Mechanika kompozitů pro design

Rozměr: px
Začít zobrazení ze stránky:

Download "Mechanika kompozitů pro design"

Transkript

1 Mechanika kompozitů pro design KM-DMK Robert Zemčík

2 Historie Základní pojmy a vlastnosti Klasifikace kompozitních materiálů

3 Kompozitní materiál skládá se ze dvou nebo více různých složek každá složka má jiné vlastnosti (mechanické, chemické) každá složka plní jinou funkci výsledné vlastnosti (výhody i nevýhody) jsou dány kombinací vlastností dílčích složek

4 Historie první písemná zmínka o použití kompozitů: Bible kniha xodus o Odchodu Izraelitů z gypta Protož ustanovili nad ním úředníky, kteříž by plat vybírali, aby je trápili břemeny svými I vystavěl [lid Izraelský] Faraonovi města skladů, Fiton a Ramesses A k hořkosti přivodili život jejich robotami těžkými, v hlině a cihlách a ve všelijakém díle na poli, mimo všelikou potřebu svou, k níž práce jejich užívali nenáležitě a bez lítosti I přikázal Farao v ten den úředníkům nad lidem a šafářům jeho, řka: Nedávejte již více slámy lidu k dělání cihel jako prvé; nechať jdou sami a sbírají sobě slámu

5 Hlína + sláma = vepřovice ADOB sláma působí jako zpevňující složka navíc kyseliny uvolněné ze slámy hlínu vytvrzují až 3x vyšší pevnost oproti samotné nepálené hlíně břeh Dunaje, Rumunsko

6 Stavby z nepálené hlíny Huaca del Sol, Peru, 45 AD Tambo Colorado, Peru Huaca de la Luna, Peru Citadela Arg-e Bam, Írán, 5 BC 23 AD

7 Přírodní kompozity srdeční céva tkáně živočichů svaly, cévy, kosti, schránky pletivo rostlin dřevo kmen ořešáku ulita loděnky

8 Kompozity na bázi dřeva dřevovláknité desky (dřevotříska, sololit) lisované, lepené třísky, piliny překližky lepené vrstvy dřeva gypt 35 BC pykrete piliny v ledu 2 světová válka De Havilland Mosquito sendvič (překližka + balza) Habakkuk

9 Kompozity na bázi keramiky CRMT keramická matrice + kovová výztuž keramika tepelná odolnost kov tažnost (nikl, molybden, kobalt) zubní výplně protézy, elektronické součástky, povrch raketoplánu, jaderné reaktory Atlantis

10 Kompozity na bázi kovů MMC matrice: hliník, hořčík, titan, ocel tepelná vodivost výztuha: vlákna z uhlíku, boronu, SiC tuhost, pevnost Porsche Boxter auto-brzdy, bloky motoru, vrtáky, rámy kol Specialized S-Works

11 Organické kompozity asfalt (+ písek, kamínky) kostel J z Arku, Nice železobeton (848) zubní protézy (+ keramika) syntaktická pěna (duté skleněné kuličky v matrici) ulita

12 Kompozity na bázi polymerů FRP matrice (s různými příměsmi) termoplasty (lze opakovaně tepelně zpracovávat) polyetylen, polystyren, PVC, PT termosety (nelze opakovaně tepelně zpracovávat, pevnější, použití za vyšších teplot) epoxidová, polyimidová, polyesterová, fenolická pryskyřice, bakelit (97) výztuha (s různými povlaky) dřevo, sklo (922), uhlík (964), kevlar / aramid (965), hliník, bor vlákna krátká, dlouhá (kontinuální) částice tkaniny (D), 2D, 3D Airbus A38 Aston Martin DBR9

13 Speciální kompozity uhlík-uhlík (RCC) vysoká tepelná odolnost uhlíková nanovláka (CNT) vylepšují vlastnosti matrice Bugatti Veyron BMC Columbia kg = $8

14 Výhody a nevýhody FRP + nízká hmotnost + vysoká tuhost a pevnost + směrově orientované vlastnosti + tepelná, chemická odolnost, ohnivzdornost + nižší tepelná roztažnost + elektrická a tepelná vodivost cena konstrukční návrh, výroba spoje, opracovatelnost, recyklace defektoskopie, opravy

15 Rozdělení FRP kompozitů částicové orientované neorientované vláknové jednovrstvé krátkovláknové orientované neorientované (rohože) dlouhovláknové jednosměrové dvousměrové (tkaniny) 3D tkaniny vícevrstvé lamináty hybridní lamináty sendviče

16 Jednosměrové kompozity vlákno = výztuha přenáší především tahové namáhání určuje podélný směr L (longitudinal) Ø cca 5-5 µm tvoří 4-6% objemu kompozitu T L matrice = pojivo přenáší především tlakové namáhání ve směru (směrech) kolmém (příčném) na vlákna T (transverse) drží vlákna (popř jednotlivé vrstvy) pohromadě rozkládá lokální namáhání do okolí

17 2 Výroba a použití kompozitních materiálů (desky, skořepiny, sendviče, trubky)

18 Produkty

19 Produkty

20 Produkty

21 Produkty Caesar's Palace Dome, Las Vegas Buckminster Fuller Geodesic Dome fontána ve Staples Center, LA Futuro houses, orig ve Finsku Schwerin, Německo

22 Vlákna vysokopevnostní vysokotuhostní (high-strength) (high-modulus) Typ vlákna sklo aramid HS - uhlík HM - uhlík hliník ocel Modul pružnosti v podélném směru fl [MPa] Modul pružnosti v příčném směru ft [MPa] Modul pružnosti ve smyku G flt [MPa] Pevnost v tahu S fl [MPa] Hustota ρ f [kg/m 3 ] Cena % 8 % 6 % 8 % 6 % < 3 % [USD/kg] $3 $25 $85 $6 $2 < $ index f = fiber Pozn díky nižší hustotě a váze konstrukce se výsledný poměr cen zkoriguje Dále nutno zohlednit sekundární úspory (palivo, seriová výroba, manipulace)

23 Volba vláken Konstrukční požadavky Volba vlákna Pevnost - Uhlík Tuhost - Uhlík Houževnatost - Aramid Creep - Uhlík Únava - Uhlík Nízká cena - sklo Prostup světla - sklo Korozivzdornost - Sklo Radioprůzračnost - D sklo Nejvyváženější mechanické vlastnosti - sklo

