1. ročník, 2011/ 2012 Medzinárodný korešpondenčný seminár iks

Rozměr: px
Začít zobrazení ze stránky:

Download "1. ročník, 2011/ 2012 Medzinárodný korešpondenčný seminár iks"

Transkript

1 1. roční, 2011/ 2012 Medzinárodný orešpondenčný seminár iks Řešení 5. série Úloha5. Vřaděje N žároveočíslovanýchpostupně 1až N.Kroem rozumímepřepnutí třížárove,jejichžčísla a, b, csplňují a + c = 2b.Určetevšechna N,proněžlzeonečnou posloupností roů všechny žárovy zhasnout nezávisle na jejich počátečním stavu. Řešení. oážeme,žepodmínana NzezadáníjeevivalentnísN 8.Hranatýmizávorami budeme v celém řešení značit roy. Nejprve inducí doážeme, že pro N 8 je již podmína ze zadání splněna. Jistě nám tomu bude stačit, dyž uážeme, že za této podmíny umíme pomocí nějaé posloupnosti roů změnit stav libovolné žárovy a stavy ostatních žárove přitom nezměnit. Pomocíroů [1,4,7],[4,5,6],[5,6,7]lzezměnitstav(jen)žárovy 1,stejnětapomocí roů [2,5,8],[5,6,7],[6,7,8]změnímestavžárovy 2.Předpoládejmenyní,žeumímezměnit stav žárove n a n+1, uážeme, že umíme změnit stav žárovy n+2(samozřejmě za předpoladu n+2 N).Toprovedemeta,žezměnímestavžárovám nan+1(cožumímedlepředpoladu) anásledněroem [n,n + 1,n + 2]těmtodvěmastavvrátímeazměnímestav n + 2.Tímje doázáno,žepro N 8umímezměnitstavteréolivžárovy. Nyníuážeme,žepro N < 8nejsmeschopnizhasnoutvšechnyžárovynapř.poudjena začátu rozsvícena pouze žárova 2(případ N = 1 je triviální). Rozdělme žárovy do tří supin Ž 0,Ž1,Ž2podlejejichzbytupodělenítřemi.Snadnozjistíme,žeaždýrobuďpřepnejednu žárovuvaždésupině,nebotřižárovyvjednésupině pro N < 8jeovšemjediným taovýmroem [1,4,7].Stavyžároveze Ž0a Ž2lzetedyměnitjenpomocítahů,terémění stavjednéžárovyvaždésupině,tímpádemaždázměnastavunějaéžárovyvž0nutně znamenáizměnustavujednéžárovyvž2anaopa.mají-litedynazačátupočtysvítících žárovevž0a Ž2různouparitu(cožjenapř.dyžjerozsvícenapouzežárova 2),budoujimít i po libovolné posloupnosti roů, nelze tedy dosáhnout zhasnutí všech žárove. Poznámy opravujícího. Všichni, do úlohu poslali, dostali plný počet bodů. Jen jsme si mysleli, že úlohu pošle více řešitelů, protože nám přišla spíše lehčí. ošlá řešení se mi dost líbila, protože důazové postupy byly vsutu origiánální žádná dvěřešenínebylastejná. (lexander Olin Slávi) ÚlohaN5. oažte,žeprovšechna n N, n > 1platí n 2 n Poznáma:patrovémocninyvyhodnocujemeshora,tj. a bc = a (bc). Řešení. Nejprve si doážeme pomocné lemma: 2 n 1 Lemma. Propřirozenéčíslo > 1existujepřirozenéčíslo r < snásledujícívlastností:pro libovolnápřirozenéčísla x,y splňujícínavíc r x yplatí 2 x 2 y. ůaz. Podívejmesenaposloupnost z n = 2 n mod.jejíhodnotynabývajípouze 0,1,2,..., 1anavícjemožnénatutoposloupnostnahlížetjaonaposloupnostdanoureurentním vztahem z n = 2z n 1 mod pro n 1.Poudsemeziprvy z 0,z 1,...,z 1 tétoposloupnosti vysytujenějaánula,všechnyprvyzaníjsouužnulové,stačítedyzvolit r = 1abudeplatit r 2 x prolibovolné x,tedyir 2 x 2 y. Poud se mezi prvními hodnotami nula nevysytuje, nějaá hodnota se musí objevit dvarát.nechťtedy z i = z j,pro i < j <.íytomu,žeposloupnost z nsplňujereurentní předpis, ta z i+1 = z j+1, z i+2 = z j+2,..., z i+n = z j+n Zvolme r = j i.potom z n = z n+r = z n+cr prolibovolné n iacelé c 0.Kdyždostaneme přirozenáčísla x,y splňující r x y,označíme njaomenšízx,yatodruhéznichbudeme považovatza n+cr.protože i <,ta n iatedy z x = z y.ztohojižplyne,že 2 x 2 y.. 1

