TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA STROJNÍ BAKALÁŘSKÁ PRÁCE

Rozměr: px
Začít zobrazení ze stránky:

Download "TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA STROJNÍ BAKALÁŘSKÁ PRÁCE"

Transkript

1 TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA STROJNÍ BAKALÁŘSKÁ PRÁCE PŘÍRODNÍ ROSTLINNÁ VLÁKNA JAKO VYZTUŽUJÍCÍ MATERIÁL POLYMERNÍCH SYSTÉMŮ VLIV PLNĚNÍ NA VYBRANÉ MECHANICKÉ PARAMETRY NATURAL PLANT FIBERS AS A REINFORCEMENT OF POLYMER MATRICES THE INFLUENCE OF THE FILLER AMOUNT ON THE SELECTED MECHANICAL PROPERTIES 2007 JAROSLAV SPILKA

2 TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA STROJNÍ KATEDRA MATERIÁLU Hálkova 6, Liberec Studijní program: Obor: Zaměření: B2341 Strojírenství Materiály a technologie Materiálové inženýrství Přírodní rostlinná vlákna jako vyztužující materiál polymerních systémů vliv plnění na vybrané mechanické parametry Natural plant fibers as a reinforcement of polymer matrices the influence of the filler amount on the selected mechanical properties KMT - B Autor: JAROSLAV SPILKA Vedoucí bakalářské práce: Dr. Ing. Dora Kroisová Konzultant bakalářské práce: - Rozsah práce a příloh: Počet stran: 49 Počet tabulek: 12 Počet obrázků: 26 Počet příloh: - V Liberci, 9. ledna 2007

3 TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA STROJNÍ KATEDRA MATERIÁLU Hálkova 6, Liberec ANOTACE STUDIJNÍ PROGRAM: OBOR: ZAMĚŘĚNÍ: TÉMA PRÁCE: B2341 Strojírenství Materiály a technologie Materiálové inženýrství Přírodní rostlinná vlákna jako vyztužující materiál polymerních systémů vliv plnění na vybrané mechanické parametry ČÍSLO PRÁCE: KMT B 117 AUTOR: Jaroslav Spilka VEDOUCÍ PROJEKTU: Dr. Ing. Dora Kroisová KONZULTANT: - Cílem této bakalářské práce bylo seznámit se s možností využití přírodních rostlinných vláken jakožto výztuže polymerních matric a u zvolených systémů porovnat vliv plnění na vybrané mechanické parametry. KLÍČOVÁ SLOVA: Kompozitní materiály, přírodní rostlinná vlákna jako vyztužující materiál polymerních matric, bambus, len, konopí, vlákna z recyklovaného papíru, epoxidová pryskyřice.

4 TECHNICAL UNIVERSITY FAKULTY OF MECHANICAL ENGINEERING DEPARTMENT OF MATERIAL SCIENCE Hálkova 6, Liberec ANNOTATION COURSE: FIELD OF STUDY: SPECIALISATION: SUBJECT OF WORK: B2341 Mechanical engineering Engineering technology Material science Natural plant fibers as a reinforcement of polymer matrices the influence of the filler amount on the selected mechanical properties NUMBER OF THESIS: KMT B 117 AUTHOR: Jaroslav Spilka LEADER OF WORK: Dr. Ing. Dora Kroisová CONSULTER: - The aim of this bachelor work is to study the possibility of exploitation of natural plant fibers as a reinforcement of polymer matrices. The influence of filler amount on the selected mechanical properties was study. KEY WORDS: Composite material, natural plant fibers as a reinforcement of polymer matrices, bamboo, flax, hemp, fibers made from recycled paper, epoxy resin.

5 Prohlášení Byl jsem seznámen s tím, že na mou bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, zejména 60 školní dílo. Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mé bakalářské práce pro vnitřní potřebu TUL. Užiji-li bakalářskou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše. Bakalářskou práci jsem vypracoval samostatně s použitím uvedené literatury a na základě konzultací s vedoucím bakalářské práce. Datum: Podpis:

6 Rád bych na tomto místě poděkoval Dr. Ing. Doře Kroisové za pomoc a odborné vedení mé práce.

7 OBSAH.7 1. Úvod 8 2. Obecná část Kompozitní materiály Vláknové kompozity Teorie vláknové výztuže Vlastnosti vláken Vlastnosti rozhraní matrice s výztuží Polymerní matrice Termoplastické matrice Reaktoplastové matrice Biopolymery Přírodní vlákna Rostlinná vlákna Experimentální část Vypraný typ vláken Lněné vlákno Konopné vlákno Bambusové vlákno Vlákna z recyklovaného papíru Vybraný typ polymerní matrice Epoxidová pryskyřice Zvolená metoda pro vyhodnocení vlivu plnění na mechanické parametry Tahová zkouška Příprava vzorků Výsledky a jejich hodnocení Naměřené hodnoty Diskuze výsledků Závěr Seznam použité literatura

8 1. ÚVOD Rostlinná vlákna jsou jedním z mnoha druhů vláken, která mohou být použita jako výztuž polymerních systémů, jež jako celek patří do skupiny kompozitních materiálů. Přírodní vlákna provázela člověka už od počátku jeho samotné existence. Jednou z nejstarších lidských činností je výroba tkanin, kde k nejvíce používaným materiálům rostlinného původu patřily bavlna a len, které jsou dodnes tzv. klasickými materiály pro výrobu textilií. S rostoucí populací a širším uplatněním rostlinných vláken, nemohla být nadále poptávka kryta rozšiřováním půdních ploch, potřebných především k zajištění obživy obyvatelstva, proto stávající sortiment vláken, který člověku poskytovala příroda, byl obohacován vlákny uměle vytvářenými [3]. Uměle vytvořenými vlákny se rozumí anorganické a polymerní sloučeniny získané chemickou cestou. Zpočátku se polymerní sloučeniny získávaly především z přírodních polymerů, jako jsou celulóza, proteiny a jejich deriváty. Dnes se většina polymerních sloučenin, tzv. syntetických plastů vyrábí polyreakcemi uhlovodíků. Jedná se o jednoduché chemické reakce, které se mnohokrát opakují, takže původní nízkomolekulární monomer přechází ve vysokomolekulární polymer. Plasty měly původně nahrazovat přírodní materiály, ale nyní se považují za zvláštní skupinu materiálů s unikátními vlastnostmi. Výhodou syntetických plastů je snadné dosažení požadovaných vlastností a vysoká produktivita výroby. Tyto skutečnosti dělají z plastů téměř ideální materiál, jenž nachází uplatnění ve všech oblastech lidské činnosti. V kombinaci s jinými vhodnými materiály vznikly polymerní kompozity, bez nichž bychom se dnes v mnoha odvětvích průmyslu neobešli. Plasty se vyrábějí převážně z ropy a zemního plynu, což jsou neobnovitelné suroviny. Problém tedy spočívá v tom, že zdroje fosilních paliv jsou omezené a s dnešní vysokou spotřebou se zásoby značně ztenčují [1]. Dalším problémem, neméně důležitým, ač často opomíjeným, je hromadění biologicky neodbouratelných syntetických plastů, nešetrná těžba a zpracování surovin, mající neblahý dopad na životní prostředí, jelikož naprostá většina syntetických plastů je přirozenou cestou biologicky nerozložitelná [5]. Výše uvedené problémy nás nutí hledat alternativy a jednou z nich je návrat k rostlinným vláknům, jelikož rostlinná vlákna mají tu přednost, že se získávají z obnovitelných zdrojů a ve volné přírodě se samovolně rozkládají - jsou biodegradovatelné. Na druhou stranu vlastnosti biologicky odbouratelných polymerů jsou 8

9 obecně horší než u konvenčních plastů. Např. u nativních materiálů, u nichž došlo k polymeraci v přírodních podmínkách, je třeba počítat s kolísáním jejich vlastností vlivem růstových klimatických podmínek [6]. Nedá se tedy předpokládat, že by syntetická vlákna byla v blízké době zcela nahrazena vlákny přírodními. V případech, kde vlastnosti přírodních vláken vyhovují, nebo se jejich negativní vlastnosti potlačí spojením s jiným materiálem, jak je tomu např. u polymerních kompozitů s rostlinnými vlákny, mohou přírodní vlákna nahradit vlákna syntetická či anorganická. Jelikož se v blízké době neočekávají žádné alternativní zdroje, které by plně či alespoň z větší míry nahradily fosilní paliva, obrací se pozornost především na co největší znovuvyužití (recyklaci) použitých materiálů a větší zapojení rostlinné surovinové báze. Proto je dnes středem zájmu zkoumání vhodného nahrazení syntetického vlákna přírodním a posuzování rozdílných vlastností [1]. Cílem této bakalářské práce je seznámit se s možností využití rostlinných vláken jakožto výztuže polymerních matric a u zvolených systémů porovnat vliv plnění na vybrané mechanické parametry. 9

10 2. OBECNÁ ČÁST 2.1. Kompozitní materiály V přírodě se prakticky setkáváme výhradně s materiály na kompozitním principu; s čistými bezdefektními a homogenními látkami se setkáváme ojediněle. Materiály v rostlinné a živočišné říši byly vytvořeny pro jistý účel, určité namáhání a danou funkci, s důmyslně vytvořenou strukturou i průřezem. V dávné historii člověk nevědomky vytvářel a používal kompozitní materiály, avšak spíše jako důsledek zkušeností než znalostí (např. výroba pálených cihel z jílu promíšeného se slámou, nebo beton). Původně cesta k lepším materiálům znamenala hledání mezi existujícími materiály. Postupem času se člověk snažil zlepšit vlastnosti stávajících materiálů. V posledních desítkách let se na základě znalostí, získaných během dlouhé doby ve všech vědních oborech a po vzoru přírodních materiálů, pokoušíme nalézt vhodnou kombinaci materiálů, jejichž spojením by vznikl kompozit požadovaných vlastností. Slovo kompozitní znamená vytvořený či složený ze dvou nebo více odlišných částí. Avšak to není přesná definice kompozitního materiálu, protože jakýkoliv materiál, který není čistá látka a obsahuje více než jednu složku, by mohl být teoreticky klasifikován jako kompozitní materiál. Rozdíl mezi kompozitním materiálem a běžnou heterogenní směsí je tzv. synergický efekt. Synergický efekt znamená, že kombinací materiálů získáme nové, odlišné vlastnosti, než poskytují samotné materiály nebo lepší vlastnosti, než je jen prostý součet vlastností materiálů, z nichž se kompozitní materiál skládá. Synergický účinek je tedy objektivní charakteristika, kterou se kompozitní materiály odlišují od ostatních [1]. Vývoj prokázal, že vytváření jednoho nebo několika materiálů se všemi dokonalými vlastnostmi současně je neekonomické, neboť většina z nich zůstává během služby materiálu nevyužita. Vytváření strukturního složeného materiálu je tak nejen ekonomičtější, ale při selhání jednoho členu umožňuje další funkci bez katastrofické poruchy. Máme-li smíšené dva materiály, každý může přinést dobré i špatné vlastnosti, zřídka to jsou pouze dobré vlastnosti nebo jen nedostatky. Jednotlivé fáze ovlivňují výsledné vlastnosti materiálu jak svými vlastními charakteristikami, tak vzájemnou interakcí. Právě interakce jednotlivých fází a struktur přináší nové kvality materiálu, jichž nemůže být dosaženo žádnou složkou samostatně. Je možné dosáhnout (a snažíme se o to), 10