24 Matrice Druh pryskyřice epoxidové polyesterové fenolové polyimidové Modul pružnosti m [MPa] Poissonovo číslo ν m Modulu pružnosti ve smyku G m [MPa] Pevnost v tahu σ pm [MPa] Hustota ρ m [kg/m 3 ] Maximální teplota T max [ o C] index m = matrix

25 Matrice vlastnosti Ve vytvrzeném kompozitu jsou požadovány tyto vlastnosti: adhezivní pevnost (spojení matrice vlákna) teplotní odolnost únavová pevnost (dlouhodobé, cyklické zatížení) chemická odolnost odolnost proti vlhkosti

26 Volba matrice Konstrukční požadavky Volba pojiva Ohnivzdornost - Fenol Korozivzdornost - Bismaleid Teplotní odolnost - Fenol, Polyimid Prostup světla - Polyester Nízká cena - Polyester Houževnatost - poxid, termoplast Nejvyváženější mechanické vlastnosti - poxid

27 Matrice vlastnosti Většina namáhaných kompozitových struktur je v současnosti vyráběna z epoxidových pryskyřic Proč jsou epoxidy tak široce používané? dobrá adheze k vláknům nízké smrštění během vytvrzování dobrá chemická odolnost různé pevnostní a tuhostní charakteristiky creepová a únavová odolnost neobsahují styrén, nejsou toxické mohou být samozhášivé

28 Technologie výroby postup matrice + vlákna impregnace, prosycení umístění směsi (laminát) do formy (+ separační vrstvy, atp) vytvrzení (možno za zvýšené teploty, ozářením) (příčné propojení polymerových řetězců, exotermická reakce) demontáž z formy konečná úprava

29 Kontakní formování Váleček Výztuž + matrice Separátor + gel coat

30 Lisování protikus Výztuž + matrice Forma (negativ) Separátor + gel coat

31 Vakuování Těsnicí tmel Krycí fólie (plachetka) Atmosférický tlak Vakuum Plsť Laminát Strhávací síťka Separátor Vývěva + Jímač pryskyřice snaha o co největší % podíl vláken

32 Lamináty výroba prepregu ruční nebo strojové řezání (CAD) desky do lisu skořepiny do formy a do autokoávu

33 Lamináty pěnové jádro aplikace vláken, tekuté matrice, kompresoru, plachetky vakuová oprava letadla hotový výrobek

34 Navíjení vláken () Trn Vlákno, tkanina Topné těleso (polymerizace)

35 Navíjení vláken (2) Trn Sklo, kevlar Pryskyřice

36 Navíjení vláken (3)

37 Tváření profilů - pultruze Pryskyřice Skelná tkanina, vlákno Polymerizační pec

38 Vstřikování (termosety) Vyhřívaná forma Směs vláken + termosetická pryskyřice Protikus formy

39 Vstřikování (termoplasty) Topné těleso Směs vláken + termoplastická pryskyřice

40 3 Ortotropní materiál Principy určování materiálových vlastností

41 Materiály homogenní heterogenní anizotropní ortotropní kubický hexagonální izotropní periodicky se opakující struktura zdánlivě periodicky se opakující struktura

42 Ortotropní materiál orthos přímý, kolmý tropo otáčet, měnit v každém místě existují 3 na sebe kolmé roviny symetrie směry kolmé k těmto rovinám jsou tzv hlavní materiálové osy ozn většinou, 2, 3

43 Ortotropní materiál deformace ve směru zatížení různé deformace v příčných směrech F 3 F F 2

44 Ortotropní materiál deformace ve směru zatížení různé deformace v příčných směrech původní tvar zdeformovaný tvar l 3 l 3 l 2 l l 2 l

45 Ortotropní materiál l l l l l l = = = ε ε ε = = = = = = A F A F A F σ σ ε σ ε ε ν ε ε ν ε σ = = = = l A F l určení materiálových charakteristik (konstant) změříme opticky (pravítkem) změříme siloměrem (zvážíme) změříme elektronicky (tenzometry) + = modul pružnosti ν Poissonovo číslo (koeficient, poměr)

46 Ortotropní materiál určení materiálových charakteristik (konstant) pro určení konstant, ν 2 a ν 3 musí být těleso zatíženo ve směru osy analogicky se určí ostatní konstanty celkem tedy můžeme určit 9 různých materiálových konstant pro případ prostého tahu ve směrech, 2 a 3:, ν 2, ν 3, 2, ν 23, ν 2, 3, ν 3, ν 32

47 Optická metoda měření pracuje na principu korelace digitálního obrazu = porovnání dvou obrázků umožňuje měřit posunutí, natočení a deformace na povrchu tělesa náhodný nástřik těleso před deformací těleso po deformaci

48 Optická metoda měření zkoumaná oblast před deformací nalezená oblast a její tvar po deformaci detail středu tělesa před deformací detail středu tělesa po deformaci

49 4 Hookeův zákon = konstitutivní vztah pro materiály s různou strukturou

50 Hookeův zákon vztah mezi napětím a deformací předpokládáme homogenní materiál D (jedna složka napětí jedna složka deformace) = nebo τ = Gγ σ ε tah, tlak (ohyb) krut svázány jednou konstantou

51 Hookeův zákon (D) σ = ε σ = ε ε 3 = ν 3 ε l 3 = ν 3 ε l 3 F A 3 2 σ σ σ 2 3 = F A = = l 2 = ν 2 ε l 2 l = ε l = (σ / ) l ε 2 = ν 2 ε ε = σ /

52 Zatížení ve směru ε = σ / ε 2 = ν 2 ε ε 3 = ν 3 ε ε = ( / ) σ ε 2 = ν 2 ( / ) σ ε 3 = ν 3 ( / ) σ = / / / σ ν ν ε ε ε maticový zápis ε = ( / ) σ ε 2 = ( ν 2 / ) σ ε 3 = ( ν 3 / ) σ

53 + zatížení ve směru 2 = / / / / / / σ σ ν ν ν ν ε ε ε maticový zápis ε 2 = σ 2 / 2 ε = ν 2 ε 2 ε 3 = ν 23 ε 2 σ 2

54 + zatížení ve směru 3 = / / / / / / / / / σ σ σ ν ν ν ν ν ν ε ε ε maticový zápis ε 3 = σ 3 / 3 ε = ν 3 ε 3 ε 2 = ν 32 ε 3 σ 3

55 + smyková zatížení τ 3 τ 23 γ 2 = τ 2 / G 2 γ 23 = τ 23 / G 23 γ 3 = τ 3 / G 3 ε ε ε γ γ γ / ν2 / ν3 / = ν ν 2 / 23 / / ν ν 3 32 / / / / G 23 / G 3 τ 2 / G 2 σ σ σ τ τ τ maticový zápis