2 Mezinárodní orespondenční seminář iks 5. série nynísevrátímenašíúloze.označme a n = 2. n Inducípodle ndoážeme,žepropřirozenéčíslo nsplňující n > 1platí n a n 1 anavícpro libovolné přirozené n platí a n a n 1. Proprvníindučníro n = 2snadnospočítáme a 2 a 1 = 2,cožjedělitelnéjajedničou, tadvojou,an = 2 2 = a 1. Nyní předpoládejme, že tvrzení platí pro n a doažme ho pro n + 1. Nejprve ověříme nerovnost, n+1 2 n 2 a n+1. Pro = 1platítvrzenízřejmě.Zvolmesplňující 1 < n.podlelemmatuexistuje r < taové,že 2 x 2 y dyoli x,y ar x y.protože r < n+1platí r n.využijeme indučnípředpolad r a n a n 1.áleplatí n a n 1 < a n,tedypředpoladylemmatujsou splněnypro x = a n 1, y = a n.tedy 2 an 2 a n 1. Poznámy opravujícího. Narozdíl od vzorového řešení jste často používali ulerovu funci ϕ, terámátuvlastnost,že 2 ϕ(a) 1 (mod a),avšatovásdonutilorozebratčíslo nasoučin lichého čísla a mocniny dvojy. Všech osm došlých řešení se ubíralo správným směrem, avša jen polovina byla zcela v pořádu. (Mire Olšá) Úloha5. Posloupnost {a n} n=1 jetvořenapouzepřirozenýmičísly,přičemžaždéznichalespoňjednouobsahuje.navícexistujereálnéčíslo > 0taové,žedyoliv m n,pa 1 an am < <. n m Uažte,žeproaždé n Nplatí a n n < Řešení(podleŠtěpánaŠimsy). Nejprvesiuvědomíme,žepročísla a l, a psplňující a l a p = 1 platí l p <.Tedyvzdálenost 1 dvoučíselvposloupnostilišícíchseojedničujemenšínež. Nejprvedoážeme a n n < Prosporpředpoládejme,žeexistuje ntaové,že a n n Vezměmenejmenšíčíslo, terénenímezičísly a 1,a 2,...,a n 1.Protožejenědevnašíposloupnosti,označímesiho a z. Protožejetěchtočísel n 1an<a n,platí a z n < a n,aprotožejeažzačíslem n 1,máme z n. Vezmemečíslo a ytaové,že a y a na y z jeminimální.(tedynejbližsíčísloposloupnosti veléaspoň a n).zezadánímáme a y a z y z <, tedy y z > ay az = ay az an n > n n = 1 2. Tedymeziprvy a i našíposloupnosti,de i z 1 2,z N,neníčísloveléaspoň a n. To je ale aspoň čísel. Vezměme největší číslo před těmito prvy posloupnosti. To musí být alespoň a n.čísloojednavětšímusíbýttedyažzatoutoposloupností,tedyjejichvzdálenost jevětšínež.tojesporaa n n < provšechna n. 2 1 Vzálenostíčísel x, ymyslímečíslo x y.

3 1. roční, 2011/ 2012 Medzinárodný orešpondenčný seminár iks Našeposloupnostjeprostáana,tedyexistujeněcojao inverzní posloupnost b ntaová že b an = n.protožeposloupnost b nsplňujestejnépodmínyjao a n,platí b m m < pro všechna m.poudpoložíme a n = m,dostaneme n a n < provšechna n. elovětedydostáváme a n n < 1 2 2,cožjsemchtělidoázat. (Michael Majl ílý) Úloha G5. Trojúhelní splňující je vepsán do ružnice ω. Tečny vedené bodem eružniciopsanéstředůmjehostransejídotýajívbodech,.uažte,žepříma,příma atečnaωvedenábodem procházejíjednímbodem. Řešení. Úlohu lze řešit mnoha způsoby. My uvedeme jeden standardní, jeden triový a nastínímejeden dospělý. Standardnířešení. Označme ffeuerbachovuružnici 2 trojúhelnía a Fjejístřed.Jeliož, jsoutečnyf,je F = F = 90,tažebody, lzedefinovatjao průsečíy fsružnicínadprůměrem F,terouoznačíme ω.příma jepachordálou f a ω. Označme l tečnu e ružnici opsané trojúhelníu vedenou bodem a P její průsečí s přímou (ten existuje, neboť ). udeme hotovi, uážeme-li, že P má stejnou mocnostfjaoω. l ω X f F M 0 P Kružnice fprotne vestředu Mstrany avpatěvýšy 0 zbodu.označme Xdruhý průsečí ωal.stačíuázat,že PM P 0 = P PX,neboližečtyřúhelní M 0 Xje tětivový. Jeliož 0 M = 90,stačíuázat XM = 90.Myalevíme,že XF = 90 (F jeprůměr ω),tažezbýváuázat,žebody M, X, Fležívpřímce,neboliže MFjeolmána l. Tímjsmesedefinitivnězbavilibodů airužnice ωapřevedliúlohunajednoduchétvrzení o trojúhelníu, teré lze doázat napřílad následovně: Označme H ortocentrum trojúhelnía a druhý průsečí f a výšy 0. Pa 0 M = 90,taže M jeprůměrružnice f.zároveňvestejnolehlostisestředem H a oeficientem 2 přejde f na ružnici opsanou trojúhelníu, taže speciálně F přejde na Oa na.vtrojúhelníu OHjetedy F střednípříčaajeliož Ojeolmána l,jena niolmáimf. 2 Feuerbachovaružnice(čiružnicedevítibodů)danéhotrojúhelníajeružniceprocházející středy jeho stran, patami výše a středy spojnic vrcholů s jeho ortocentrem. 3