11 aby byly zdůrazněny výhodné vlastnosti složek a potlačeny jejich nevýhodné vlastnosti podle potřeb navrhovaného prvku nebo konstrukce. V kompozitu uplatňuje každá složka své přednosti, zatímco nedostatky jsou zakryty přednostmi svého partnera. Složky vytvářejí jednotnou dvojici, ideální manželství [1]. Jednou z hlavních charakteristik kompozitních materiálů je, že nikdy nejsou univerzální a jsou navrhovány výhradně pro jisté použití při maximální explotaci hmoty; tím se stávají ekonomicky a energeticky výhodnými, což je základem jejich převahy v konkurenci s homogenními (tradičními) materiály [1]. Jak již bylo zmíněno, kompozity jsou složeny ze dvou nebo více chemicky odlišných složek nebo fází. Ta tužší, pevnější a obvykle nespojitá složka se nazývá výztuž. Spojitá a obvykle poddajnější složka, která zastává funkci pojiva výztuže, se nazývá matrice Vláknové kompozity Jednou z významných podskupin kompozitních materiálů jsou vláknové kompozity, kde vyztužující složku tvoří dlouhá (spojitá kontinuální) vlákna. Pojem vlákno je chápáno víceméně intuitivně; míní se jím obvykle nějaký dostatečně dlouhý a tenký útvar, kde jeden z rozměrů převládá Teorie vláknové výztuže Spolupůsobení vlákenné výztuže s matricí se v praxi projevuje tak, že působí-li na kompozitní materiál rostoucí zatížení, matrice s nižším modulem pružnosti začne nejdříve téci (ustupovat zatížení, elasticky nebo plasticky se přetvářet), vlákna, která jsou obklopena měkkou matricí, se nemohou dále schovávat a jsou nucena převzít zatížení. Ve skutečnosti se slabost matrice neprojeví, neboť je kompenzována vyšší pevností vláken, která jsou schopna přenést daleko větší zatížení než matrice při porušení. Matrice, která zprostředkuje přenos zatížení (napětí) do tužší fáze (vlákna výztuže), musí zajišťovat také odolnost kompozitu vůči vlivům okolního prostředí, neboť vždy obklopuje vlákna. Proto další úlohou matrice je chránit vlákna proti oxidaci, korozi, a jakémukoli mechanickému poškození. Nejvyššího potenciálního ztužení kompozitů se dosáhne, jsou-li vlákna namáhána až do meze pevnosti napětím přeneseným matricí. Matrice slouží tedy především k přenosu napětí do vláken, která naopak přenášejí většinu pevnosti kompozitu. Matrice však také slouží pro spojení vláken do vhodné struktury (požadované polohy a tvaru) a chrání je před 11

12 povrchovým poškozením, které by vedlo ke značnému snížení jejich mechanických vlastností. Matrice musí mít schopnost se snadno deformovat pod působícím zatížením a především musí zabraňovat rozvoji trhlin (zvýšení lomové houževnatosti). Zvláštní pozornost je třeba věnovat stykové ploše (meziploše) mezi matricí a vlákny, neboť musí trvale přenášet napětí z matrice do vláken. Synergické spolupůsobení pevných a tuhých vláken s poddajnou matricí umožnilo konstruovat kompozity s vysokou pevností, tuhostí a houževnatostí, přesahující vše, čeho bylo dříve dosaženo úpravou tradičních (víceméně homogenních) materiálů. Proto je vlákenným kompozitům věnována taková pozornost. Bez jejich existence by byl další pokrok techniky ve všech oborech, ale zejména v leteckém, kosmickém a automobilovém průmyslu nemyslitelný. Vlastnosti kompozitu mohou být značně ovlivněny podle přání konstruktéra (typ, množství, orientace a délky vlákna, typ matrice a kvalita mezipovrchu) použitím různých druhů vláken [1]. V dnešní době je k dispozici široké spektrum vláken. Jejich základní rozdělení je uvedeno v následující tabulce č Vlastnosti vláken Vnitřní uspořádání struktury vlákna je u přírodních vláken dáno jejich růstem a u chemických vláken zvlákňovacím a zejména dloužícím procesem. Krystality, ale i makromolekuly amorfní struktury jsou do určité míry orientovány vlákno vykazuje anizotropii struktury. Bez této anizotropie by vlákno nemělo charakteristické vlastnosti jako pevnost, tažnost, ohebnost, stálost tvaru atd., jež jsou nutné jednak pro jeho další zpracování, tak pro jeho použití. Jak již bylo uvedeno, přírodní vlákna mají vnitřní architekturu makromolekul danou růstem, kde tvorba vlákna, ať celulózové nebo bílkovinné báze, je určována biofyzikálními podmínkami tohoto růstu. Syntetické vlákno, kde jeho výroba bere za základ polymer přírodní či synteticky vyrobený, je co do časového úseku vytvořeno v mnohem kratší době než vlákno přírodní. Chemicko-fyzikální podmínky přípravy polymeru, zvlákňovacího a dloužícího procesu se dají regulovat, a tedy vlastnosti budoucího vlákna programovat [1]. 12

13 Tab. 1: Základní rozdělení přírodních vláken. Přírodní vlákna Rostlinná vlákna ze semen: ze stonků: z listů: z plodů: - bavlna, kapok - len, konopí, juta, ramie, kenaf - sisal, manilské konopí - kokosová vlákna Živočišná vlákna vlákna keratinová (srsti): - ovčí vlna, mohér, kašmír, srst lamy a velblouda - chlupy, vlasy, koňské žíně vlákna fibroinová (výměšky hmyzu): - pravé hedvábí z bource morušového - plané hedvábí - Tusah, z bource dubového - pavoučí hedvábí Anorganická vlákna azbest (nepolymerní přírodní vlákno) Chemická vlákna z přírodních polymerů z celulózy z regenerované celulózy: z derivátů celulózy: z regenerovaných bílkovin z rostlinných: - viskózová, měďnatá vlákna - papírové nitě - acetátová vlákna - arašídová a sojová vlákna ze živočišných: - kaseinová, keratinová a fibroinová z kaučuku: - pryžová vlákna ze syntetických polymerů anorganická kovová nekovová z monokrystalů - vlákna polyamidová, polyesterová, polypropylénová, atd. - Al, Au, Ag, slitinové - uhlíková - skleněná, strusková - keramická - čedičová - whiskery 13

14 Vlákna mají díky své struktuře specifické vlastnosti. V porovnání s konvenčními materiály shledáváme u vlákenných kompozitů vyšší měrný modul a vyšší měrnou pevnost, to znamená, že můžeme snížit hmotnost vyráběných součástí a výrobků, čímž se výrazně zvýší úspora materiálu a energie Tab. 2: Srovnání vlastností kompozitních a konvenčních materiálů [7]. materiál Vysoce pevné Al Zn Mg slitiny Kalené nízkolegované oceli PAD 6 PAD 6 plněný skleněnými vlákny, V f = 0,25 PES pryskyřice + skleněná vlákna, V f = 0,5 ve směru II s vlákny Lamino epoxidová pryskyřice + C-vlákna, V f = 0,6 ve směru II s vlákny Přírodní materiály Stéblo trávy (kompozit) Pavoučí síť Měrný Youngův modul Y. modul / hustota [MNm / kg] Měrná pevnost v tahu pevnost / hustota [knm / kg] 25, ,4 1, , , Mnohonásobně vyšší hodnoty Vlákno pavučiny je materiál s absolutně nejvyšší měrnou pevností Pevnost vlákna je vždy významně větší než pevnost stejného materiálu v kompaktní formě. V tenkých vláknech jsou minimalizovány rozměry vrozených vad materiálu a také nebezpečnost povrchových vad je při velmi malých příčných rozměrech menší (tenká vlákna mají oproti stejně dlouhým vláknům větších průměrů významně menší povrch). Vady existují jen v podobě submikroskopických až mikroskopických trhlinek a dutinek, které jsou navíc přednostně orientovány (protaženy) podél osy vlákna. Velký modul pružnosti mají vlákna, u kterých jsou nejhustěji obsazené roviny krystalické mřížky nebo tuhé makromolekuly orientovány paralelně s osou vlákna. Taková vlákna jsou silně anizotropní, tj. jejich vlastnosti v podélném a příčném směru se významně liší (např. vlákna mají záporný součinitel teplotní roztažnosti v podélném směru a kladný ve směru kolmém k ose vlákna). Velký rozsah vlastností při mezních orientacích vláken (ve směru rovnoběžném a kolmém ke směru namáhání) umožňuje volit tuhost a pevnost právě takovou, jakou považujeme za vhodnou (neboť lze volit směr orientace vláken mezi 0 90 ). 14

15 Od vyztužujících vláken jsou vedle vysoké pevnosti a tuhosti očekávány další vlastnosti: malý rozptyl mechanických vlastností jednotlivých vláken (malé rozdíly průřezů) a stabilní mechanické vlastnosti během dalšího zpracování. Kvalita vláken závisí jak na složení a čistotě výchozích surovin, tak na struktuře vláken. Stabilní mechanické vlastnosti během dalšího zpracování vláken zajišťují ochranné povrchové povlaky, které je nutno aplikovat již na jednotlivá (elementární) vlákna, tj. ještě před jejich spojením do pramenu. Ochranné povlaky nemusí být odstraňovány před výrobou kompozitu, jestliže jsou schopné vytvořit pevné spojení vlákna a matrice (ochranný povlak je zároveň vazebným prostředkem) [1], [7], [8] Vlastnosti rozhraní matrice s výztuží Jednotné strukturní chování vláken a matrice v kompozitu vyžaduje dosažení spojité, rovnoměrně silné soudržnosti mezi složkami. Je vhodné si uvědomit, že k zajištění přenosu statického napětí působícího na kompozit do vláken, je vyžadována co nejlepší soudržnost vláken a matrice. Z hlediska rázové pevnosti je tomu naopak, neboť je třeba zajistit absorpci energie přednostním rozvojem trhlin podél povrchu vláken. Toto dilema je třeba řešit podle potřeby případ od případu. Náhodné nespojitosti, zaviněné výrobou (např. nedokonalým smočením ), vedou při pracovním zatížení často ke kritickým vadám [1]. Rozhraní silně ovlivňuje lomovou houževnatost kompozitů a jejich vlastnosti ve vlhkém a korozním prostředí. Kompozity se slabým rozhraním mají relativně nízkou pevnost a tuhost, ale vysokou odolnost vůči lomu, zatímco kompozity se silným rozhraním mají vysokou pevnost a tuhost, ale jsou křehké. Tento jev je způsoben narušením vazeb vláken a jejich vytrháním z matrice během šíření porušení. Povaha vazeb mezi matricí a vlákny je dána uspořádáním atomů a chemickými vlastnostmi vláken, konformací a chemickým složením polymerní matrice. Rozhraní je specifické pro každý systém. Pevnost vazeb je dána zejména adhezí. Adheze může být spojena s pěti hlavními mechanismy, které se mohou podílet buď izolovaně nebo společně na vytvoření vazby. Jsou to: adsorpce a smáčení, vzájemná difůze, elektrostatická přitažlivost, chemická vazba a mechanická adheze [7]. 15