56 navíc platí: Hookeův zákon (3D) pro homogenní ortotropní materiál v souřadnicovém systému hlavních materiálových os = / / / / / / / / / / / / τ τ τ σ σ σ ν ν ν ν ν ν γ γ γ ε ε ε G G G ν 2 / 2 = ν 2 / ν 3 / 3 = ν 3 / ν 32 / 3 = ν 23 / 2

57 ε ε ε γ γ γ Hookeův zákon (3D) / ν2 / ν3 / = ν ν 2 / 23 / / ν ν 3 32 / / / / G 23 / G 3 / G 2 σ σ σ τ τ τ vektor deformace matice poddajnosti materiálu vektor napětí (vždy symetrická) ε = S σ nebo σ = C ε kde C = S je matice tuhosti materiálu (vždy symetrická)

58 Ortotropní materiál 3 roviny symetrie (2,23,3) 9 nezávislých materiálových konstant:, 2, 3, ν 2, ν 23, ν 3, G 2, G 23, G 3 C C C C = 2 3 C C C C C C C 44 C 55 C 66

59 Hexagonální materiál rovina symetrie a současně izotropie (23) 5 nezávislých materiálových konstant:, 2 = 3, ν 2 = ν 3, ν 32, G 2 = G 3 dopočítá se G 23 = 2 /2/(+ν 32 ) C = Φ jako izotropní materiál, proto se také ozn jako příčně izotropní materiál

60 Kubický materiál 3 roviny symetrie (2,23,3) 3 nezávislé materiálové konstanty: = = 2 = 3, ν = ν 2 = ν 23 = ν 3, G = G 2 = G 23 = G 3 C =

61 Izotropní materiál každá rovina je rovinou symetrie 2 nezávislé materiálové konstanty: = = 2 = 3, ν = ν 2 = ν 23 = ν 3 dopočítá se G = G 2 = G 23 = G 3 = /2/(+ν) C =

62 5 Jednosměrové kompozity Určení efektivních parametrů

63 Jednosměrové kompozity vlákno = výztuha přenáší především tahové namáhání určuje podélný směr L (longitudinal) Ø cca 5-5 µm tvoří 4-6% objemu kompozitu T L matrice = pojivo přenáší především tlakové namáhání ve směru (směrech) kolmém (příčném) na vlákna T (transverse) drží vlákna (popř jednotlivé vrstvy) pohromadě rozkládá lokální namáhání do okolí

64 Objemové podíly určení efektivních parametrů homogenizace materiálu z mikropohledu heterogenní z makropohledu homogenní A V Objemové podíly vláken a matrice: v f = V f / V = A f / A v m = V m / V = A m / A protože V f + V m = V T a také A f + A m = A T A m V m A f V f potom platí v f + v m =

65 Hmotnost hustota kompozitu hmotnost vláken m f = ρ f V f ρ V T T ρ m V m ρ f V f hmotnost matrice m m = ρ m V m hmotnost kompozitu m = m f + m m hustota kompozitu ρ = m / V = ρ f v f + ρ m v m

66 Jednosměrové kompozity deformace vyvolaná zatížením ve směru L předpokládáme, že deformace vláken a matrice je v podélném směru stejná! L l F l+ l F T A f L m f A m platí pro homogenní materiál s modulem L platí: l = Fl L A

67 Napětí v tahu ve vlákně a matrici σ = ε, σ = L f f L f Lm m ε Lm Tahová síla je dána vztahem F = A f σ + A L f m σ Lm Tahové napětí v kompozitu F σ L = = v f σ L f + vm σ Lm = + A Modul pružnosti ve směru vláken je ( v f f vm m ) ε L L L = v f f + L = ε σ v m m Jestliže je f >> m, pak je možno vztah zjednodušit Dostaneme = v L f f

68 Jednosměrové kompozity deformace vyvolaná zatížením ve směru T předpokládáme, že normálové napětí pro směr zatížení je ve vláknech i matrici stejné! L l F l+ l F L T l m m l f f platí pro homogenní materiál s modulem T platí: l = Fl T A

69 T m f T T σ σ σ = = Poměrné příčné prodloužení vlákna a matrice m T T m f T Tf σ ε σ ε = =, Změna délky ve směru T Tm m Tf f m f l l l l l ε ε + = + = Pro případ, že, pak f m >> m m T v = Poměrné prodloužení ve směru T T m m f f Tm m Tf f T v v v v l l σ ε ε ε + = + = = Příčný modul pružnosti T kompozitu je definován f m f m m m f f m m f T T T T v v v v + = + = = σ ε

70 6 Hookeův zákon v pootočeném souřadnicovém systému Transformace složek napětí a deformace Transformace matic tuhosti a poddajnosti

71 ε ε ε γ γ γ Hookeův zákon (3D) / ν2 / ν3 / = ν ν 2 / 23 / / ν ν 3 32 / / / / G 23 / G 3 / G 2 σ σ σ τ τ τ vektor deformace matice poddajnosti materiálu vektor napětí (vždy symetrická) ε = S σ nebo σ = C ε kde C = S je matice tuhosti materiálu (vždy symetrická)

72 Jednosměrové kompozity pro popis chování potřebujeme konstitutivní vztah, tj Hookeův zákon popis je někdy nutné provést vzhledem k souřadnicovému systému, který není totožný se směry hlavních materiálových os jednosměrové kompozity jsou často ve formě tenkých struktur desky, skořepiny jsou namáhané tahem v rovině a ohybem tento stav lze považovat za rovinnou napjatost (zanedbáváme např lokální tlak vyvolaný normálovou silou v místě jejího působiště)

73 Hookeův zákon (3D) ε ε ε γ γ γ / ν2 / ν3 / = ν ν 2 / 23 / / ν ν 3 32 / / / / G 23 / G 3 / G 2 σ σ σ τ τ τ rovinná napjatost: σ 33 = τ3 = τ 23 = Platí např pro tenká tělesa (desky) namáhané v rovině tahem, tlakem ohybem, krutem Nikoliv tlakem po tloušťce!!! To by způsobilo σ 33 <>

74 Hookeův zákon (RN) = / / / / / τ σ σ ν ν γ ε ε G = LT T L LT T L LT T TL L LT T L G τ σ σ ν ν γ ε ε / / / / / nebo σ T τ LT σ L ε = S σ σ = C ε nebo C = S