4 Mezinárodní orespondenční seminář iks 5. série O F H M 0 Triové řešení. Opět využijeme mocnost, tentorát vša podstatně důmyslněji. Symbolem p(x,ω)budemeznačitmocnostbodu Xeružnici ω. Označme f obrazružniceopsanéstředůmstran vestejnolehlostisestředem a oeficientem2a, obrazybodů,.jeliožpůvodníružniceprocházelastředystran, prochází f body a.příma jeprotochordálou f aružniceopsanétrojúhelníu, terou budeme nadále značit ω. ω f Vnímejmenyníbod jaoružnicisestředem anulovýmpoloměrem.pa p(,) = 2 = 2 = p(,f ) apodobně p(,) = p(,f ),taže jechordálaružnice f abodu. hordálouružnice ωabodu jetečnaωvedenábodem.všechnytřipřímyproto sutečněprocházejíjednímbodem potenčnímstředemružnic f, ωabodu. Nástindospěléhořešení. Označme Mstředstrany, 0 patuvýšyzvrcholu a Kprůsečí a. Jeliož je polára bodu vzhledem e ružnici opsané středům stran trojúhelníu, ječtveřice (,K; 0,M)díyznámemutvrzeníharmonicá 3.élyúseče 0 a Mumíme vyjádřitpomocídélestran,tažeumímevyjádřitidély K 0, KM,potažmo K, K. Podobněumímevyjádřitipoměr,vjaémpříma dělístranu.označíme-litedy X průsečí a,můžemepomocímenelaovyvětyvyjádřitpoměr X : X. 3 Prostručnéobeznámenístím,cotojeharmonicáčtveřice,simůžešpřečístnapřílad článe 4

5 1. roční, 2011/ 2012 Medzinárodný orešpondenčný seminár iks M 0 K Označíme-li Y průsečí atečnyeružniciopsanétrojúhelníu,papoměr Y : Ysnadnovyjádřímepomocísinovévětyvtrojúhelnících Y a Y.Jaseuáže,vyjde tatážhodnotajaopro X (onrétně 2 : 2 ),tažebody X a Y splývajíamyjsme hotovi. Poznámy opravujícího. Sešlo se sedm správných řešení. Většina z nich se ubírala cestou prvního(standardního) řešení, přičemž s různými jeho pasážemi se vypořádávala různě elegantně. ospěléřešeníposlallenh Tonda ung,natriovéřešenínepřišelnido. Úloha šla poměrně přímočaře řešit i analyticy(resp. za pomoci omplexních čísel), o čemž se přesvědčil Rado Švarc. (Pepa Tadlec) 5

Polibky kružnic: Intermezzo

Polibky kružnic: Intermezzo Polibky kružnic: Intermezzo PAVEL LEISCHNER Pedagogická fakulta JU, České Budějovice Věta 21 z Archimedovy Knihy o dotycích kruhů zmíněná v předchozím dílu seriálu byla inspirací k tomuto původně neplánovanému

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechny dvojice prvočísel p, q, pro které existuje přirozené číslo a takové, že pq p + q = a + 1 a + 1. 1. Nechť p a q jsou prvočísla. Zjistěte, jaký

Více

Jardelot s Kennylotem uvádějí. OHNĚM a MEČEM

Jardelot s Kennylotem uvádějí. OHNĚM a MEČEM Jardelot s ennylotem uvádějí OHNĚM a MEČEM Příklad. (Rytířská porada) Na koncil do amelotu přijelo n 4 rytířů, kteří se posadili kolem kruhovéhostolu.podlevelikostijejichmečejimbylapřidělenačísla1,2,...,n.dvojici(a,b)rytířůsčísly

Více

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím. Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice

Více

Diamantová suma - řešení příkladů 1.kola

Diamantová suma - řešení příkladů 1.kola Diamantová suma - řešení příladů.ola. Doažte, že pro aždé přirozené číslo n platí.n + 2.n + + n.n < 2. Postupujeme matematicou inducí. Levou stranu nerovnosti označme s n. Nejmenší n, pro než má smysl

Více

ZÁKLADY PRAVDĚPODOBNOSTI. 1. Co je to pravděpodobnost Začneme matematickým modelem pro popis náhodných jevů a jejich

ZÁKLADY PRAVDĚPODOBNOSTI. 1. Co je to pravděpodobnost Začneme matematickým modelem pro popis náhodných jevů a jejich MATEMATIKA PRO??? 2003/4, 1?? c MATFYZPRESS 2004 ZÁKLADY PRAVDĚPODOBNOSTI JOSEF ŠTĚPÁN 1 1. Co je to pravděpodobnost Začneme matematicým modelem pro popis náhodných jevů a jejich pravděpodobností. Uvědomme

Více

Ť ě ý úř ý š úř é á ý š ě Ú ý Č Ú ý ý š ě Í á ě á úř á á Í Í ě ý úř ý š úř úř ř š ý á č ú á á řá á ě ě š ř ů á á ě žá á č é ú é č ě ř é ý Í ř ý ě é é č á ů á ů á ů ú š á á áš č ě š ú ě ú á ú ř řá ě ě š