16 2.3. Polymerní matrice Od matrice vyžadujeme houževnatost (schopnost se snadno deformovat pod působícím zatížením a přenášet napětí do vláken), ochranu vyztužující složky před okolními vlivy, chemickou odolnost, tepelnou a rozměrovou stabilitu, odolnost proti opakovanému zatížení a nízkou citlivost vůči vrubům (omezení rozvoje trhlin), pevnost a tuhost, co nejnižší technologické a energetické výrobní nároky. Těmto požadavkům nevíce vyhovují polymerní matrice vyztuženými vhodnými vlákny. Vláknové kompozity s polymerní matricí mají nejdelší tradici (první patent v roce 1916). Podle vlastností i podle výrobního postupu se výrazně liší podle toho, jedná-li se o termoplast nebo reaktoplast. Tab. 3: Nejpoužívanější typy polymerních matric [8]. Termoplastové polypropylen (PP) polyamidy (PA) polyimidy (PI) Reaktoplastové nenasycené polyesterové (UP) vinylesterové (VE) epoxidové pryskyřice (EP) fenolické pryskyřice (PF) Termoplastické matrice K vyztužení termoplastických matric jsou vhodná: skleněná, uhlíková a aramidová vlákna a jejich kombinace (hybridní kompozit). Vlastnosti těchto kompozitů velmi závisí na výrobním postupu (který ovlivňuje rozložení vláken, orientaci vláken, stupeň porušení vláken), na pevnosti a na dalších vlastnostech vláken (např. teplotní vodivosti, houževnatosti), na povrchové úpravě vláken (ovlivňující soudržnost s matricí) a na viskoelastickém chování matrice (v závislosti na teplotě). Termoplastové polymery pro matrici mohou značně zredukovat cenu kompozitů (o 25% až 80% proti reaktoplastovým) a v poslední době je jim věnována zvýšená pozornost. Cenové úspory jsou především výsledkem snadnější výroby i složitějších tvarů [1]. Díky možnosti opětovného tepelného zpracování je možná vyšší produkce výroby (tvarováním dílů, spojováním vrstev prepregů natavením matrice ) a recyklace odpadních produktů. Termoplasty lze zpracovávat vstřikováním na běžných vstřikovacích strojích. Mají dobrou chemickou odolnost, většinou neabsorbují vlhkost a mají velmi dobrou houževnatost oproti nemodifikovaným reaktoplastům. Vážným nedostatkem je creep 16

17 při dlouhodobém zatížení. Termoplasty nejsou nesíťované; jejich pevnost a tuhost je dána vlastnostmi monomerní jednotky a velmi vysokou molekulovou hmotností [7], [8] Reaktoplastické matrice Vlákny vyztužené reaktoplasty jsou nejrozšířenější konstrukční kompozity a od prvních skleněných laminátů v polyesterové matrici v roce 1941 zasahují dnes do všech odvětví průmyslu s širokým rejstříkem výztuží a vlastností. Nejvíce jsou používané matrice z polyesterové a epoxidové pryskyřice [1]. Porovnání jejich vlastností s dalšími často používanými polymery je uvedeno v tab. č.4. Tab. 4: Základná vlastnosti často používaných pojiv [7]. jednotka epoxy polyester fenolické vinylestery polyimid Hustota g/cm 3 1,1-1,2 1,1-1,23 1,0-1,25 1,12-1,13 1,43-1,89 Teplotní odolnost C Modul pružnosti GPa 2,6-3,8 3,1-4,6 3,0-4,0 3,1-3,3 3,1-4,9 Pevnost v tahu MPa Mezní deformace % 1,5-8,0 1,0-6,5 1,8 3,0-8,0 1,5-3,0 Pojivová složka je tvořena termosetickými pryskyřicemi, které během vytvrzovacího procesu vytváří nerozpustnou a netavitelnou zesíťovanou strukturu, která je příčinou větší tepelné a rozměrové stability (ve srovnání s termoplasty) a větší odolnosti vůči chemikáliím. Nevýhodou je malá houževnatost, neboť s rostoucí síťovou hustotou roste sice tuhost, ale materiál se stává křehkým. Smáčivost vyztužujících vláken je lepší než u termoplastů. Tvrdidla se používají až po smočení materiálu. Velmi důležitou charakteristikou vytvrzovacího procesu reaktoplastů je doba gelace (želatinace), během které se viskózní pryskyřice mění v elastickou tuhou hmotu, ztrácí schopnost protékat a vzlínat mezi vlákny výztuže. Vytvrzovacím procesem se míní vytvoření prostorové makromolekuly se značnou molární hmotností. Tento děj probíhá při určité teplotě a rychlosti závislé na druhu pryskyřice a typu tvrdidla [7], [8]. U vláknových kompozitů je hlavním problémem vložení vláken do matric tak, aby se mechanicky nepoškodila, aby bylo zachováno přesné usměrnění a rovnoměrné rozdělení vláken ve výrobku a aby byla zajištěna soudržnost vláken a matrice. Vlákna se mohou relativně snadno porušit a to i prostým dotykem dvou vláken nebo třením. Skleněná vlákna 17

18 jsou citlivá na zacházení, neboť jejich vlastnosti velmi závisí na povrchové celistvosti (integritě). Aby se zamezilo povrchovému poškození, vkládají se vlákna do tekuté matrice (monomeru). Dobré smočení je základním předpokladem dobré soudržnosti (spojení) vláken a matrice. Je potřeba aby povrchové napětí vláken bylo vyšší než povrchové napětí pryskyřice. Čím lepší je smáčivost, tím příznivější je kvalita impregnace. S rostoucí viskozitou matrice se kvalita impregnace jen slabě snižuje. Důležitá je doba smáčení; impregnace se výrazně zlepší prodloužením doby smočení. S větší hmotností a hustotou vláken se impregnace zhoršuje i při prodloužené době smáčení. Tyto poznatky se uplatní i při výrobě tzv. prepregů. Jednotlivé kompozitní pásy (fólie) můžeme připravovat různým způsobem, často ve tvaru prepregových pásků, které se spojují do laminátů požádované tloušťky a vlastností. Největšího zpevnění (vyztužení) je dosaženo při hmotnostním podílu vláken 70 až 80% (podle druhu vláken). Přítomnost velkého množství mezipovrchů (velkého vnitřního povrchu) je ze značné míry příčinou velké pevnosti a houževnatosti kompozitů, ale může způsobit i problémy, jejichž vliv může někdy dokonce převážit výhody. Velký vliv na vlastnosti kompozitu má i zde kvalita styku mezi vlákny a matricí (např. póry nebo vzduchové kapsy na vláknech způsobují koncentrace napětí). Celý povrch vláken je třeba smočit matricí a zajistit co nejúčinnější spojení. K tomu se používají vazebná činidla (obr.1), která se nanáší na vlákna, nebo přidávají do matrice, jejichž použití sice vždy zlepšuje pevnost a houževnatost kompozitu, ale mechanismus jejich působení není zcela jasný. O skutečném mechanismu interakce vazebních činidel na rozhraní vzniklo mnoho teorií, které přesahují rámec této práce. Navíc není objasněno působení tvrdidel, iniciátorů a urychlovačů na povrch vláken [1]. a) b) Obr. 1: Povrch skleněných kuliček v epoxidové matrici a) bez vazebného činidla, b) s vazebným činidlem [1]. 18

19 Soudržnost spoje ovlivňuje pozitivně i negativně řada dalších vlivů. Polymerační smrštění vyvodí radiální sevření vlákna, které zvyšuje adhezi. Proti tomu polymerační smrštění vyvolá zvýšení smykových napětí ve směru vláken, a tím odčerpá jistou část smykové pevnosti. Důležitý je také účinek změny teploty, který může mít stejné (při ochlazení) nebo opačné (při ohřátí) účinky. Takto vzniklá napětí mohou však do jisté míry (někdy převážně) relaxovat v závislosti na creepových vlastnostech matrice a je potřeba nalézt vhodné podmínky vytvrzování (teplotu a čas), při nichž je soudržnost maximální. Vlastnosti významně ovlivňuje nejen vnitřní povrch, ale i účinek vnějšího prostředí, zejména vody, jež nelze nikdy zanedbat. Bez dlouhodobého hodnocení vlivu okolního prostředí jsou zjištěné údaje téměř bezcenné a realizace konstrukcí na základě takových podkladů je dobrodružstvím. Např. u epoxidové pryskyřice se skleněnou výztuží se sníží ohybová pevnost po 72h varu o 25 až 50% suché prvotní pevnosti. Pouhá absorpce vody (asi 1,7% hm.) sníží modul na asi ½ suché hodnoty atd. Významná je i doba působení vlhkosti, teploty a změn těchto veličin [1]. Vlákna mohou být organizovaně uspořádána rozmanitým způsobem nebo náhodně orientována. Po vláknech skleněných, která nemohou poskytnout konstrukcím dostatečnou tuhost vzhledem k nízkému modulu, se uplatňují v posledních letech více vlákna uhlíková, borová, keramická, aramidová a jejich kombinace. Pro některé aplikace (zejména z důvodu snížení ceny) se využívají i přírodní vlákna (juta, sisal), nejčastěji v kombinaci se skleněnými vlákny Biopolymery Naprostá většina syntetických polymerů (plastů) je přirozenou biologickou cestou nerozložitelná, nebo je v nejlepším případě rozložitelná za velmi dlouhou dobu, přesahující environmentální požadavky. Naopak biopolymery jsou díky své chemické struktuře biologicky snadno rozložitelné a po splnění své funkce se rozpadají na fragmenty, které se zařadí do látkového koloběhu [5]. V dnešní době je snaha o zvýšení biologického rozkladu některých plastů pomocí přídavku biopolymerů. Je zřejmé, že až na výjimky dochází vlastně jen k určitému typu primárního rozkladu, na kterém se podílí pouze biopolymerní složka. Plastová matrice je však přitom někdy alespoň částečně mechanicky destruována, a tím je splněn základní předpoklad pro další dlouhodobý rozpad v prostředí. 19

20 Zcela novým trendem v oblasti polymerních kompozitů je náhrada skleněných vláken vlákny přírodními. Len, konopí či dřevo jsou surovinami pro výrobu vláken, které jsou předmětem velkého zájmu. Cílem jsou především materiály šetrné k životnímu prostředí. Aplikace přírodních vláken je významnou materiálovou obměnou, která tradičně směřuje také do automobilového průmyslu. Vyžadován je však modul pružnosti v tahu srovnatelný se skleněnými vlákny, tj. mezi 60 a 70 GPa. Očekává se, že biochemie pomůže novými enzymatickými pochody připravit vlákna potřebných vlastností [5], [6] Přírodní vlákna Vlákna z obnovitelných zdrojů nalézají stále většího uplatnění jako levnější alternativa stávajících (např. skleněných) vláken. V poslední době jsou stále více využívána při výrobě pevnostně méně náročných a přitom lehkých dílců např. v interiérech automobilů a jiných dopravních prostředků. Používají se ve formě pramenců a nití, netkaných materiálů rohoží nebo tkanin. Přírodní vlákna mají minimální abrazivní účinky, což zvětšuje životnost zpracovatelských zařízení. Nevýhodou přírodních vláken je jejich navlhavost, menší rozměrová stabilita a degradace oxidací [5], [6] Rostlinná vlákna Základní strukturní látkou rostlinných vláken je celulóza. Je to nejrozšířenější vysokomolekulární látka na zemi. Jde o polysacharid, nejhojnější organickou sloučeninu. Je hlavním stavebním materiálem cévnatých rostlin, ale i bakterií, mořských rostlin a živočichů. Základní stavební jednotka celulózy (viz obr. 2) obsahuje hydroxylové funkční skupiny, které tvoří kostru vodíkové vazby uvnitř makromolekuly. Tyto skupiny způsobují, že materiály na bázi celulózy jsou značně hydrofilní. To způsobuje zhoršování vlastností vlivem vlhkosti vzduchu a často naprosté znehodnocení při styku s vodou [4]. a) b) Obr. 2: Základní stavební jednotka celulózy a) schematické znázornění, b) modelové znázornění [10]. 20