75 Transformace napětí (RN) stav napjatosti v bodě tělesa je dán 3 složkami napětí složky se pro různě natočené systémy mění lze zakreslit pomocí Mohrovy kružnice nezáleží na materiálu! σ y y τ xy x α σ x

76 Transformace napětí (RN) σ σ τ L T LT = cos sin sinα 2 2 α α cosα sin cos 2 2 α α sinα cosα 2sinα cosα σ 2sinα cosα σ 2 2 cos α sin α τ τ x y xy σ = T σ σ L 2α x y σ y σ L σ T σ x σ x α y τ LT τ xy T

77 Transformace deformace (RN) obdobně jako napětí ε ε γ L T LT = cos sin 2 2 α α 2sinα cosα sin cos 2 2 α α 2sinα cosα sinα cosα ε sinα cosα ε 2 2 cos α sin α γ x y xy ε = T ε ε

78 Transformace Hookeova zákona transformace napětí transformace deformace σ = T σ σ ε = T ε ε Hookeův zákon v ss hlavních materiálových os L,T σ = C ε (T σ σ ) = C (T ε ε ) T - σ (T σ σ ) = T - σ C (T ε ε ) Hookeův zákon v pootočeném ss x,y σ = (T - σ C T ε ) ε = C ε Matice tuhosti v pootočeném systému x,y C = T σ - C T ε

79 7 Mechanizmy porušení vláknových kompozitů Podmínky pevnosti = kriteria porušení

80 Mechanizmy porušení příčný řez jednosměrovým kompozitem pod mikroskopem detail jednosměrového kompozitu po vytržení vláken z matrice 8

81 Mechanizmy porušení (vláken) porušení vlákna porušování vláken (vláknové přemostění) porušování vláken (ztráta adheze) nestabilní ztráta adheze nestabilní porušení vláken 8

82 Mechanizmy porušení (matrice) porušení matrice ztráta adheze šíření trhliny zastaveno další šíření trhliny 82

83 Porušení tahem 83

84 Mechanizmy porušení (delaminace) 84

85 Podmínky pevnosti u izotropních materiálů (ocel) předpokládáme, že existuje jedna pevnost = jedna materiálová konstanta v případě jednoduchého namáhání jedna podmínka ve formě σ < σ D nebo σ /σ D < v případě obecné napjatosti jedna hypotéza = funkce (např Guest, Von Mises, ) f(σ) < σ D nebo f(σ, σ D ) <

86 Podmínky pevnosti u jednosměrových kompozitů existuje 5 konstant pevnosti pro základní typy namáhání vhledem k materiálovým osám (lze je nejsnáze změřit experimentálně) podélná tahová pevnost F Lt podélná tlaková pevnost F Lc příčná tahová pevnost F Tt příčná tlaková pevnost F Tc smyková pevnost F LT

87 Kritéria pevnosti Pro jednosměrové kompozity lze rozdělit: a) Neinteraktivní kritéria Kritérium maximálního napětí Kritérium maximální deformace více funkcí, každá pro jednu složku napětí a odpovídající pevnost b) Interaktivní kritéria Hillovo kritérium pevnosti Tsai-Hillovo kritérium pevnosti Hoffmanovo kritérium pevnosti Tsai-Wu kritérium pevnosti Puckovo kritérium pevnosti jedna nebo více funkcí, každá obecně více složek napětí a pevností: f i (σ L, σ T, τ LT, F Lt, F Lc, F Tt, F Tc, F LT, ) < atd

88 Kritérium maximálního napětí předpokládá, že k poruše dojde, pokud kterákoli ze složek napětí překročí dovolenou mez, tj F < σ < F Lc L Lt (porušení vláken) F < σ < F Tc T Tt (porušení matrice) F < τ < F LT LT LT (porušení matrice)

89 Kritérium maximálního napětí graficky lze bezpečnou oblast (oblast hodnot, kdy nedojde k porušení) vyjádřit v systému složek napětí jako kvádr se stěnami kolmými k osám řez bezpečnou oblastí v rovině τ LT =

90 Porovnání kriterií různě formulované podmínky (funkce) pevnosti jinak predikovaná nosnost materiálu pro obecné namáhání všechny mají stejné průsečíky s osami (experimentálně snadno měřitelné hodnoty) Max napětí Max deformace Tsai-Wu Puck

91 8 Analogie nosníkové teorie a CLT (izotropní případ) Analogie teorie desek a CLT (izotropní případ)

92 9 Lamináty = vrstevnaté kompozity CLT klasická laminátová teorie Vliv skládání vrstev na výsledné vlastnosti

93 Izotropní nosník x z h/2 h/2 u w = w α z u z u α = ) ( z z x w x u x u z κ ε ε + = = = 2 2 ) ( x w = α z z z κ ε κ ε ε σ + = + = = ) ( ) ( u posunutí ve směru x w posunutí ve směru z w (x) průhybová čára

94 Matematický model h l b OHYB TAH M R = /κ M N N l+ l N = σ = ε bh N = bhε κ M SUPRPOZIC TAH + OHYB = = M J 2, J bh = 3 κ 2 bh 3 N M = A ε D κ A bh D = bh = Tuhost v tahu 2 3 Tuhost v ohybu

95 Teorie desek N xy M y N y M xy M x N x N x M x M xy N y M y N xy všechny uvažované způsoby namáhání laminátové desky

96 Lamináty značení Orientace vrstev (úhel natočení od základního směru) [/45/-45/9] Symetrie [/9/] S = [/9///9/] Opakování vrstev [/9 3 /45] = [/9/9/9/45] Dvě vrstvy s opačnou orientací u sebe [/±45/] = [/45/-45/] Označení materiálu [ G / C /9 C /9 K ] Glass, Carbon, Kevlar

97 Lamináty příklady značení [ 4 ] [ 2 /9 2 ] L α x [45 2 /-45 2 ] [45/-45] S

98 CLT klasická laminátová teorie konstitutivní rovnice laminátové desky Tahová síla Tahová síla Smyková síla Ohybový moment Ohybový moment Ohybový moment N N N M M M x y xy x y xy A A A = B B B A A A B B B A A A B B B A = M B B B B D D D B B B D D D N B ε D κ B B B D D D ε ε γ κ κ κ x y xy x y xy Protažení Protažení Zkos Ohyb (křivost) Ohyb (křivost) Ohyb (křivost) matice A, B a D se vypočítají zvlášť pro každou vrstvu materiálu pomocí integrace přes tloušťku vrstvy příslušné matice C ve společném referenčním systému xy a poté se všechny příslušné matice sečtou