Více

Syntetická geometrie. Josef Tkadlec. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Syntetická geometrie. Josef Tkadlec. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Synteticá geometrie Josef Tadlec Kurz vznil v rámci projetu Rozvoj systému vzdělávacích příležitostí pro nadané žáy a studenty v přírodních vědách a matematice s využitím online prostředí, Operační program

Více

1. jarní série. Barevné úlohy

1. jarní série. Barevné úlohy Téma: Datumodeslání: 1. jarní série Barevné úlohy ½ º ÒÓÖ ¾¼½¼ ½º ÐÓ Ó Ýµ Háňa má krychli, jejíž stěny jsou tvořeny barevnými skly. Když se Háňa na svou kostku podívá jako na obrázku, vidí v každé ze sedmi

Více

3. ročník, 2013/ 2014 Mezinárodní korespondenční seminář iks

3. ročník, 2013/ 2014 Mezinárodní korespondenční seminář iks Řešení 3. série Úloha C3. Rovnostranný trojúhelník o straně délky n je vyplněný jednotkovou trojúhelníčkovou mřížkou. Uzavřená lomená čára vede podél této mřížky a každý vrchol mřížky potká právě jednou.

Více

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č.

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č. Mendelova zemědělsá a lesnicá univerzita Provozně eonomicá faulta Výpočet charateristi ze tříděných údajů Statistia I. protool č. 2 Jan Grmela, 2. roční, Eonomicá informatia Zadání 130810, supina Středa

Více

Počítání v planimetrii Michal Kenny Rolínek

Počítání v planimetrii Michal Kenny Rolínek Počítání v planimetrii Michal Kenny Rolínek Cílem této přednášky je obohatit vaše znalosti z planimetrie o nové metody, založené na algebraickém přístupu. Nebudeme ovšem sáhodlouze upravovat obrovskévýrazy,jakbysemohlozdát.naopaksiukážemepříklady,vnichžnástrocha

Více

3.3.4 Thaletova věta. Předpoklady:

3.3.4 Thaletova věta. Předpoklady: 3.3.4 Thaletova věta Předpolady: 030303 Př. : Narýsuj ružnici ( ;5cm) a její průměr. Na ružnici narýsuj libovolný bod různý od bodů, (bod zvol jina než soused v lavici). Narýsuj trojúhelní. Má nějaou speciální

Více

1 Seznamová barevnost úplných bipartitních

1 Seznamová barevnost úplných bipartitních Barvení grafů pravděpodobnotní důazy Zdeně Dvořá 7. proince 208 Seznamová barevnot úplných bipartitních grafů Hypergraf je (labě) -obarvitelný, jetliže exituje jeho obarvení barvami neobahující monochromaticou

Více

Ř š ý Ť Ť Ť ř š ř š ů ž ó ů ó ó óř ý ý Š Š ř Ú ř ó ů ž ář Ú ů ž ú ý ý ž ů š ó ý ó á Ž ó š ú ý ž ó ú š ó š ú ý ř ú ň ó ú ý ů ú ů ý Ý š úř ř ó ý ř ó ř á š á Žá ř ř řá á ý Žá ž á ř ř š ž ň á ý á ý ž ž ř á

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

Í ů ý é ž ý é á ý Í ž ř Ž ý é á ý ř ý Č ř ř ž é á řá řá é úř ý ů ý ý á ú ř ř ž é á á á ý ř ů Í ď ž ř á ý ř ů á ř ř Ž é á ú á Ť á ý Č žá á ý š á é ř ý é ř ř Ž é á ř é á ú š ů é š ů é ř ýš á řá é š ů é Í

Více

Tlačné pružiny. Všechny rozměry pružin uvedených v katalogu jsou standardizovány. Také jsou zde uvedena potřebná technická data.

Tlačné pružiny. Všechny rozměry pružin uvedených v katalogu jsou standardizovány. Také jsou zde uvedena potřebná technická data. Tlačné pružiny Všechny rozměry pružin uvedených v katalogu jsou standardizovány. Také jsou zde uvedena potřebná technická data. Každá pružina má své vlastní katalogové číslo. Při objednávce udávejte prosím

Více

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách.

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách. ŠROUBOVÉ PLOCHY 1. Základní úlohy na šroubových plochách. Šroubová plocha Φ vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý (pravotočivý je i

Více

ý Úř ý š Úř é á ý š ý š á á úř ý úř ý Š úř úř ř Š ý á ú á á řá á š ř Ů á á Žá á é ó é ú ý š ó ď ů Č á ý š Č Č á ý š é é ú ý Š á áš šú ú á ú ř řá š ř Ů é ř é ř ř é é ý é Ž á ý á š ý ž ů ý áš ř é áš š Ž

Více

ý ů ř š á š ú ř ň ž Ú ř ž ň á á ř á ý ú Č ř á á ť ť Ň ř Ú ž ř ý ů ř š á š ú ř ň ž ý ú ř á ž á ň á á ň á ů á á ž ř ř ř ž ř ž š š ýš řá ý ů á áš řá ý ř á ů ř ý á áš ř á ž ý á ň á á á řá áž á á á ň á á ž

Více

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. 11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