21 Množství absorpce vody závisí na relativní vlhkosti okolní atmosféry, čistotě celulózy a na stupni krystalinity. Všechny hydroxilové skupiny v amorfní fázi jsou přístupné ke smáčení (polárním roztokům), na rozdíl od krystalických fází, kde jsou jen povrchy dostupné ke smočení. Absorpce vody má za následek snížení meze pevnosti přírodních vláken v polymerních matricích, zásluhou neslučitelnosti různých složek; přírodní vlákna jsou smáčivá vodou tzv. hydrofilní a syntetické polymery nikoliv - hydrofóbní. Tato neslučitelnost způsobuje slabé vzájemné působení mezi složkami a tedy slabé rozhraní. Navíc vzájemné působení vláken, vyplývající z vodíkové vazby, zhoršuje (limituje) rozptýlení vláken v matrici. Aby se usnadnilo rozptýlení vláken a vytvořila se vazba mezi vláknem a matricí, je zapotřebí modifikace vláken nebo polymeru [4]. Vlastnosti přírodních vláken vyplývají z jejich struktury a chemického složení. Čím větší množství paralelních mikrofibril (vlákének) ve směru osy, tím vyšší mez pevnosti vlákna. Většina přírodních vláken má porézní strukturu, která může ovlivnit jejich nasycení pryskyřicí. Rostlinné vlákno se vyznačuje buněčnou strukturou, kde každá buňka obsahuje krystalické a amorfní celulózní oblasti, která jsou vzájemně propojena ligninem a hemicelulózou. Buňka je tvořena jednou obvodovou a třemi vnitřními stěnami a ve svém středu dutinou (lumen), viz obr.3 [4]. Obr.3: Buněčná struktura rostlinného vlákna [4]. Přírodní vlákenné suroviny nejsou homogenní. Homogennost závisí na odrůdě a růstu, sklizni a na prvotních podmínkách zpracování. V přírodě se téměř čistá (i přes 99%) celulóza vyskytuje jen v bavlně. V jiných vláknech je vždy doprovázena látkami: pektiny, lignin, vosky a tuky (viz tab.5). Průmyslově se celulosa získává z buničiny. Používá se pro výrobu speciálních papírů (zejm. filtračních) nebo je dále chemicky zpracovávána, např. při výrobě viskózových a acetátových vláken. 21

22 Tab. 5: Složení rostlinných vláken [10]. Vlákno Celulóza Hemi -celulóza Lignin Bavlna < 1 Juta Len Sisal Konopí Ramie Kokos 43 < Pektiny Různé chemické a fyzikální charakteristiky přírodních vláken mají za následek značné rozdíly v jejich vlastnostech a použití. Lýková vlákna byla shledána jako zvláště vhodná do kompozitů, zatímco listová vlákna našla použití speciálně v papírenském průmyslu, kde je vyžadována vysoká pevnost. Mechanické vlastnosti rostlinných vláken, zvláště len, konopí, juta a sisal, jsou velmi dobré a můžou úspěšně soutěžit se skleněnými vlákny v měrné pevnosti a modulech (viz tab.6). Rostlinné vlákno má vyšší poměrné prodloužení před prasknutím než skleněné či uhlíkové vlákno, které může zvýšit kompozitu účinnost. Naopak nevýhodou rostlinných vláken je časově náročná příprava a potřeba velkých oblastí (ploch) pro pěstování. Relativně nízká hustota rostlinných vláken ve srovnání např. s vlákny skelnými může být nevýhodná ve výrobě, proto je potřeba použití tlaku při rozmístnění vláken v matrici (vlákna inklinují k vystupováním na povrch). Tab. 6: Porovnání mechanických vlastností přírodních vláken se skleněným vláknem [4]. Hustota (g/cm 3 ) Youngův modul E (GPa) Pevnost v tahu (GPa) Prodloužení do přetržení (%) Navlhavost (%) E-sklo 2, Len 1, ,2-1,8 7 Konopí 1, ,6 8 Juta 1, ,8 12 Ramie 1, Kokos 1, Bavlna 1,

23 3. EXPERIMENTÁLNÍ ČÁST 3.1. Vybraný typ vláken Pro experimenty byla vybrána vlákna lněná, konopná, bambusová a vlákna z recyklovaného papíru Lněné vlákno Len je jednoletá rostlina z čeledi lnovitých, která je považována za nejstarší pěstovanou vláknitou rostlinu. Existuje více druhů, ale praktický význam má len užitkový Lignun usitatissimum. Lněný stonek rostliny je štíhlý, kruhovitého průřezu, od kořene nahoru se zužuje a obsahuje svazky vláken, pro které se přadný len pěstuje. Délka stonku kolísá od 0,2 do 1,4m a je závislá na podmínkách růstu. Stonky tenké dávají vyšší výtěžnost vlákna než stonky tlusté, vyžadují však delší čas k jeho uvolnění ze stonku. Průměrná tloušťka stonku se pohybuje od 0,5 do 3mm. Při průměru stonku do 1,5mm se zvyšuje počet vláken, jsou jemná; nad 1,5mm se počet vláken nezvyšuje, ale vlákna jsou hrubá. Tloušťka stonku je určována v 1/3 technické délky, což je délka od děložních lístků po rozvětvení [2]. Technické vlákno se získává z lněného stonku nejčastěji biologickou cesto, rosením a máčením. Podstatou získání technického vlákna je jeho uvolnění ze stonku a zbavení pokožky, dřeně a dřevoviny. Účelem rosení je rozložit dřevovinu, v níž jsou uložena lýková vlákna, střídavými účinky vlhka, deště, slunce a vzduchu za spolupůsobení plísní a enzymů tak, aby se dala snadno od vláken oddělit. Oproti tomu máčení není tak závislé na klimatických podmínkách a může se provádět i průmyslově. Při máčení způsobují oddělení a uvolnění svazků vláken ze stonku bakterie, které svými enzymy rozkládají pektinové látky [3]. Chemické složení lněného vlákna obsahuje přibližně 74% celulózy, 17% hemicelulózy, 2% ligninu, 1,7% pektinu, 3,8% nerozpustných látek ve vodě a 1,5% tuků a vosků. Lněné technické vlákno je tvořeno z vláken elementárních, jak je patrné z obr. 4b až 4e. Elementární vlákno lnu je sklerenchymatická buňka tvaru dlouhého troj až šestibokého hranolku, jehož oba konce se pozvolna ztenčují a končí ostrými špičkami (obr. 4a). Na mikroskopickém snímku vláken, jsou znatelná tzv. kolínka a svazky elementárních vláken (obr. d, c) [2]. 23

24 a) b) c) d) e) Obr. 4: Morfologie lněného elementárního vlákna [2]. Délka technického lněného vlákna je 600 až 800mm, elementárního 25 až 30mm. Tloušťka technického vlákna je 600µm, elementárního 15 až 18µm [2]. Tab. 7: Základní vlastnosti lněného vlákna [4]. Hustota (g/cm 3 ) Youngův modul E (GPa) Pevnost v tahu (GPa) Prodloužení do přetržení (%) Navlhavost (%) Len 1,4-1, ,84 1,2-1,8 7 Lněná vlákna jsou odolná vůči působení sladké i slané vody. Jsou silně navlhavá a mohou přijmou ze vzduchu až 20-30% vody, ale za normálních klimatických podmínek dosahují vlhkosti 15%. Se zvyšující vlhkostí se nepatrně zvyšuje i měrná pevnost a tažnost. Měrná pevnost mN tex-1 za sucha se za mokra zvýší o 15 až 20%; poměrné prodloužení za sucha se z 0,6-1,8% zvýší na 0,7-2,2% za mokra. Díky nízké tažnosti se lněná vlákna používají na výrobu dopravních pásů a hnacích řemenů. Len je odolný vůči alkáliím, ale kyseliny jej narušují dochází k hydrolýze; účinek je závislý na koncentraci, teplotě a době působení. Lněné vlákno stárne velmi pomalu, špatně izoluje elektrický proud a účinkem slunečního záření postupně ztrácí pevnost. Relativně dobře vede teplo, poněvadž je hladké a obsahuje málo vzduchu, proto se používá na výrobu letních oděvních tkanin s chladivým omakem. Pružnost je nepatrná; je příčinou mačkavosti lněného zboží. Značná odolnost proti oděru se využívá při výrobě stanoviny a plachtoviny. Dále se lněná vlákna používají k výrobě pracovních oděvů, ložního a stolního prádla, dekoračních tkanin, šicích a průmyslových nití [2],[3]. 24

25 Konopné vlákno Konopí (Cannabis sativa) je prastarou kulturní rostlinou, která vznikla z konopí divokého. Je to jednoletá, dvoudomá rostlina s dlouhým rozvětveným stonkem. Rozlišujeme tzv. samčí a samičí rostliny, které se od sebe liší utvářením květenství. Více vláken a lepší kvality dávají rostliny samčí. Vlákno se získává máčením a to buď v přírodních stojatých nebo tekoucích vodách, nebo teplovodním máčením v máčírnách s optimální teplotou vody 30 až 33 C. Máčené konopí (stonek ztrácí 20 až 25% své původní hmotnosti) se suší, nechává odležet a potom se vlákna uvolňují v tírnách lámáním a potěráním na potěracích turbinách [2]. Surové konopné vlákno má chemické složení: 70-75% celulózy, 8-15% hemicelulózy, 8-12% ligninu, 0,5-1% popelovin, 2-4% tuků a vosků a 10-12% vlhkosti. Podobně jako u lnu se technická konopná vlákna štěpí během zpracování na vlákna elementární. Elementární vlákna jsou v průřezu u mladého stonku téměř kulatá, později mnohoúhelníkového tvaru. V průřezu je vlákno tvořeno (obr.5) vnější spojovací blánou -1, tenkou primární stěnou 2, silnější sekundární stěnou 3 a lumenem - 5 ohraničeným terciární stěnou 4. Lumen zaujímá až 1/3 průřezu elementární buňky. Pro konopné vlákno v podélném pohledu jsou pod mikroskopem viditelná charakteristická kolénka (obr.) [2]. Obr. 5: Rez elementárního vlákna [2]. a) b) Obr.6: Mikroskopický snímek příčného řezu (a), podélného pohledu (b) konopných vláken. Délka technického konopného vlákna je 1 až 2m a elementárního vlákna 15 až 25mm. Tloušťka elementárních vláken je 15 až 50µm. 25

26 Obsah vlhkosti za normálních klimatických podmínek je 13%. Stálost proti účinkům vlhka a mokra je vysoká. Pevnost za mokra je o 15% vyšší než za sucha. Poměrné prodloužení za sucha je 1,5 až 3% a za mokra až 4%.[2]. Odolnost konopného vlákna vůči povětrnostním vlivům je z přírodních vláken nejvyšší [3]. Tab. 8: Základní vlastnosti konopného vlákna [4]. Hustota (g/cm 3 ) Youngův modul E (GPa) Pevnost v tahu (GPa) Prodloužení do přetržení (%) Vlhkost pohlcení (%) Konopí 1, ,6 8 Konopí se zpracovává jako technické vlákno převážně do výrobků, u kterých je potřebná vysoká pevnost a odolnost proti vlhkosti a povětrnostním vlivům. Tedy na technické tkaniny, obalové tkaniny, plachtoviny, popruhy, lana, provazy. Krátká vlákna jako těsnění vodovodního potrubí Bambusové vlákno Bambus je původně tropická rostlina, které se daří i v subtropických pásmech. Bambus je co do velikosti, lehkosti a meze pevnosti extrémní přírodnina. Díky těmto vlastnostem, daných strukturou bambusového stonku (obr.7c), je využíván bambus jako stabilní, extrémně lehký a pružný stavební materiál. Nejprve je stonek dužnatý a po dosažení určité výšky, odvislé od druhu a prostředí, začne dřevnatět. Travina bambus má obrovský růstový potenciál. Právě pro tuto svoji schopnost rychlé regenerace představuje ekologickou a cenově výhodnou alternativu pro dřevozpracující průmysl. Bambusový stonek se skládá z mnoha vlákenných svazků obklopených dřevovinou (xylen). Vlákna přispívají 60 až 70% k celkové váze tkáně stébla. Délka vláknových svazků je značně rozdílná u různých odrůd bambusu. Počet cévních svazků na milimetr čtvereční souvisí s modulem pružnosti a vláknová délka s pružným namáháním v ohybu. Bambusové vlákno je druh regenerovaného celulózového vlákna, které je vyrobeno ze surového bambusového materiálu. Bambusová buničina je pročištěna, což je proces hydrolizace-alkalizace, dále je bambusová buničina zpracovávána na vlákno. Základní složky bambusového vlákna jsou celulóza a lignin. U bambusu je těžké odstranit okrajový lignin kolem vláken, který způsobuje špatnou soudržnost s pryskyřicemi. Proto tedy musí být vlána ošetřeny pro nejlepší využití v průmyslové výrobě [4], [11]. 26