99 CLT klasická laminátová teorie konstitutivní rovnice laminátové desky (zjednodušený zápis) A = M B N B ε D κ N vektor sil M vektor momentů ε vektor deformace (střední roviny) κ vektor křivosti (střední roviny) A matice tahové tuhosti B matice vazbové tuhosti D matice ohybové tuhosti

100 Symetrické lamináty liminují vazbu mezi tahem a ohybem, tahem a krutem Každé vrstvě nad odpovídá stejná pod střední plochou tj B = A A A 2 6 A A A A A A D D D 2 6 D D D D6 D 26 D66

101 Vyvážené lamináty liminuje vazbu mezi normálovými silami a smykem Každé vrstvě odpovídá stejně tlustá s opačnou orientací tj A 6 = A 26 = A A B B B A A 2 22 B B B A B B B B B B D D D B B B D D D B B B D D D

102 Vyvážené symetrické lamináty Kombinace výše uvedených D D D D D D D D D A A A A A rovina symetrie

103 Symetrické křížené lamináty Jsou symetrické a vyvážené Vrstvy jsou kladeny pouze pod úhly a 9 Májí vlastnosti jako čistě ortotropní materiál A A 2 A A 2 22 A 66 D D 2 D D 2 22 D 66

104 Literatura Laš V: Mechanika kompozitních materiálů,skripta ZČU, Plzeň, 24 The Free Dictionary, wwwtfdcom, Farlex Inc, 27 Gay D: Reinforced Plastics Matériaux composites, Hermes, Paris, 997

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?

Více

Mechanika kompozitů pro design

Mechanika kompozitů pro design Mechanika kompozitů pro design KM-DMK 26 25 Robert Zemčík 2 Historie Základní pojmy a vlastnosti Klasifikace kompozitních materiálů 3 Kompozitní materiál skládá se ze dvou nebo více různých složek každá

Více

ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY

ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY Důvody a cíle pro statické zesilování a zajištění konstrukcí - zvýšení užitného zatížení - oslabení konstrukce - konstrukční chyba - prodloužení

Více

Vláknové kompozitní materiály, jejich vlastnosti a výroba

Vláknové kompozitní materiály, jejich vlastnosti a výroba Kap. 1 Vláknové kompozitní materiály, jejich vlastnosti a výroba Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVUT v Praze 26. října 2007 1

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODOVÁNÍ V MCHANIC MCHANIKA KOMPOZINÍCH MARIÁŮ Přednáška č. 5 Prof. Ing. Vladislav aš, CSc. Základní pojmy pružnosti Vlivem vnějších sil se těleso deformuje a vzniká v něm napětí dn Normálové napětí

Více

ÚVOD DO MODELOVÁN V MECHANICE

ÚVOD DO MODELOVÁN V MECHANICE ÚVOD DO MODELOVÁN V MECHANICE MECHANIKA KOMPOZITNÍCH MATERIÁLŮ - 1 Přednáška č. 6 Prof. Ing. Vladislav Laš, CSc. 1 Kompozitní materiál skládá se ze dvou nebo více různých složek každá složka má jiné vlastnosti

Více

Okruhy otázek ke SZZ navazujícího magisterského studijního programu Strojní inženýrství, obor Konstrukce a výroba součástí z plastů a kompozitů

Okruhy otázek ke SZZ navazujícího magisterského studijního programu Strojní inženýrství, obor Konstrukce a výroba součástí z plastů a kompozitů Materiály 1. Molekulární struktura polymerů, polarita vazeb, ohebnost řetězců. 2. Krystalizace a nadmolekulární struktura polymerů, vliv na vlastnosti. 3. Molární hmotnost, její distribuce a vliv na vlastnosti.

Více

Okruhy otázek ke zkoušce

Okruhy otázek ke zkoušce Kompozity A farao pokračoval: "Hle, lidu země je teď mnoho, a vy chcete, aby nechali svých robot? Onoho dne přikázal farao poháněčům lidu a dozorcům: Propříště nebudete vydávat lidu slámu k výrobě cihel

Více

Kritéria porušení laminy

Kritéria porušení laminy Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém

Více

Kap. 3 Makromechanika kompozitních materiálů

Kap. 3 Makromechanika kompozitních materiálů Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

PMC - kompozity s plastovou matricí

PMC - kompozity s plastovou matricí PMC - kompozity s plastovou matricí Rozdělení PMC PMC částicové vláknové Matrice elastomer Matrice elastomer Matrice termoplast Matrice termoplast Matrice reaktoplast Matrice reaktoplast Částice v polymeru

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

Pevnost kompozitů obecné zatížení

Pevnost kompozitů obecné zatížení Pevnost kompozitů obecné zatížení Osnova Příčná pevnost v tahu Pevnost v tahu pod nenulovým úhlem proti vláknům Podélná pevnost v tlaku Příčná pevnost v tlaku Pevnost vláknových kompozitů - obecně Základní

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

Optimalizace vláknového kompozitu

Optimalizace vláknového kompozitu Optimalizace vláknového kompozitu Bc. Jan Toman Vedoucí práce: doc. Ing. Tomáš Mareš, Ph.D. Abstrakt Optimalizace trubkového profilu z vláknového kompozitu při využití Timošenkovy hypotézy. Hledání optimálního

Více

Nauka o materiálu. Přednáška č.14 Kompozity

Nauka o materiálu. Přednáška č.14 Kompozity Nauka o materiálu Úvod Technické materiály, které jsou určeny k dalšímu technologickému zpracování zahrnují širokou škálu možného chemického složení, různou vnitřní stavbu a různé vlastnosti. Je nutno

Více

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012 Prohloubení odborné spolupráce a propojení ústavů lékařské biofyziky na lékařských fakultách v České republice CZ.1.07/2.4.00/17.0058 Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či

Více

Vzhled Pryskyřice má formu zelené průsvitné folie síly 0,1 0,7 mm (dle přání zákazníka), pružné a tvárné při pokojové či zvýšené teplotě.

Vzhled Pryskyřice má formu zelené průsvitné folie síly 0,1 0,7 mm (dle přání zákazníka), pružné a tvárné při pokojové či zvýšené teplotě. Použití Epoxidová pryskyřice ve formě fólie určená pro patentovanou Letoxit Foil Technologii (LF Technology), což je technologie suché laminace, která je zvláště vhodná pro výrobu laminátových struktur

Více

Vzhled Pryskyřice má formu nažloutlé průhledné folie síly 0,1 0,7 mm (dle přání zákazníka), pružné a tvárné při pokojové či zvýšené teplotě.