GRAFY A GRAFOVÉ ALGORITMY

GRAFY A GRAFOVÉ ALGORITMY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

4. podzimní série. Množiny

4. podzimní série. Množiny 4. podzimní série Téma: Datumodeslání: Množiny ½¼º Ð Ò ¾¼½½ ½º ÐÓ Ó Ýµ Do jedné nejmenované čajovny chodí každý víkend několik pravidelných hostů. Každý z nich má nějakéoblíbenédruhyčaje zelený,černýnebobílý.někteřízhostůsidávajívždytensamý

Více

3.2.9 Věta o středovém a obvodovém úhlu

3.2.9 Věta o středovém a obvodovém úhlu 3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly

Více

66. ročníku MO (kategorie A, B, C)

66. ročníku MO (kategorie A, B, C) Příloha časopisu MATEMATIKA FYZIKA INFORMATIKA Ročník 25 (2016), číslo 3 Úlohy I. kola (domácí část) 66. ročníku MO (kategorie A, B, C) KATEGORIE A A I 1 Najděte všechna prvočísla p, pro něž existuje přirozené

Více

11. Geometrická optika

11. Geometrická optika Trivium z optiky 83 Geometrická optika V této a v následující kapitole se budeme zabývat studiem světla v situacích, kdy je možno zanedbat jeho vlnový charakter V tomto ohledu se obě kapitoly podstatně

Více

ř ť ř é ř Š ř š ř ř Č ú Č Č ř ř ó ř é ř ř ř Č Č ú ř Ř Ě ř ť ó ť ř š ť š é ú é š š ř ř é ÁŘ ů š é é š š ů é š é é é š ř ř ů ú é é é ř ř ů é ó é ť é ň é é ú š é é Ý ř ť ř é é ů Ř š ř é é ř ú ř š ř ó é ú

Více

Ivan Borsenco, zlatý medailista z IMO 2006

Ivan Borsenco, zlatý medailista z IMO 2006 Délky v trojúhelníku Martina Vaváčková Motto: I can calculate everything. Ivan Borsenco, zlatý medailista z IMO 2006 Na přednášce si ukážeme prostou, ale účinnou zbraň při řešení mnohých geometrických

Více

Ý ě Ť Á ě ěž á Í ě ě ž á ě ě á Ž ě ě á á ž Í ž á ě ě á ě ž ě á ž á ě á á á ž ě Í ě Ť á ě á ď ě Ť á á Ť Ž ě ě á Ť ž á Š ě ě á ž Ť ž ě Ť ě Ť ž á Ť á Ť ž á Ž á Ť á Ť ě á á á á Ť á ě á á á á áž ě ě á Ť á ě

Více

ý úí Ť š é á ř ž á Í Ř Á ÁŠ ň ť Ú Í Í úř é úř úř š ý á č á á řá š ř ů á á žá á ú č č éč á č á ů č ů á ž á Č ů ž á á Š áš č šú ú Í ř á ú ř á á č č é č é č á é ž ř č á á č á ů ú č ř á é é ž č ú č é á á řá

Více

Geometrie trojúhelníka Martin Töpfer

Geometrie trojúhelníka Martin Töpfer Geometrie trojúhelníka Martin Töpfer Abstrakt. Přehled známých vlastností trojúhelníka ilustrovaný na mnoha úlohách, které pochází hlavně z matematických olympiád posledních let. Cílem této přednášky je

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny

Více

Geometrická zobrazení

Geometrická zobrazení Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších

Více

Geometrie trojúhelníka

Geometrie trojúhelníka Geometrie trojúhelníka Michal Kenny Rolínek ØÖ Øº Přednáškadůkladněseznamujeseznámýmivlastnostmitrojúhelníka. Též ukazuje, jak se dá rovnou ze zadání geometrické úlohy poznat, které postupy bude třeba

Více

š á Ó ě š á á á Ť ž ě š á á ň á Ž á š Ř Ť Š Í ě Č á á Í á á Á š Íá ž ě á á á Ž ě š ň š ď á Č á ň ž ě Ť ě ě á Ť ň Ť á ě š ž ě Ť Ž á ě á á ě Í ť š á Ž š š Í á á á á ň ž Í ě Ť á á š ž š á ě Ť á á Č á Ť Ď

Více

Á ž Ů Ž É Č Í ř č ě š á ž š ž ř Č ě ě ů ý žá ý ů á š ř č ě čů á ž ř š é ý š é ř é ě ý ř š ř š á ř ě ř š á ě ž žá é ř á ř á ě ž ř ě ř ě ě é ř á ř é š ý á ě Ě Í á ž š é ě ý ě á é á é á ě á ě ž ř ř á á á

Více

á ář á ř ř Č ř áč ě řá ú á ř č á á á á á ú ů ř ř Č á ř á á á Š ž č ě ř č ý ů á á ř ř ú á ř ž ý ý á á ž á ř č ů á á ů ř ý ý áš á ěř á ž á á ěř á á ř ž á ě ě á á žá á ů ý ř žá ř ě č ě á ě á ř ž ú ů ř ř ž