27 a) b) c) Obr. 7: a - rozmanitost bambusový stonků; b - bambus(guadua angustifolia) c - kořenová část bambusu [11]. Po ošetření mají bambusová vlákna relativně vysokou pevnost ve srovnání s travními vlákny, a mohou být srovnatelná se skleněnými vlákny, jakožto výztuž v kompozitech. V dnešní době se používají bambusová vlákna především v textilním průmyslu. Využití a vlastnosti bambusového vlákna jako výztuže kompozitních materiálů je předmětem výzkumu v posledních letech Vlákna z recyklovaného papíru Využití vláken z recyklovaného papíru jako výztuže kompozitních materiálů je relativně nová myšlenka a tudíž nejsou k dispozici konkrétní hodnoty mechanických vlastností těchto vláken ani materiálů, které by tímto způsobem byly vytvořeny. Vlákna se vyrábějí sušením roztoku recyklované papíroviny, kterou získáme stejným postupem jako při recyklaci papíru. Prvním krokem je namočení vstupní suroviny a její následné rozvláknění. To se děje v nádrži opatřené míchadlem. Obvykle se jedná o čistě mechanickou záležitost. Jen občas se přidává malé množství hydroxidu sodného (NaOH), který usnadní po rozvláknění nadcházejí operace hrubého třídění. U třídění se využívá rozdílné hustoty, či velikosti nečistot a papíroviny či vlákna. Třídiče pracují obvykle na principu cezení skrz síta s otvory o takové velikosti, aby jimi prošla (nebo neprošla) dobrá vlákna. Anebo se v kónické nádobě vyvolá průchodem suspenze vír, a pak se nečistoty o vyšší hustotě dostávají ke kraji víru a naopak nečistoty s nižší hustotou zůstávají ve středu. 27

28 Po hrubém třídění se dovlákňují nerozvlákněné smotky vláken. Děje se tak ryze mechanicky na dovlákňovacích zařízeních. Po nich následuje třídící linka, která odstraní nerozvlákněné zbytky. Pak následuje odstraňování velmi malých či rozpustných nečistot (barviv, pigmentů, plniv atp.) nastávají operace jemného třídění, obvykle nazývané jako deinking procesy. Těmi jsou obvykle flotace či praní. Při flotaci (obvykle za přítomnosti flotačního činidla, které bývá detergentem schopným se jedním koncem molekuly zachytit nečistoty a druhým koncem bublinky vzduchu - tj. druhý konec je špatně smáčivý) se suspenze vláken probublává vzduchem, který vynese nečistoty na povrch v podobě pěny, která se následně odstraňuje. Po tomto třídění zůstávají v suspenzi papíroviny převážně jen jemné nečistoty o hustotě blízké hustotě celulózy. Jedná se obvykle o polymerní materiály. Mají-li tyto látky nízký bod tání (cca C) nazývají se stickies. Bohužel stickies obvykle nejdou odstranit, pouze dispergovatelné stickies se dají rozptýlit zahřátím cca na 150 C. Po vyčištění papíroviny může (ale nemusí) následovat její zesvětlování, či bělení. Doplní se o různá plniva a nechá se usušit [12] Vybraný typ polymerní matrice Epoxidová pryskyřice Nejvšestrannější reaktoplasty pro konstrukční kompozity jsou epoxidové pryskyřice, vystupující pod zkratkou EP. Jako výztuž epoxidové pryskyřice se používá velké množství druhů vláken. Porovnání nejčastěji používaných vláken je v následující tab.9. Tab. 9: Vlastnosti vybraných vláken s objemovým podílem 60% v EP [7]. Vlastnost Jednotky Sklo / epoxy E - sklo Kevlar / epoxy Kevlar 49 Uhlík / epoxy T300 Hustota g/cm 3 1,94 1,3 1,47 Modul podélný GPa Modul příčný GPa 12 5,5 10,3 Smykový modul GPa 4,4 2,1 6,5 Poissonovo číslo 0,25 0,34 0,25 Pevnost tah. podélná MPa Pevnost tah. příčná MPa Pevnost tlak. podélná MPa Pevnost tlak. příčná MPa Smyková pevnost GPa

29 Vlastnosti závisí na chemické struktuře pryskyřice, použitém tvrdidlu a případných modifikujících složkách. V porovnání s ostatními reaktoplasty má epoxidová pryskyřice dobrou houževnatost a výbornou chemickou odolnost. Epoxidové pryskyřice jsou odolné proti únavě a tečení, a mají výbornou adhezi k vláknům. Vyznačují se malým smrštěním (okolo 2%), což je velmi výhodné pro výrobky s požadavkem na přesné rozměry. Přítomnost hydroxylových skupin (polární molekuly) způsobuje navlhavost. Přítomnost vody snižuje teplotu skelného přechodu pryskyřice a značně zhoršuje teplotní odolnost. Viskozita epoxidových pryskyřic v nevytvrzeném stavu je větší než u nenasycených polyesterových a vinylesterových pryskyřic. Vytvrzovací reakce u EP probíhá velmi pomalu a neuvolňují se žádné vedlejší produkty. Epoxidy se zpracovávají většinou odléváním. Hustota sítě ve vytvrzeném stavu souvisí s funkčností epoxidu. Teplotní odolnost epoxidů roste s jejich funkčností, tzv. čtyřfunkční epoxidy mají teplotu zeskelnění Tg 240 C [8]. Obr. 7: Chemický vzorec dvou a čtyř-funkční epoxidové pryskyřice [8]. Byla použita epoxidová pryskyřice typu CHS-EPOXY 371 spolu s tvrdidlem P11. CHS-EPOXY 371 je středně molekulární viskózní epoxidová pryskyřice modifikovaná nereaktivním zvláčňovadlem. Vytvrzuje se smísením s vhodnými tvrdidly při normální nebo zvýšené teplotě. CHS-Tvrdidlo P11 je směs technických polyalkylen polyaminů, obsahující převážně diethylentriamin [13]. 29

30 Tab. 10: Vlastnosti nevytvrzené pryskyřice CHS-EPOXY 371 [13]. Epoxidový index 2,5-3,0 [mol/kg] DIN Epoxidový hm. ekvivalent [g/mol] DIN Viskozita, 25 C [Pa s] DIN Viskozita, 23 C [Pa s] DIN Celkový obsah chloru max. 0,5 [%] CSN CHS-Epoxy 371 se s tvrdidlem P11 mísí v poměru 100 : 7 (g pryskyřice / g tvrdidla). Tab. 11: Vlastnosti vytvrzené pryskyřice CHS-EPOXY 371 [13]. Doba želatinace max. 150 [min.] Tvrdost po 24 hodinách min. 100 [MPa] Mez pevnosti ve smyku min. 20 [MPa] (Informativně) Mez pevnost v odlupu min. 400 [N] 3.3. Zvolená metoda pro vyhodnocení vlivu plnění na mechanické parametry Příprava vzorků spočívá v odlití tyček epoxidové pryskyřice plněné vybranými vlákny s odstupňovaným plněním 3, 6, 9 hmotn. %, jejich následným přetržením na trhacím stroji, odečtením hodnot a vyhodnocením. Nejedná se o normalizovanou metodu, výsledné hodnoty mají jen porovnávací charakter Tahová zkouška Tahová zkouška patří mezi mechanické statické zkoušky, kde se zatěžování děje plynule rostoucí silou až do porušení materiálu (síla není konstantní). Napěťové charakteristiky mechanických zkoušek se vyjadřují smluvním napětím. Napětí se vztahuje na původní rozměr S 0. Provádí se na zkušebních tělesech normovaných rozměrů a tvarů. Výstupem z tahové zkoušky je závislost poměrného prodloužení zkušebního materiálu na zatěžující síle, viz obr.8. Obr. 8: Obecný pracovní diagram tahové zkoušky. 30

31 Z počátku lineární závislost mezi napětím a prodloužením je oblast platnosti Hookova zákona: R = E ε [MPa] (1.1) kde je: R napětí v materiálu E Youngův modul pružnosti v tahu ε poměrné prodloužení zkušebního tělesa Se zvyšujícím se napětím v materiálu se dosáhne takového napětí, tzv. meze pružnosti, při kterém vzniká první trvalá deformace. Při vzniku výrazných trvalých deformací v materiálu mluvíme o mezi kluzu R e. Dále s rostoucím napětím se materiál trvale deformuje až do jeho přetržení. Maximální napětí, které je materiál schopen unést, nazýváme mez pevnosti a značíme jej R m. R m = F n / S 0 [MPa] (1.2) kde je: F n normálová síla S 0 plocha příčného průřezu zkušebního vzorku Dále se porovnává poměrné prodloužení v okamžiku přetržení, tzv. tažnost, která je dána vztahem: l l A = [%] (1.3) l 0 kde je: l 0 počáteční měřená délka zkušebního vzorku l měřená délka zkušebního vzorku po přetržení Příprava vzorků Jednotlivá vlákna byla vysušena při teplotě 140 C po dobu 24h. Poté se vlákna s pryskyřicí navážila ve vhodném poměru tak, aby se dosáhlo 3, 6, 9 hmotnostních procent vláken ve 20g pryskyřice. Tento objem pryskyřice s plnivem byl použit na odlití 6 vzorků při teplotě 22 C. Původně jsem chtěl vytvořit i vzorky s větším hmotnostním obsahem vláken v epoxidové matrici, ale díky velkému objemu vláken se nepodařilo zcela smočit povrch vláken, což je nutná podmínka soudržnosti vláken s matricí. 31

32 Prázdnou formu je před použitím třeba očistit a separovat pomocí separačního činidla (včelím voskem rozpuštěném v benzínu), pro jednoduší vyjmutí odlitku z formy. Máme-li formu připravenou, přidáme do pryskyřice s vlákny tvrdilo P11 viz obr. 9. Obr. 9: Nanášení tvrdidla P11 do pryskyřice s vlákny. Pryskyřice se s tvrdidlem mísí v poměru 100 : 7. Přidáním tvrdidla do pryskyřice začne probíhat chemická reakce, při níž se začnou prostorově propojovat makromolekuly polymeru a uvolňuje se tepelná energie. Za stálého míchání se mění viskozita pryskyřice. Při vhodné viskozitě (při delším míchání dochází už ke snižování viskozity vytvrzování) ručně nalijeme polymerní roztok do formy a uzavřeme, viz obr.10. Obr. 10: Plná forma těsně po dolití. 32

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE PLASTY VZTAH MEZI STRUKTUROU A VLASTNOSTMI Obsah Definice Rozdělení plastů Vztah mezi strukturou a vlastnostmi chemické složení a tvar molekulárních jednotek

Více

TECHNOLOGIE VSTŘIKOVÁNÍ

TECHNOLOGIE VSTŘIKOVÁNÍ TECHNOLOGIE VSTŘIKOVÁNÍ PRŮVODNÍ JEVY působení smykových sil v tavenině ochlazování hmoty a zvyšování viskozity taveniny pokles tlaku od ústí vtoku k čelu taveniny nehomogenní teplotní a napěťové pole

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Japonsko, Kajima Corp., PVA-ECC (Engineered Cementitious Composites)ohybová zkouška

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Japonsko, Kajima Corp., PVA-ECC (Engineered Cementitious Composites)ohybová zkouška KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE KOMPOZITNÍ MATERIÁLY Japonsko, Kajima Corp., PVA-ECC (Engineered Cementitious Composites)ohybová zkouška Obsah Definice kompozitních materiálů Synergické působení

Více

TECHNOLOGIE LEPENÍ V AUTOMOBILOVÉM PRŮMYSLU

TECHNOLOGIE LEPENÍ V AUTOMOBILOVÉM PRŮMYSLU TECHNOLOGIE LEPENÍ V AUTOMOBILOVÉM PRŮMYSLU Základy technologie lepení V současnosti se technologie lepení stala jednou ze základních technologií spojování kovů, plastů i kombinovaných systémů materiálů

Více

Podstata plastů [1] Polymery

Podstata plastů [1] Polymery PLASTY Podstata plastů [1] Materiály, jejichž podstatnou část tvoří organické makromolekulami látky (polymery). Kromě látek polymerní povahy obsahují plasty ještě přísady (aditiva) jejichž účelem je specifická

Více

Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával.

Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával. Keramika Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával. Chceme li definovat pojem keramika, můžeme říci, že je to materiál převážně krystalický,

Více

Chemické složení dřeva

Chemické složení dřeva Dřevo a jeho ochrana Chemické složení dřeva cvičení strana 2 Dřevo a jeho ochrana 2 Dřevo Znalost chemického složení je nezbytná pro: pochopení submikroskopické stavby dřeva pochopení činnosti biotických

Více

Základní formy využití polymerů. Aditivy do polymerních látek Plasty Nátěrové hmoty Vlákna

Základní formy využití polymerů. Aditivy do polymerních látek Plasty Nátěrové hmoty Vlákna Základní formy využití polymerů Aditivy do polymerních látek Plasty Nátěrové hmoty Vlákna ADITIVY DO POLYMERŮ POLMER + ADITIVUM = PLAST. PŘÍDAVNÉ LÁTKY DO HDPE/PP ZBYTKY KATALYTICKÉHO SYSTÉMU (SiO2, chromocen,

Více

TEXTILNÍ STROJE. Úvod do strojírenství (2009/2010) 10/1 Stanislav Beroun

TEXTILNÍ STROJE. Úvod do strojírenství (2009/2010) 10/1 Stanislav Beroun TEXTILNÍ STROJE Umění zpracovávat vlákna do vhodných útvarů pro potřeby člověka 4000 let před n.l. Vlákna: Přírodní - rostlinná ze semen (bavlna, kokos, ) lýková (len, konopí, juta, ) z listů (sisal, konopí,

Více

vytvrzení dochází v poslední části (zóně) výrobního zařízení. Profil opouštějící výrobní zařízení je zcela tvarově stálý a pevný.

vytvrzení dochází v poslední části (zóně) výrobního zařízení. Profil opouštějící výrobní zařízení je zcela tvarově stálý a pevný. Kompozity Jako kompozity se označují materiály, které jsou složeny ze dvou nebo více složek, které se výrazně liší fyzikálními a chemickými vlastnostmi. Spojením těchto složek vznikne zcela nový materiál

Více

Didaktická pomůcka k rozvoji polytechnického vzdělávání v MŠ vyrobená v rámci projektu

Didaktická pomůcka k rozvoji polytechnického vzdělávání v MŠ vyrobená v rámci projektu Didaktická pomůcka k rozvoji polytechnického vzdělávání v MŠ vyrobená v rámci projektu VZDUCH Venkovní Rozvoj učebna kreativity, využití poznávání školní různých zahrady druhů pro materiálů, rozvoj polytechnických

Více

LEPENÉ SPOJE. 1, Podstata lepícího procesu

LEPENÉ SPOJE. 1, Podstata lepícího procesu LEPENÉ SPOJE Nárůst požadavků na technickou úroveň konstrukcí se projevuje v poslední době intenzivně i v oblasti spojování materiálů, kde lepení je často jedinou spojovací metodou, která nenarušuje vlastnosti

Více

ZESILOVÁNÍ STAVEBNÍCH KONSTRUKCÍ EXTERNĚ LEPENOU KOMPOZITNÍ VÝZTUŽÍ

ZESILOVÁNÍ STAVEBNÍCH KONSTRUKCÍ EXTERNĚ LEPENOU KOMPOZITNÍ VÝZTUŽÍ Ing.Ondřej Šilhan, Ph.D. Minova Bohemia s.r.o, Lihovarská 10, 716 03 Ostrava Radvanice, tel.: +420 596 232 801, fax: +420 596 232 944, email: silhan@minova.cz ZESILOVÁNÍ STAVEBNÍCH KONSTRUKCÍ EXTERNĚ LEPENOU

Více

Ing. Stanislav Krmela, CSc.

Ing. Stanislav Krmela, CSc. Ing. Stanislav Krmela, CSc. Chemická vlákna KONOPÍ LEN Spotřební textilie Textilní užití přírodních vláken Oděvní textilie Textilie uspokojující potřeby bydlení stolní a ložní prádlo, dekorační a nábytkové

Více

2 MECHANICKÉ VLASTNOSTI SKLA

2 MECHANICKÉ VLASTNOSTI SKLA 2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Plasty Plasty, známé také pod názvem plastické hmoty nebo pod ne zcela přesným (obecnějším) názvem umělé hmoty,

Více

Termoplastové kompozity v leteckých aplikacích

Termoplastové kompozity v leteckých aplikacích Technologie výroby leteckých dílů z kompozitu na bázi uhlíkové vlákno a termoplastická matrice Ing. Abstrakt: Přednáška pojednává o použití kompozitu uhlík/polyfenylensulfid (PPS) pro výrobu dílů v letectví.

Více

Konstrukční desky z polypropylenu

Konstrukční desky z polypropylenu IMG Bohemia, s.r.o. Průmyslová 798, 391 02 Planá nad Lužnicí divize vstřikování Vypracoval: Podpis: Schválil: Podpis: Zdeněk Funda, DiS Ing. František Kůrka Verze: 03/12 Vydáno dne: 7.12.2012 Účinnost

Více

VÝVOJ TEPELNĚ IZOLAČNÍCH MATERIÁLŮ NA BÁZI PŘÍRODNÍCH VLÁKEN

VÝVOJ TEPELNĚ IZOLAČNÍCH MATERIÁLŮ NA BÁZI PŘÍRODNÍCH VLÁKEN VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV TECHNOLOGIE STAVEBNÍCH HMOT A DÍLCŮ FACULTY OF CIVIL INGINEERING INSTITUTE OF TECHNOLOGY OF BUILDING MATERIALS AND COMPONENTS

Více

Analýza ztráty stability sendvičových kompozitních panelů při zatížení tlakem

Analýza ztráty stability sendvičových kompozitních panelů při zatížení tlakem Analýza ztráty stability sendvičových kompozitních panelů při zatížení tlakem Ing. Jaromír Kučera, Ústav letadlové techniky, FS ČVUT v Praze Vedoucí práce: doc. Ing. Svatomír Slavík, CSc. Abstrakt Analýza

Více

Stromolezení. Téma 3.: Konstrukce a materiál textilních lan. 27.3. 2012, Brno. Připravili: prof. Ing. Jindřich Neruda, CSc. Ing.

Stromolezení. Téma 3.: Konstrukce a materiál textilních lan. 27.3. 2012, Brno. Připravili: prof. Ing. Jindřich Neruda, CSc. Ing. 27.3. 2012, Brno Připravili: prof. Ing. Jindřich Neruda, CSc. Ing. Pavel Nevrkla Ústav lesnické a dřevařské techniky Stromolezení Téma 3.: Konstrukce a materiál textilních lan strana 2 Úvod Pro práce ve

Více

Ing. Stanislav Krmela, CSc.

Ing. Stanislav Krmela, CSc. Ing. Stanislav Krmela, CSc. KONOPÍ LEN Textilní užití přírodních vláken Oděvní textilie Textilie uspokojující potřeby bydlení stolní a ložní prádlo, dekorační a nábytkové textilie, podlahové krytiny

Více

A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 3 _ N E K O V O V É T E C H N I C K É M A T

A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 3 _ N E K O V O V É T E C H N I C K É M A T A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 3 _ N E K O V O V É T E C H N I C K É M A T E R I Á L Y _ P W P Název školy: Číslo a název projektu:

Více

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA CHEMICKÁ ÚSTAV CHEMIE MATERIÁLŮ FACULTY OF CHEMISTRY INSTITUTE OF MATERIALS SCIENCE KOMPOZITY NA BÁZI PŘÍRODNÍCH VLÁKEN BAKALÁŘSKÁ PRÁCE

Více

Materiály charakteristiky potř ebné pro navrhování

Materiály charakteristiky potř ebné pro navrhování 2 Materiály charakteristiky potřebné pro navrhování 2.1 Úvod Zdivo je vzhledem k velkému množství druhů a tvarů zdicích prvků (cihel, tvárnic) velmi různorodý stavební materiál s rozdílnými užitnými vlastnostmi,

Více

Okruhy otázek ke zkoušce

Okruhy otázek ke zkoušce Kompozity A farao pokračoval: "Hle, lidu země je teď mnoho, a vy chcete, aby nechali svých robot? Onoho dne přikázal farao poháněčům lidu a dozorcům: Propříště nebudete vydávat lidu slámu k výrobě cihel

Více

Tření je přítel i nepřítel

Tření je přítel i nepřítel Tření je přítel i nepřítel VIDEO K TÉMATU: http://www.ceskatelevize.cz/porady/10319921345-rande-s-fyzikou/video/ Tření je v určitých případech i prospěšné. Jde o to, že řada lidí si myslí, že tření má

Více

Vývoj systémů nánosu pasty a pěny pro řízené porézní vrstvy a zvýšení životnosti filtračních textilií, vč. technologie crushed foam

Vývoj systémů nánosu pasty a pěny pro řízené porézní vrstvy a zvýšení životnosti filtračních textilií, vč. technologie crushed foam 4.2 Multifunkční zátěrové bariéry studie možnosti kombinace paropropustných efektů tepelných bariér - řešitel INOTEX s.r.o., TUL Souhrnná zpráva - Inotex (Marek, Martínková) 4.2.1. Filtrační textilie Vývoj

Více

NÁTĚRY OKEN - HISTORIE A SOUČASNOST Irena Kučerová

NÁTĚRY OKEN - HISTORIE A SOUČASNOST Irena Kučerová NÁTĚRY OKEN - HISTORIE A SOUČASNOST Irena Kučerová 1. Povětrnostní stárnutí dřeva Dřevo je tvořeno z 90-98 % z makromolekulárních látek, které formují strukturu buněčných stěn: celulózy, hemicelulóz a

Více

Nauka o materiálu. Přednáška č.14 Kompozity

Nauka o materiálu. Přednáška č.14 Kompozity Nauka o materiálu Úvod Technické materiály, které jsou určeny k dalšímu technologickému zpracování zahrnují širokou škálu možného chemického složení, různou vnitřní stavbu a různé vlastnosti. Je nutno

Více

METALOGRAFIE I. 1. Úvod

METALOGRAFIE I. 1. Úvod METALOGRAFIE I 1. Úvod Metalografie je nauka, která pojednává o vnitřní stavbě kovů a slitin. Jejím cílem je zviditelnění struktury materiálu a následné studium pomocí světelného či elektronového mikroskopu.