Vzhled Pryskyřice má formu nažloutlé průhledné folie síly 0,1 0,7 mm (dle přání zákazníka), pružné a tvárné při pokojové či zvýšené teplotě. Použití Epoxidová pryskyřice ve formě fólie určená pro patentovanou Letoxit Foil Technologii (LF Technology), což je technologie suché laminace, která je zvláště vhodná pro výrobu laminátových struktur

Více

18MTY 1. Ing. Jaroslav Valach, Ph.D.

18MTY 1. Ing. Jaroslav Valach, Ph.D. 18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce

Více

PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU

PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU : Ing.Bohuslav Tikal CSc, ZČU v Plzni, tikal@civ.zcu.cz Ing.František Valeš CSc, ÚT AVČR, v.v.i., vales@cdm.cas.cz Anotace Výpočtová simulace slouží k

Více

Kompozitní materiály

Kompozitní materiály Kompozitní materiály Základy materiálového inženýrství Katedra materiálu Strojní fakulta Technická univerzita v Liberci Pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Definice kompozitu

Více

Druh Jednosložková epoxidová pryskyřice s obsahem vytvrzovacího systému se zvýšenou lepivostí

Druh Jednosložková epoxidová pryskyřice s obsahem vytvrzovacího systému se zvýšenou lepivostí Použití Epoxidová pryskyřice ve formě fólie určená pro patentovanou Letoxit Foil Technologii (LF Technology), což je technologie suché laminace, která je zvláště vhodná pro výrobu laminátových struktur

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

Využití kompozitních materiálů v leteckém průmyslu

Využití kompozitních materiálů v leteckém průmyslu Využití kompozitních materiálů v leteckém průmyslu Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky Využití kompozitních materiálů v leteckém průmyslu

Více

TRIVAPUL pultrudované profily

TRIVAPUL pultrudované profily TRIVAPUL pultrudované profily Výroba pultrudovaných profilů z kompozitních materiálů firmou Trival se datuje od roku 1965. V tom roce zde byl vyroben první stroj pro pultruze a byla zahájena výroba profilů

Více

Porušování kompozitních tlakových

Porušování kompozitních tlakových Porušování kompozitních tlakových nádob, nádrží a potrubí Ing.Jaroslav Padovec, CSc Poradenství Pevnost kompozitních a plastových konstrukcí, Šumberova 355/48, CZ, 162 00, Praha 6 jaroslavpadovec@seznam.cz

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

ČSN EN ISO 472 ČSN EN ISO

ČSN EN ISO 472 ČSN EN ISO Související normy: ČSN EN ISO 3834-1 až 6 - Požadavky na jakost při tavném svařování kovových materiálů, tj. s aplikací na plasty. (Využití prvků kvality pro oblast svařování a lepení plastů) ČSN EN ISO

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak. 00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní

Více

TÉMATICKÉ OKRUHY KE SZZ 2013/14 ING PLASTIKÁŘSKÁ TECHNOLOGIE

TÉMATICKÉ OKRUHY KE SZZ 2013/14 ING PLASTIKÁŘSKÁ TECHNOLOGIE TÉMATICKÉ OKRUHY KE SZZ 2013/14 PLASTIKÁŘSKÁ TECHNOLOGIE 1. Rovnice toku a třídění z reologického hlediska podle průběhu tokové křivky. 2. Aktivační energie viskózního toku Arteniova rovnice. 3. Kapilární

Více

Experimentální zjišťování charakteristik kompozitových materiálů a dílů

Experimentální zjišťování charakteristik kompozitových materiálů a dílů Experimentální zjišťování charakteristik kompozitových materiálů a dílů Dr. Ing. Roman Růžek Výzkumný a zkušební letecký ústav, a.s. Praha 9 Letňany ruzek@vzlu.cz Základní rozdělení zkoušek pro ověření

Více

Vlastnosti polymerních dlouhovláknových kompozitů s různými výztužemi

Vlastnosti polymerních dlouhovláknových kompozitů s různými výztužemi Vlastnosti polymerních dlouhovláknových kompozitů s různými výztužemi Petr Kos Vedoucí práce: Ing. Zdeňka, Jeníková, Ph.D. Abstrakt Cílem práce je provést stručný úvod do problematiky kompozitních materiálů

Více

vytvrzení dochází v poslední části (zóně) výrobního zařízení. Profil opouštějící výrobní zařízení je zcela tvarově stálý a pevný.

vytvrzení dochází v poslední části (zóně) výrobního zařízení. Profil opouštějící výrobní zařízení je zcela tvarově stálý a pevný. Kompozity Jako kompozity se označují materiály, které jsou složeny ze dvou nebo více složek, které se výrazně liší fyzikálními a chemickými vlastnostmi. Spojením těchto složek vznikne zcela nový materiál

Více

LETECKÉ MATERIÁLY. Úvod do předmětu

LETECKÉ MATERIÁLY. Úvod do předmětu LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

Příklady kompozitních materiálů. Otomanský luk Pykrete Židle T3.1

Příklady kompozitních materiálů. Otomanský luk Pykrete Židle T3.1 Kompozity A farao pokračoval: "Hle, lidu země je teď mnoho, a vy chcete, aby nechali svých robot? Onoho dne přikázal farao poháněčům lidu a dozorcům: Propříště nebudete vydávat lidu slámu k výrobě cihel

Více

Havel composites s.r.o. Svésedlice , Přáslavice Česká Republika. tel. (+420) fax (+420)

Havel composites s.r.o. Svésedlice , Přáslavice Česká Republika. tel. (+420) fax (+420) Havel composites s.r.o. Svésedlice 67 783 54, Přáslavice Česká Republika tel. (+420) 585 129 010 fax (+420) 585 129 011 www.havel-composites.com Tkaniny ze skelné příze typu E. Příze má úpravu (sizing)

Více

Únosnost kompozitních konstrukcí

Únosnost kompozitních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK)

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) Ing. Jan Závitkovský e-mail: jan.zavitkovsky@centrum.cz

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

1 Počítačový program SPRINGBACK

1 Počítačový program SPRINGBACK 1 Počítačový program SPRINGBACK V programu MATLAB byl napsán kód pro výpočet zpětného odpružení kompozitových desek s jednou nebo dvěma křivostmi. Tento kód byl následně přepsán do jazyku JAVA, ve kterém

Více

Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence)

Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence) Pružnost Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence) R. Hook: ut tensio, sic vis (1676) 1 2 3 Pružnost 1) Modul pružnosti 2) Vazby mezi atomy

Více

Adhezní síly v kompozitech

Adhezní síly v kompozitech Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Elektrostatické zvlákňování: Výroba polymerních nanovláken a jejich využití v kompozitních materiálechl

Elektrostatické zvlákňování: Výroba polymerních nanovláken a jejich využití v kompozitních materiálechl Elektrostatické zvlákňování: Výroba polymerních nanovláken a jejich využití v kompozitních materiálechl Seminář: KOMPOZITY ŠIROKÝ POJEM, Ústav teoretické a aplikované mechaniky AV ČR Eva Košťáková, Pavel

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

Kompozitní materiály. přehled

Kompozitní materiály. přehled Kompozitní materiály přehled Porovnání vlastností Porovnání vlastností (2) dřevo nemá konkurenci jako lehká tuhá konstrukce Porovnání vlastností (3) dobře tlumí slitiny Mg Cu a vlákny zpevněné plasty Definice

Více

Kompozitní materiály definice a rozdělení

Kompozitní materiály definice a rozdělení Kompozitní materiály definice a rozdělení Technická univerzita v Liberci Doc. Ing. Karel Daďourek 2008 Rozdělení materiálů Požadavky na technické materiály Struktura technických materiálů Technické materiály

Více

Poskytujeme služby mechanické konstrukce, zejména konstrukci plastů, forem a přípravků.

Poskytujeme služby mechanické konstrukce, zejména konstrukci plastů, forem a přípravků. PORTFOLIO SLUŽEB Poskytujeme služby mechanické konstrukce, zejména konstrukci plastů, forem a přípravků. Využíváme nejmodernějších technologií pro výrobu kovových a vysokopevnostních kompozitních součástek.

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Japonsko, Kajima Corp., PVA-ECC (Engineered Cementitious Composites)ohybová zkouška

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Japonsko, Kajima Corp., PVA-ECC (Engineered Cementitious Composites)ohybová zkouška KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE KOMPOZITNÍ MATERIÁLY Japonsko, Kajima Corp., PVA-ECC (Engineered Cementitious Composites)ohybová zkouška Obsah Definice kompozitních materiálů Synergické působení

Více

MMC kompozity s kovovou matricí

MMC kompozity s kovovou matricí MMC kompozity s kovovou matricí Přednosti MMC proti kovům Vyšší specifická pevnost (ne absolutní) Vyšší specifická tuhost (ne absolutní) Lepší únavové vlastnosti Lepší vlastnosti při vysokých teplotách

Více

Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla

Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla Nauka o materiálu Přednáška č.12 Keramické materiály a anorganická nekovová skla Úvod Keramika a nekovová skla jsou ve srovnání s kovy velmi křehké. Jejich pevnost v tahu je nízká a finálnímu lomu nepředchází

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

1. Úvod do pružnosti a pevnosti

1. Úvod do pružnosti a pevnosti 1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků

Více

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

Od roku 2016 je firma Střechy 92, s.r.o. dodavatelem vrstveného dřeva Ultralam pro Českou republiku.

Od roku 2016 je firma Střechy 92, s.r.o. dodavatelem vrstveného dřeva Ultralam pro Českou republiku. Ultralam je obchodní značka výrobce pro konstrukční materiál vrstvené dřevo. (Anglicky se tento materiál nazývá LVL laminated veneer lumber, německy FSH Furnierschichtholz). Vrstvené dřevo Ultralam svými

Více

Plasty v automobilovém průmyslu

Plasty v automobilovém průmyslu Plasty v automobilovém průmyslu Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Iveta Konvičná Dostupné z Metodického portálu www.rvp.cz; ISSN 1802-4785, financovaného z ESF a státního

Více

BAKALÁŘSKÁ PRÁCE 2016 Jakub NOVÁK

BAKALÁŘSKÁ PRÁCE 2016 Jakub NOVÁK ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky, biomechaniky a mechatroniky BAKALÁŘSKÁ PRÁCE Napěťová a deformační analýza lepených konstrukcí 216 Jakub NOVÁK Jméno autora: Název

Více

Katedra materiálu.

Katedra materiálu. Katedra materiálu Vedoucí katedry: prof. Ing. Petr Louda, CSc. Zástupce vedoucího katedry: doc. Ing. Dora Kroisová, Ph.D. Tajemnice katedry: Ing. Daniela Odehnalová http://www.kmt.tul.cz/ EF TUL, Gaudeamus

Více

KARBONOVÉ PROFILY A PŘÍSLUŠENSTVÍ

KARBONOVÉ PROFILY A PŘÍSLUŠENSTVÍ KARBONOVÉ PROFILY A PŘÍSLUŠENSTVÍ Charakteristika Systém CarboSix je založen na strukturovaných modulárních profilech vyrobených z karbonových vláknových kompozitů za použití technologie pultruzního tažení.

Více

Příklady použití kompozitních materiálů

Příklady použití kompozitních materiálů Příklady použití kompozitních materiálů Podpěrný nosník AVCO Systems Staré řešení vlevo nosník 20 x 20 mm, tl 3 mm, plocha 374 mm 2, AL slitina, váha 1,05 kg/m Nové řešení vpravo dole Al + 50 % B vláken

Více

Přednáška 08. Obecná trojosá napjatost

Přednáška 08. Obecná trojosá napjatost Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace

Více

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá

Více

EXPERIMENTÁLNÍ MECHANIKA 2

EXPERIMENTÁLNÍ MECHANIKA 2 EXPERIMENTÁLNÍ MECHANIKA 2 2. přednáška Jan Krystek 28. února 2018 EXPERIMENTÁLNÍ MECHANIKA Experiment slouží k tomu, abychom pomocí experimentální metody vyšetřili systém veličin nutných k řešení problému.

Více

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1 Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické

Více

Zkoušení kompozitních materiálů

Zkoušení kompozitních materiálů Zkoušení kompozitních materiálů Ivan Jeřábek Odbor letadel FS ČVUT v Praze 1 Zkoušen ení kompozitních materiálů Zkoušky materiálových charakteristik Zkouška kompozitních konstrukcí 2 Zkoušen ení kompozitních

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ ÚSTAV MECHANIKY, BIOMECHANIKY A MECHATRONIKY. Odbor pružnosti a pevnosti.