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

é Ž á ě á ř ž ř á ž á ě á á š éř ě č č ě ě áž é ž ý ý ě ý á ď ž ů Ž ý á ý áž ý á áž á ě ř ž é é á é ř Ž á á áž á ě ř ž é éč á éř ě ů á ů á áž áž é Ž ž é ň á ř ě á ů ě č ů é ř č č á á ř ů ý á ů ů ě é ý

Více

MASARYKOVA UNIVERZITA V BRNĚ. Akce grupy

MASARYKOVA UNIVERZITA V BRNĚ. Akce grupy MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta Bakalářská práce z matematiky Akce grupy Brno 2009 Lenka Macálková Prohlášení: Prohlašuji, že jsem tuto bakalářskou práci vypracovala zcela samostatně

Více

á Í ěč á ěč á ž ěťč ě š á š ě ě á á ž š á č Ť ř ě á ě Ž ž Č á č Ť á á ě ěť Ž Ž á ž ť š ě ž č ě Ť á č ě ž á ě á ě ž Í ě ž ě ěť ž š č ěč ěž á č Í ž á á á Ž ě š ěč ž á Ž š ř á ď č ě š ž Ť č č ž ěž Ž á Í Ť

Více

I. kolo kategorie Z9

I. kolo kategorie Z9 58. ročník Matematické olympiády I. kolo kategorie Z9 Z9 I Do tří prázdných polí na obrázku patří taková přirozená čísla, aby součin tří čísel na každé straně trojúhelníku byl stejný. 42 6 72 Jakénejmenšíajakénejvětšíčíslomůžebýtzatétopodmínkyvepsánodošeděvybarveného

Více

1. série. Pohádky. Téma: Datumodeslání:

1. série. Pohádky. Téma: Datumodeslání: Téma: Datumodeslání: º Ò ¾¼¼ 1. série Pohádky ½º ÐÓ Ó Ýµ ¾º ÐÓ Ó Ýµ Princezna si dělá pořádek ve svých truhličkách. Vysype na stůl do dvou hromádek drahokamy º ÐÓ Ó Ýµ naprvníjichje17,nadruhé10.pokaždé,kdyžnaberezjednéhromádkydorukykameny(vždy

Více

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech

Více

Ú á Ú Ž ÁŠ á ř ž á ě ě š ř ů á ě Ú é é ó š á Č Č Ů ú ž é ě á Ú Č ř Š á é é úř é á ě ěř á ž úř Ú é á á Ú á ž ř á ž á ž á ě é ář á ú ú ř ě ž ěř ěř á ů ěř ě á á ř á ň ó ó ěř ěř ě á á ř á á š á ú ě é á úř

Více

Í Ů Ř É ř á é ý á á á é ý š ář ý ý Í É Ý Á Ě Á Á Ě Ý Š ÁŘ Ý Ý Ú ř ú á š ář ý ý é á á Í á š á Ž á ý š á š á ů š ř ů á á Š ž š řá á š á š á é š é ý ř ů ů á á é š é á á á á š ář é á á ář é á ř Ú š á á á š

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 63. roční matematicé olympiády Úlohy rajsého ola ategorie A 1. Najděte všechna celá ladná čísla, terá nejsou mocninou čísla 2 a terá se rovnají součtu trojnásobu svého největšího lichého dělitele a pětinásobu

Více

Plochy stavebně-inženýrské praxe

Plochy stavebně-inženýrské praxe Plochy stavebně-inženýrské praxe 10. Plochy šroubové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 99 106.

Více

É Á ÁŠ é Žď á ě ř ř ě ž á ň á á ů ě é á é á é á ě ě š ř ů ž Ť ě ě š ř ů ě á áš á áš Ú ě áš á é ďď á ě ř ř ě ž é ň á á ů á ě Ř ě ů á ě ý ř ý á á á ý é á ů é ý ř ý ý š Ž ů á á ý ů é ý á Ú é ř ě š ě ů é ě

Více

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Mnohočleny z různých stran Mgr. Karel Pazourek Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. O posloupnosti (a n ) n=1 víme, že pro všechna přirozená čísla n platí a n+1 = a 2 n a 2 n 4a n + 6. a) Najděte všechny hodnoty a 1, pro které je tato posloupnost

Více

Výsledek. Nejméně 14 kostek, nejvíce 38. Návod. Když se podíváme na stavbu shora, vidíme následující tabulku:

Výsledek. Nejméně 14 kostek, nejvíce 38. Návod. Když se podíváme na stavbu shora, vidíme následující tabulku: Vzorová řešení Náboj Úloha. Kvádr s délkami hran, a, a má povrch 5. Najděte hodnotu čísla a. Výsledek.. Návod. Povrch kvádru s hranami délek x, y, z je P = xy + xz + zy. Po dosazení 5 = a + a + a můžeme

Více

Ýá ó ó é Ž Í ÁŠ Ž É á é ě ř á ó á ř é ě řá á ř á Š á ó ň é á Š Č á ř ě ó Š ť á á ř ň ň ř ý ř ě ř ě ě á á ř á ý ě á Č š á Ú á úř ň ý ú ř ě š é á ř š š é Í á é á ě é é ú ř é ě ý ě ý ř ý ů á ě ý š á ř ě Úš

Více

Syntetická geometrie I

Syntetická geometrie I Kruhová inverze Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Sférická inverze Autoportrét v kulovém zrcadle M.C.Escher, 1935 Pozor! jen pro ilustraci, inverze a zrcadlení se značně liší Kruhová