Více

Výztužné oceli a jejich spolupůsobení s betonem

Výztužné oceli a jejich spolupůsobení s betonem Výztužné oceli a jejich spolupůsobení s betonem Na vyztužování betonových konstrukcí používáme: a) výztuž betonářskou definovanou jako vyztuž nevyvozující předpětí v betonu. Vyrábí se v různých tvarech

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Zkoušky základních mechanických charakteristik konstrukčních materiálů (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti Skutečný

Více

KOMPOZITNÍ TYČE NA VYZTUŽENÍ BETONU

KOMPOZITNÍ TYČE NA VYZTUŽENÍ BETONU KOMPOZITNÍ TYČE NA VYZTUŽENÍ BETONU kompozitní tyče ARMASTEK dokonalá alternativa tradičního vyztužení betonu ocelovými tyčemi - - - + + + ŽELEZOBETON beton vyztužený ocelovými tyčemi základní chybou železobetonu

Více

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. Petr Tomčík a Jiří Hrubý b a) VŠB TU Ostrava, Tř. 17. listopadu 15, 708 33 Ostrava, ČR b) VŠB TU Ostrava, Tř. 17. listopadu 15,

Více

Vzhled Pryskyřice má formu nažloutlé průhledné folie síly 0,1 0,7 mm (dle přání zákazníka), pružné a tvárné při pokojové či zvýšené teplotě.

Vzhled Pryskyřice má formu nažloutlé průhledné folie síly 0,1 0,7 mm (dle přání zákazníka), pružné a tvárné při pokojové či zvýšené teplotě. Použití Fenolická pryskyřice ve formě fólie určená pro patentovanou Letoxit Foil Technologii (LF Technology), což je technologie suché laminace, která je zvláště vhodná pro výrobu laminátových struktur

Více

Konstrukční lepidla. Pro náročné požadavky. Proč používat konstrukční lepidla Henkel? Lepení:

Konstrukční lepidla. Pro náročné požadavky. Proč používat konstrukční lepidla Henkel? Lepení: Konstrukční lepidla Pro náročné požadavky Proč používat konstrukční lepidla Henkel? Sortiment konstrukčních lepidel společnosti Henkel zahrnuje širokou nabídku řešení pro různé požadavky a podmínky, které

Více

Výzkum vlivu materiálu formy na vlastnosti polymerních. Bc. Jan Švehlík

Výzkum vlivu materiálu formy na vlastnosti polymerních. Bc. Jan Švehlík Výzkum vlivu materiálu formy na vlastnosti polymerních výrobků Bc. Jan Švehlík Diplomová práce 2014 (3) Do práva autorského také nezasahuje škola nebo školské či vzdělávací zařízení, užije-li nikoli

Více

Plasty A syntetická vlákna

Plasty A syntetická vlákna Plasty A syntetická vlákna Plasty Nesprávně umělé hmoty Makromolekulární látky Makromolekuly vzniknou spojením velkého množství atomů (miliony) Syntetické či přírodní Známé od druhé pol. 19 století Počátky

Více

návrh designu s ohledem na dostupné materiály návrh designu bez ohledu na dostupné materiály

návrh designu s ohledem na dostupné materiály návrh designu bez ohledu na dostupné materiály Materiály SPŠ na Proseku 5-1 Ing. Lukáš Procházka - z materiál. hlediska je možné při návrhu uplatnit dva přístupy: návrh designu s ohledem na dostupné materiály - od počátku jsou uvažovány možnosti dostupných

Více

Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence)

Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence) Pružnost Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence) R. Hook: ut tensio, sic vis (1676) 1 2 3 Pružnost 1) Modul pružnosti 2) Vazby mezi atomy

Více

Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy vláken Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy různých vláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová

Více

Podniková norma 6-2-15. Stěnové prvky z polypropylenu. Divize vstřikování Tento dokument je řízen v elektronické podobě

Podniková norma 6-2-15. Stěnové prvky z polypropylenu. Divize vstřikování Tento dokument je řízen v elektronické podobě IMG Bohemia, s.r.o. Vypracoval: Ing. Vlastimil Hruška Verze: 2/15 Průmyslová 798 Podpis: Vydáno: 26. 2. 2015 391 02 Planá nad Lužnicí Schválil: Ing. František Kůrka Účinnost: 26. 2. 2015 Divize vstřikování

Více

KLUZNÁ LOŽISKA Vysoká škola technická a ekonomická v Českých Budějovicích

KLUZNÁ LOŽISKA Vysoká škola technická a ekonomická v Českých Budějovicích KLUZNÁ LOŽISKA Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů

Více

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních. 1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné

Více

Ochrana a oprava. betonových konstrukcí. ve shodě s evropskou normou UNI EN 1504

Ochrana a oprava. betonových konstrukcí. ve shodě s evropskou normou UNI EN 1504 Ochrana a oprava betonových konstrukcí ve shodě s evropskou normou UNI EN 1504 MAPEI má od ledna 2008 certifikované Výrobky a systémy pro ochranu a opravu betonových konstrukcí, už v lednu 2009 bylo zavedeno

Více

DRIZORO CARBOMESH BIAXIÁLNÍ TKANINA Z UHLÍKOVÝCH VLÁKEN S VYSOKOU PEVNOSTÍ PRO OPRAVY A ZESILOVÁNÍ KONSTRUKCÍ POPIS: POUŽITÍ: VÝHODY: APLIKCE:

DRIZORO CARBOMESH BIAXIÁLNÍ TKANINA Z UHLÍKOVÝCH VLÁKEN S VYSOKOU PEVNOSTÍ PRO OPRAVY A ZESILOVÁNÍ KONSTRUKCÍ POPIS: POUŽITÍ: VÝHODY: APLIKCE: DRIZORO CARBOMESH BIAXIÁLNÍ TKANINA Z UHLÍKOVÝCH VLÁKEN S VYSOKOU PEVNOSTÍ PRO OPRAVY A ZESILOVÁNÍ KONSTRUKCÍ POPIS: POUŽITÍ: VÝHODY: APLIKCE: DRIZORO CARBOMESH je tkanina z uhlíkových vláken s vysokou

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Studijní program: B2301 Strojní inženýrství Studijní zaměření: Strojírenská technologie-technologie obrábění BAKALÁŘSKÁ PRÁCE Přesné obrábění vnějších válcových

Více

NÁVRH MATERIÁLU A POVRCHOVÉ ÚPRAVY PRO ŘEZNÉ NÁSTROJE URČENÝCH K OBRÁBĚNÍ PRYŽOVÝCH HADIC ZPEVNĚNÝCH KEVLAREM

NÁVRH MATERIÁLU A POVRCHOVÉ ÚPRAVY PRO ŘEZNÉ NÁSTROJE URČENÝCH K OBRÁBĚNÍ PRYŽOVÝCH HADIC ZPEVNĚNÝCH KEVLAREM NÁVRH MATERIÁLU A POVRCHOVÉ ÚPRAVY PRO ŘEZNÉ NÁSTROJE URČENÝCH K OBRÁBĚNÍ PRYŽOVÝCH HADIC ZPEVNĚNÝCH KEVLAREM Bc. Jiří Hodač Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika

Více

PMC - kompozity s plastovou matricí

PMC - kompozity s plastovou matricí PMC - kompozity s plastovou matricí Rozdělení PMC PMC částicové vláknové Matrice elastomer Matrice elastomer Matrice termoplast Matrice termoplast Matrice reaktoplast Matrice reaktoplast Částice v polymeru

Více

6 PROTIPOŽÁRNÍ DESKOVÉ OBKLADY

6 PROTIPOŽÁRNÍ DESKOVÉ OBKLADY 6 PROTIPOŽÁRNÍ DESKOVÉ OBKLADY Ve srovnání s protipožárními nátěry a nástřiky, které slouží především pro zvýšení požární odolnosti nosných, zejména tyčových prvků, mohou být protipožární deskové obklady

Více

Poškození laku. Prevence, rozpoznání, ochrana. téma materiály & technologie

Poškození laku. Prevence, rozpoznání, ochrana. téma materiály & technologie téma materiály & technologie Poškození laku Prevence, rozpoznání, ochrana Článek s bohatou fotografickou dokumentací se zabývá aspekty kvalitní ochrany dřeva. Všímá si především vlivu správného opracování

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 3. ROZDĚLENÍ PLASTŮ TERMOPLASTY, REAKTOPLASTY; MECHANICKÉ CHOVÁNÍ PLASTŮ; KAUČUKY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento

Více

CENTRUM VZDĚLÁVÁNÍ PEDAGOGŮ ODBORNÝCH ŠKOL

CENTRUM VZDĚLÁVÁNÍ PEDAGOGŮ ODBORNÝCH ŠKOL Projekt: CENTRUM VZDĚLÁVÁNÍ PEDAGOGŮ ODBORNÝCH ŠKOL Kurz: Technologie třískového obrábění 1 Obsah Technologie třískového obrábění... 3 Obrábění korozivzdorných ocelí... 4 Obrábění litiny... 5 Obrábění

Více

ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY

ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY Důvody a cíle pro statické zesilování a zajištění konstrukcí - zvýšení užitného zatížení - oslabení konstrukce - konstrukční chyba - prodloužení

Více

Vlastnosti, poškozování, konzervační postupy

Vlastnosti, poškozování, konzervační postupy UMĚLÉ HMOTY Vlastnosti, poškozování, konzervační postupy Polosyntetické (polymerizovány z přírodních surovin) a syntetické (zcela uměle) Historie Vznik plastických hmot-polovina 19.století, rychlé rozšíření.

Více

Únosnosti stanovené níže jsou uvedeny na samostatné stránce pro každý profil.

Únosnosti stanovené níže jsou uvedeny na samostatné stránce pro každý profil. Směrnice Obsah Tato část se zabývá polyesterovými a vinylesterovými konstrukčními profily vyztuženými skleněnými vlákny. Profily splňují požadavky na kvalitu dle ČSN EN 13706. GDP KORAL s.r.o. může dodávat

Více

Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA

Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA YCHS, XCHS I. Úvod: plán přednášek a cvičení, podmínky udělení zápočtu a zkoušky. Základní pojmy: jednotky a veličiny, základy chemie. Stavba atomu a chemická vazba. Skupenství látek, chemické reakce,

Více

VYZTUŽOVÁNÍ STRUKTURY BETONU OCELOVÝMI VLÁKNY. ČVUT Fakulta stavební, katedra betonových konstrukcí a mostů, Thákurova 7, 166 29 Praha 6, ČR

VYZTUŽOVÁNÍ STRUKTURY BETONU OCELOVÝMI VLÁKNY. ČVUT Fakulta stavební, katedra betonových konstrukcí a mostů, Thákurova 7, 166 29 Praha 6, ČR VYZTUŽOVÁNÍ STRUKTURY BETONU OCELOVÝMI VLÁKNY Karel Trtík ČVUT Fakulta stavební, katedra betonových konstrukcí a mostů, Thákurova 7, 166 29 Praha 6, ČR Abstrakt Článek je zaměřen na problematiku vyztužování

Více

Prof. Ing. Václav Švorčík, DrSc.

Prof. Ing. Václav Švorčík, DrSc. Prof. Ing. Václav Švorčík, DrSc. Ústav inženýrství pevných látek Fakulta chemické technologie Vysoká škola chemicko-technologická v Praze tel.: 220445149, 220445150 e-mail: vaclav.svorcik@vscht.cz Sylabus

Více

Silly putty ( inteligentní plastelína ) V USA za II.sv.války jako možná (neúspěšná) náhrada nedostatkové pryže (kyselina boritá + silikonový olej)

Silly putty ( inteligentní plastelína ) V USA za II.sv.války jako možná (neúspěšná) náhrada nedostatkové pryže (kyselina boritá + silikonový olej) PRYŽ Silly putty ( inteligentní plastelína ) V USA za II.sv.války jako možná (neúspěšná) náhrada nedostatkové pryže (kyselina boritá + silikonový olej) Vlastnosti pryže Velká elasticita (pružiny, těsnění,

Více

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou.