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ ÚSTAV MECHANIKY, BIOMECHANIKY A MECHATRONIKY. Odbor pružnosti a pevnosti. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ ÚSTAV MECHANIKY, BIOMECHANIKY A MECHATRONIKY Odbor pružnosti a pevnosti Diplomová práce Posouzení výpočtových metod pro návrh kompozitních elementů

Více

Operační program Vzdělávání pro konkurenceschopnost (OPVK)

Operační program Vzdělávání pro konkurenceschopnost (OPVK) 1 Operační program Vzdělávání pro konkurenceschopnost (OPVK) Značky a jednotky vybraných důležitých fyzikálních veličin doporučené v projektu OPVKIVK pro oblast konstruování a výběr nejdůležitějších pravidel

Více

Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy vláken Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy různých vláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

České vysoké učení technické v Praze Fakulta stavební - zkušební laboratoř Thákurova 7, 166 29 Praha 6 Pracoviště zkušební laboratoře:

České vysoké učení technické v Praze Fakulta stavební - zkušební laboratoř Thákurova 7, 166 29 Praha 6 Pracoviště zkušební laboratoře: Pracoviště zkušební laboratoře: 1. OL 123 Odborná laboratoř stavebních materiálů Thákurova 7, 166 29 Praha 6 2. OL 124 Odborná laboratoř konstrukcí pozemních staveb Thákurova 7, 166 29 Praha 6 3. OL 132

Více

Zkoušení kompozitních materiálů

Zkoušení kompozitních materiálů Ivan Jeřábek Ústav letadlové techniky FS ČVUT v Praze 1 Zkoušky materiálových charakteristik Zkouška kompozitních konstrukcí 2 Zkoušen ení kompozitních materiálů Definice zkoušky definice vstupu a výstupu:

Více

Základy letadlové techniky Ivan Jeřábek

Základy letadlové techniky Ivan Jeřábek Základy letadlové techniky Ivan Jeřábek Ústav letadlové techniky FS ČVUT Základy letadlové techniky Základy letadlové techniky - Konstrukce Zatížení letounu, násobek, letová obálka, provozní a početní

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KOMPOZITNÍ MATERIÁLY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Kapitola vstupních parametrů

Kapitola vstupních parametrů Předepjatý šroubový spoj i ii? 1.0 1.1 1.2 1.3 1.4 1.5 Výpočet bez chyb. Informace o projektu Zatížení spoje, základní parametry výpočtu. Jednotky výpočtu Režim zatížení, typ spoje Provedení šroubového

Více

Letoxit PR 220 Verze: 18. ledna 2012 Letoxit EM 315, EM 316, EM 317

Letoxit PR 220 Verze: 18. ledna 2012 Letoxit EM 315, EM 316, EM 317 Popis Laminační směsi se zvýšenou houževnatostí bez plnících látek, určené pro laminování materiálů ze skleněných, uhlíkových nebo kevlarových vláken. Pryskyřice Letoxit PR 220 je vyrobena na bázi modifikované

Více

LOGO. Struktura a vlastnosti pevných látek

LOGO. Struktura a vlastnosti pevných látek Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE PLASTY VZTAH MEZI STRUKTUROU A VLASTNOSTMI Obsah Definice Rozdělení plastů Vztah mezi strukturou a vlastnostmi chemické složení a tvar molekulárních jednotek

Více

Skořepinové konstrukce. tloušťka stěny h a, b, c

Skořepinové konstrukce. tloušťka stěny h a, b, c Skořepinové konstrukce skořepina střední plocha a b tloušťka stěny h a, b, c c Různorodé technické aplikace skořepinových konstrukcí Mezní stavy skořepinových konstrukcí Ztráta stability zhroucení konstrukce

Více

Tříbodový závěs traktoru z nekovového materiálu

Tříbodový závěs traktoru z nekovového materiálu Technická fakulta ČZU Praha Autor: Karel Sobotka Semestr: letní 2009 Tříbodový závěs traktoru z nekovového materiálu Úkol Úkolem je vymodelovat v programu Autocad tříbodový závěs traktoru a zpočítat jeho

Více

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ

Více

PŘÍKLADY 1. P1.4 Určete hmotnostní a objemovou nasákavost lehkého kameniva z příkladu P1.2 21,3 %, 18,8 %

PŘÍKLADY 1. P1.4 Určete hmotnostní a objemovou nasákavost lehkého kameniva z příkladu P1.2 21,3 %, 18,8 % Objemová hmotnost, hydrostatické váhy PŘÍKLADY 1 P1.1 V odměrném válci je předloženo 1000 cm 3 vody. Po přisypání 500 g nasákavého lehčeného kameniva bylo kamenivo přitíženo hliníkovým závažím o hmotnosti

Více

Construction. Lepidlo na bázi epoxidové pryskyřice. Popis výrobku. Testy. Technický list Vydání 02/2011 Identifikační č.: 02 04 02 03 001 0 000039

Construction. Lepidlo na bázi epoxidové pryskyřice. Popis výrobku. Testy. Technický list Vydání 02/2011 Identifikační č.: 02 04 02 03 001 0 000039 Technický list Vydání 02/2011 Identifikační č.: 02 04 02 03 001 0 000039 Lepidlo na bázi epoxidové pryskyřice Popis výrobku je tixotropní 2-komponentní konstrukční lepidlo a opravná malta na bázi epoxidové

Více

COMPOSITE COMPOSITE SYSTEMS SYSTEMS. Kompozitní materiály pro stavebnictví

COMPOSITE COMPOSITE SYSTEMS SYSTEMS. Kompozitní materiály pro stavebnictví COMPOSITE COMPOSITE SYSTEMS SYSTEMS Kompozitní materiály pro stavebnictví Kompozitní materiály pro stavebnictví DRUHY KOMPOZITU Kompozitem je každý materiál, který se skládá z minimálně dvou hlavních komponentů

Více

Matrice. Inženýrský pohled. Josef Křena Letov letecká výroba, s.r.o. Praha 9

Matrice. Inženýrský pohled. Josef Křena Letov letecká výroba, s.r.o. Praha 9 Matrice Inženýrský pohled Josef Křena Letov letecká výroba, s.r.o. Praha 9 Termosety pro náročnější aplikace Epoxi - použití do 121 C, v různé formě, aditiva termoplastu nebo reaktivní pryže k omezení

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní

Více

Pevnost v tahu vláknový kompozit. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Pevnost v tahu vláknový kompozit. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Pevnost v tahu vláknový kompozit Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Předpoklady výpočtu Vycházíme z uspořádání Voigtova modelu Všechna vlákna mají

Více