Více

ponožku, nedovede rozeznat její barvu. Kolik nejméně ponožek musí vytáhnout, aby mezi nimi bylo určitě aspoň osm

ponožku, nedovede rozeznat její barvu. Kolik nejméně ponožek musí vytáhnout, aby mezi nimi bylo určitě aspoň osm Úloha 1J. Malý Pét a je velký drsňák a nosí vždy jen ponožky různých barev. Ve skříni má 30 červených, 40 zelených a 40 modrých ponožek. Tato skříň se však nachází ve sklepě v místech, kde se nesvítí,

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 50. ročník Matematické olympiády Úlohy domácího kola kategorie B 1. Řešte v oboru kladných čísel soustavu rovnic 3x + y = 598,6, x + y = 73,4, v níž x a y označují po řadě čísla x a y zaokrouhlená na desítky.

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY

ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné

Více

ář ď ú áž ý ř ě ž é é á ý ů žš ě ý č ž ě á ě žá ě á á ů ě ě ž ěď ž š á š áš é čá é ě é š ý ů ě š ý ý á ý á ě ž ů á ů ě š ě ň ž ý ž ž ď á ě š ď ý ž á á á Ž é ě ž ý ě š š ř ž á ž ý é á é ě š ě ž č á ž ě

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

Jak připravíme animovaný model a využijeme grafické zvýraznění

Jak připravíme animovaný model a využijeme grafické zvýraznění Jak připravíme animovaný model a využijeme grafické zvýraznění Ukázka 4.1 Geometrie Stopa objektu Osová souměrnost a stejnolehlost Sestrojíme modely, které budou demonstrovat vlastnosti shodných a podobných

Více

s dosud sestrojenými přímkami a kružnicemi. Abychom obrázky nezaplnili

s dosud sestrojenými přímkami a kružnicemi. Abychom obrázky nezaplnili Dělení úsečky ŠÁRKA GRGLITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha V tomto článku se budeme zabývat sadou geometrických úloh, které jsou tematicky podobné. Liší se jen hodnotou jednoho

Více

5. Konstrukční planimetrické úlohy

5. Konstrukční planimetrické úlohy 5 Konstrukční planimetrické úlohy 5.1 Řešení konstrukčních úloh 5. Konstrukční planimetrické úlohy Konstrukční úlohou rozumíme úlohu, ve které je požadováno sestrojení jistého geometrického útvaru (alespoň

Více

č É Á Á Ě É É Á Á É ň á š č Ř á á é č č žá ř áž á á Žá á ř ň á é ř č Č é é ň á ú á č ň á á é š á Žá é á š á á ř é ú á é ú ř š ú Ž á Ž š Ž ř é ř á č ř Ž á č ř š ř ů Ž Ž Ž á á ú Ž á š ř ů ř Ž ů Ž ř ř Č á

Více

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008 Lineární algebra II Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak rok 2007/2008 Adam Liška 9 února 2015 http://kammffcunicz/~fiala http://wwwadliskacom 1 Obsah 10 Permutace 3 11 Determinant

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm) 3.5.9 Přílady na otočení Předpolady: 3508 Př. 1: Je dána ružnice ( ;5cm), na teré leží body, '. Vně ružnice leží bod L, uvnitř ružnice bod M. Naresli obrazy bodů L, M v zobrazení řeš bez úhloměru. R (

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

1 Zadání Zadání- Náboj 2010 Úloha1.Kvádrsdélkamihran1, a,2amápovrch54.najdětehodnotučísla a.

1 Zadání Zadání- Náboj 2010 Úloha1.Kvádrsdélkamihran1, a,2amápovrch54.najdětehodnotučísla a. Úloha1.Kvádrsdélkamihran1, a,2amápovrch54.najdětehodnotučísla a. Úloha2.Pomocíprávětříosmičekalibovolnýchzesymbolů+,,,/, vytvořtečíslo3.jedensymbol můžete použít i víckrát. Úloha3.Vejtekmělknihuzteoriemnožin,jejížlistybylyčíslovanépostupně0,1,2,3,...

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

é ň ú ě ě ú Ý š ě ě ň ó šť š šť š ě ň ě Í ť ť Ý Ť ď Á ť Ý Ň ú Ó Ý Ý Č Ý ě ě Ý Ž ý é ě ť Ř ý ó Ý š Í ó Í ú Ř Č Ř Ř é ě ý Ž ě é Í Ž Ž ý ó ě é Ť Č ě é Š é Ť Á Ý ť Ý Í ň Ť š ť š É ó ť É Ó Ř é ě Í é é é ý Ť

Více

Ť ď Í Í ó ř á ů ř á ť ř á á á ů ě ř ý Á ř ř ř ě é ř é ě á ý á á á ý á ř ě á ě š ě ý š ě ř ř ě ý ť á ú ú ž ů ýů ě ó é š ě é é šř ř ě ě ý é š šř á á ě á š ě ž á á šř š ě é é ř áž é é ě ě á á á é ř ý š é

