipidy. V trávicím traktu

Více

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím

Více

Sylabus pro předmět Biochemie pro jakost

Sylabus pro předmět Biochemie pro jakost Sylabus pro předmět Biochemie pro jakost Kód předmětu: BCHJ Název v jazyce výuky: Biochemie pro Jakost Název česky: Biochemie pro Jakost Název anglicky: Biochemistry Počet přidělených ECTS kreditů: 6 Forma

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Aerobní odbourávání cukrů+elektronový transportní řetězec

Aerobní odbourávání cukrů+elektronový transportní řetězec Aerobní odbourávání cukrů+elektronový transportní řetězec Dochází k němu v procesu jménem aerobní respirace. Skládá se z kroků: K1) Glykolýza K2) oxidativní dekarboxylace pyruvátu K3) Krebsův cyklus K4)

Více

Metabolismus krok za krokem - volitelný předmět -

Metabolismus krok za krokem - volitelný předmět - Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus

Více

13. Enzymy aktivační energie katalýza makroergické sloučeniny

13. Enzymy aktivační energie katalýza makroergické sloučeniny 13. Enzymy Průběh chemických reakcí závisí též na schopnosti molekul přiblížit se dostatečně blízko a překonat repulsní energetickou bariéru. K tomu je zapotřebí energie typické pro každou reakci, tzv.

Více

Lékařská chemie a biochemie modelový vstupní test ke zkoušce

Lékařská chemie a biochemie modelový vstupní test ke zkoušce Lékařská chemie a biochemie modelový vstupní test ke zkoušce 1. Máte pufr připravený smísením 150 ml CH3COOH o c = 0,2 mol/l a 100 ml CH3COONa o c = 0,25 mol/l. Jaké bude ph pufru, pokud přidáme 10 ml

Více