Více

á ó ú Ž ý á á š č š é á č ú Ž á ú é ř é š ů á á ý á á ý ř áš ý ý é á ý ů é ž á é ř ž ý řč ůž ý ř š éž á á č řč á é ý č č é é ů ý ý á Í á á Ž é č ř Ž ř š čů ů Ž č á Ž é Ž č š Ž Ž š á é š ó é š é ůž š ř

Více

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018 67. ročník matematické olympiády III. kolo kategorie Přerov, 8.. března 08 MO . Ve společnosti lidí jsou některé dvojice spřátelené. Pro kladné celé číslo k 3 řekneme, že společnost je k-dobrá, pokud

Více

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty H VRBENSKÁ J BĚLOHLÁVKOVÁ 63 Lineární diferenciální rovnice druhého řádu s onstantními oeficienty 631 Definice Definice Lineární diferenciální rovnicí druhého řádu s onstantními oeficienty nazýváme rovnici

Více

Š Ž ů Č á ž ř á ň á ř ž ů Č žá á ž č á ž ř á ž ž ř ž ď á ř ž ž á á ů ž á č á řč á ř ž ů á á ž ď á ř á ň á á á á á č ř ď á ř á á ž ů ř á á ř á á ž á č Č á á ů ř Ž Č čá Č ř á á ř Č ň ž ř ř č Ř Ž á ž á ř

Více

Úvod do optimalizace

Úvod do optimalizace Přednáška Ú-Opt, February 19, 2006:1324 Petr Lachout 1 Úvod do optimalizace Prof. RNDr. Jitka Dupačová, DrSc. Doc. RNDr. Petr Lachout, CSc. KPMS MFF UK Verze 19. února 2006 2 Obsah 1 Úvod 5 2 Optimalizace

Více

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie

Více

Masarykova univerzita. Základy konvexní analýzy a optimalizace v R n.

Masarykova univerzita. Základy konvexní analýzy a optimalizace v R n. Masarykova univerzita Ondřej Došlý Základy konvexní analýzy a optimalizace v R n. První vydání Brno 2004 Došlý Ondřej Název knihy c prof. RNDr. Ondřej Došlý, DrSc., 2005 Největší životní umění je neoptimalizovat

Více

ý Č Á É É ž á á á řá Ž ě ě š ř ů á ř š á á á ě š ř ů ř řá ý á á ě á á ě ěř á Č Í á ú á ž áňě á á ě á ý á ř ú á ž ř ř ě ú ř ě ú Í Í Í ě á á á Í ěí Í ř á á ě á á á á á š áš á Íá Í Í á řú ř á ž ě Íá ř á á

Více

KOS. (Matematického ústavu Slezské univerzity v Opavě) 2001/2002

KOS. (Matematického ústavu Slezské univerzity v Opavě) 2001/2002 KOS Matematický KOrespondenční Seminář (Matematického ústavu Slezské univerzity v Opavě) 1. ROČNÍK 2001/2002 1 Vážení přátelé, děkujeme vám za vaši účast v 1. ročníku našeho korespondenčního semináře KOS.

Více

4. Model M1 syntetická geometrie

4. Model M1 syntetická geometrie 4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).

Více

Čtyři body na kružnici

Čtyři body na kružnici Čtyři body na kružnici 10. listopadu 2015 Vojtěch Zlámal Čtyři body na kružnici 10. listopadu 2015 1 / 19 Problematika čtyř bodů na kružnici důkazové úlohy matematické soutěže nedostatečná metodika v učebnicích

Více

10. Analytická geometrie kuželoseček 1 bod

10. Analytická geometrie kuželoseček 1 bod 10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)

Více

ž ť ř á ť ž ů ť ťů ů ť é ú á é ů š ř é ř é ář á ž ú ó ř é ň ž á ěř á á č ů ě ě š ř ů á á ě Ě ů ž á ěř á ť ó ř á ů é é á á úř ť á Ůř á š á ř ň á ž ť ť

ž ť ř á ť ž ů ť ťů ů ť é ú á é ů š ř é ř é ář á ž ú ó ř é ň ž á ěř á á č ů ě ě š ř ů á á ě Ě ů ž á ěř á ť ó ř á ů é é á á úř ť á Ůř á š á ř ň á ž ť ť Á ůů úř áž ť ě á ě Č á Č č ž ý ř č Í ď Í áť ž é á ť ř č á ě č č ž ť ř á ť ž ů ť ťů ů ť é ú á é ů š ř é ř é ář á ž ú ó ř é ň ž á ěř á á č ů ě ě š ř ů á á ě Ě ů ž á ěř á ť ó ř á ů é é á á úř ť á Ůř á š á

Více

É á á á č á áž ů ů š é á á é á á é á ě á ě á á áž ů ů š é á á é á ů č á č á ů ý ě ú á á ě á č á ů ý ě ú á ů ě é č á ě ě á ě ň á č ú ě á á ě á ě ě ě é á ě ň á č ú ě á ů č č ě é á č á ý ě ě á á á á ě Č ě

Více

Magická krása pravidelného pětiúhelníka

Magická krása pravidelného pětiúhelníka MUNDUS SYMBOLICUS 25 (2017) Magická krása pravidelného pětiúhelníka J. Nečas Abstract. The article presents various interesting relations in a regular pentagon and then expresses the values of goniometric

Více