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. 1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. Z hlediska použitelnosti kovů v technické praxi je obvyklé dělení

Více

Vypracoval: Ing. Vojtěch Slavíček Vydání: 1 Schválil dne: 01.02.2015 František Klípa

Vypracoval: Ing. Vojtěch Slavíček Vydání: 1 Schválil dne: 01.02.2015 František Klípa DISTANCE OCELOVÉ TYPU D Strana: 1/6 1. VŠEOBECNĚ 1.1 Rozsah platnosti (1) Tato podniková norma platí pro výrobu, kontrolu, dopravu, skladování a objednávání svařovaných ocelových distancí výrobce FERT

Více

VÝROBKY PRÁŠKOVÉ METALURGIE

VÝROBKY PRÁŠKOVÉ METALURGIE 1 VÝROBKY PRÁŠKOVÉ METALURGIE Použití práškové metalurgie Prášková metalurgie umožňuje výrobu součástí z práškových směsí kovů navzájem neslévatelných (W-Cu, W-Ag), tj. v tekutém stavu nemísitelných nebo

Více

Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA

Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA o Anotace a cíl předmětu: návrh stavebních konstrukcí - kromě statické funkce důležité zohlednit nároky na vnitřní pohodu uživatelů

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODOVÁNÍ V MCHANIC MCHANIKA KOMPOZINÍCH MARIÁŮ Přednáška č. 5 Prof. Ing. Vladislav aš, CSc. Základní pojmy pružnosti Vlivem vnějších sil se těleso deformuje a vzniká v něm napětí dn Normálové napětí

Více

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Keramika Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Tuhost a váha materiálů Keramika má největší tuhost z technických materiálů Keramika je lehčí než kovy, ale

Více

11. Omítání, lepení obkladů a spárování

11. Omítání, lepení obkladů a spárování 11. Omítání, lepení obkladů a spárování Omítání, lepení obkladů a spárování 11.1 Omítání ve vnitřním prostředí Pro tyto omítky platí EN 998-1 Specifikace malt pro zdivo Část 1: Malty pro vnitřní a vnější

Více

2 Kotvení stavebních konstrukcí

2 Kotvení stavebních konstrukcí 2 Kotvení stavebních konstrukcí Kotvení stavebních konstrukcí je velmi frekventovanou metodou speciálního zakládání, která umožňuje přenos tahových sil z konstrukce do horninového prostředí, případně slouží

Více

Obsah 5. Obsah. Úvod... 9

Obsah 5. Obsah. Úvod... 9 Obsah 5 Obsah Úvod... 9 1. Základy výživy rostlin... 11 1.1 Rostlinné živiny... 11 1.2 Příjem živin rostlinami... 12 1.3 Projevy nedostatku a nadbytku živin... 14 1.3.1 Dusík... 14 1.3.2 Fosfor... 14 1.3.3

Více

BIOMASA OBNOVITELNÝ ZDROJ ENERGIE

BIOMASA OBNOVITELNÝ ZDROJ ENERGIE INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 BIOMASA OBNOVITELNÝ ZDROJ ENERGIE

Více

Plasty. Základy materiálového inženýrství. Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010

Plasty. Základy materiálového inženýrství. Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Plasty Základy materiálového inženýrství Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Základní vlastnosti plastů Výroba z levných surovin. Jsou to sloučeniny

Více

Jaromír Literák. Zelená chemie Problematika odpadů, recyklace

Jaromír Literák. Zelená chemie Problematika odpadů, recyklace Zelená chemie Problematika odpadů, recyklace Problematika odpadů Vznik odpadů a odpadní energie ve všech fázích životního cyklu. dpadem se může stát samotný výrobek na konci životního cyklu. Vznik odpadů

Více

24.-26.5.2005, Hradec nad Moravicí POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM

24.-26.5.2005, Hradec nad Moravicí POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM EFFECT OF SODIUM MODIFICATION ON THE STRUCTURE AND PROPERTIES OF POLYCOMPONENT Mg ALLOYS Luděk Ptáček, Ladislav Zemčík VUT v Brně, Fakulta strojního

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV KONSTRUOVÁNÍ

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV KONSTRUOVÁNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV KONSTRUOVÁNÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MACHINE AND INDUSTRIAL DESIGN ČELNÍ OZUBENÁ KOLA

Více

Materiály pro stavbu rámů

Materiály pro stavbu rámů Materiály pro nosnou soustavu CNC obráběcího stroje Pro konstrukci rámu (nosné soustavy) obráběcího stroje lze využít různé materiály (obr.1). Při volbě druhu materiálu je vždy nutno posuzovat mimo jiné

Více

Vláknové kompozitní materiály, jejich vlastnosti a výroba

Vláknové kompozitní materiály, jejich vlastnosti a výroba Kap. 1 Vláknové kompozitní materiály, jejich vlastnosti a výroba Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVUT v Praze 26. října 2007 1

Více

Metalografie ocelí a litin

Metalografie ocelí a litin Metalografie ocelí a litin Metalografie se zabývá pozorováním a zkoumáním vnitřní stavby neboli struktury kovů a slitin. Dále také stanoví, jak tato struktura souvisí s chemickým složením, teplotou a tepelným

Více

TECHNOLOGIE II (tváření kovů a plastů)

TECHNOLOGIE II (tváření kovů a plastů) TECHNOLOGIE II (tváření kovů a plastů) : (princip, vstřikovací cyklus, technologické parametry, speciální způsoby vstřikování) Autor přednášky: Ing. Jiří SOBOTKA, Ph.D. Pracoviště: TUL FS, Katedra strojírenské

Více

Umělý kámen užití a vlastnosti

Umělý kámen užití a vlastnosti Umělý kámen užití a vlastnosti 1. 2. 2010 Při obnově nebo restaurování kamenných objektů sochařských děl, architektonických prvků apod. se často setkáváme s potřebou doplnění chybějících částí. Jsou v

Více

ETAG 004 VNĚJŠÍ KONTAKTNÍ TEPELNĚ IZOLAČNÍ SYSTÉMY S OMÍTKOU ŘÍDÍCÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ EOTA. Vydání z března 2000

ETAG 004 VNĚJŠÍ KONTAKTNÍ TEPELNĚ IZOLAČNÍ SYSTÉMY S OMÍTKOU ŘÍDÍCÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ EOTA. Vydání z března 2000 Evropská organizace pro technické schvalování Vydání z března 2000 ŘÍDÍCÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ VNĚJŠÍ KONTAKTNÍ TEPELNĚ IZOLAČNÍ SYSTÉMY S OMÍTKOU EOTA Kunstlaan 40 Avenue des Arts B

Více

Základy textilní a oděvní výroby 2, podzim 2011

Základy textilní a oděvní výroby 2, podzim 2011 Základy textilní a oděvní výroby 2, podzim 2011 Přednáška č.1 Petr Benešovský, benesovsky@tzu.cz 21.10. 14:30-16:00, učebna 25 - organizace výuky, studijní materiály, poţadavky ke zkoušce - textilní průmysl

Více

Výrobky válcované za tepla z jemnozrnných svařitelných konstrukčních ocelí termomechanicky válcované. Technické dodací podmínky

Výrobky válcované za tepla z jemnozrnných svařitelných konstrukčních ocelí termomechanicky válcované. Technické dodací podmínky Výrobky válcované za tepla z jemnozrnných svařitelných konstrukčních ocelí termomechanicky válcované. Technické dodací podmínky Způsob výroby Dodací podmínky ČS E 10025 4 září 2005 Způsob výroby volí výrobce..

Více

Metodika hodnocení strukturních změn v ocelích při tepelném zpracování

Metodika hodnocení strukturních změn v ocelích při tepelném zpracování Metodika hodnocení strukturních změn v ocelích při tepelném zpracování Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Abstrakt Předložená práce se zabývá volbou metodiky hodnocení strukturních změn ve vysokolegovaných

Více

č. 337/2010 Sb. VYHLÁŠKA ze dne 22. listopadu 2010 o emisních limitech a dalších podmínkách provozu ostatních stacionárních zdrojů znečišťování

č. 337/2010 Sb. VYHLÁŠKA ze dne 22. listopadu 2010 o emisních limitech a dalších podmínkách provozu ostatních stacionárních zdrojů znečišťování č. 337/2010 Sb. VYHLÁŠKA ze dne 22. listopadu 2010 o emisních limitech a dalších podmínkách provozu ostatních stacionárních zdrojů znečišťování ovzduší emitujících a užívajících těkavé organické látky

Více

tesa Samolepicí pásky Využití samolepicích pásek v průmyslu KATALOG VÝROBKŮ

tesa Samolepicí pásky Využití samolepicích pásek v průmyslu KATALOG VÝROBKŮ tesa Samolepicí pásky Využití samolepicích pásek v průmyslu KATALOG VÝROBKŮ Cokoli potřebujete udělat tesa má optimální řešení Vítejte u přehledu sortimentu samolepicích pásek tesa určených pro průmysl

Více

Požadavky na konstrukci a zkoušení velkých nádob pro volně ložené látky (IBC)*

Požadavky na konstrukci a zkoušení velkých nádob pro volně ložené látky (IBC)* Kapitola 6.5 Požadavky na konstrukci a zkoušení velkých nádob pro volně ložené látky (IBC)* * Pro účely českého vydání se takto překládá anglický výraz "Intermediate Bulk Conteiner" Nadále bude užívána

Více

MINERALOGICKÉ A GEOCHEMICKÉ ZHODNOCENÍ KOROZIVNÍCH PRODUKTŮ POZINKOVANÝCH ŽELEZNÝCH TRUBEK

MINERALOGICKÉ A GEOCHEMICKÉ ZHODNOCENÍ KOROZIVNÍCH PRODUKTŮ POZINKOVANÝCH ŽELEZNÝCH TRUBEK MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH VĚD MINERALOGICKÉ A GEOCHEMICKÉ ZHODNOCENÍ KOROZIVNÍCH PRODUKTŮ POZINKOVANÝCH ŽELEZNÝCH TRUBEK (Rešerše k bakalářské práci) Jana Krejčí Vedoucí

Více

Finální úpravy textilií III. Doc. Ing. Michal Vik, Ph.D., Ing. Martina Viková, Ph.D.

Finální úpravy textilií III. Doc. Ing. Michal Vik, Ph.D., Ing. Martina Viková, Ph.D. Finální úpravy textilií III Doc. Ing. Michal Vik, Ph.D., Ing. Martina Viková, Ph.D. Protižmolková úprava I Tkaniny a pleteniny vyrobené z přízí ze syntetických vláken, především z PAN nebo PES, mají sklon

Více

POŽADAVKY NA KONSTRUKCI, VÝROBU, VÝSTROJ, SCHVALOVÁNÍ TYPU, ZKOUŠENÍ A ZNA

POŽADAVKY NA KONSTRUKCI, VÝROBU, VÝSTROJ, SCHVALOVÁNÍ TYPU, ZKOUŠENÍ A ZNA KAPITOLA 6.9 POŽADAVKY NA KONSTRUKCI, VÝROBU, VÝSTROJ, SCHVALOVÁNÍ TYPU, ZKOUŠENÍ A ZNAČENÍ NESNÍMATELNÝCH CISTEREN (CISTERNOVÝCH VOZIDEL), SNÍMATELNÝCH CISTEREN, CISTERNOVÝCH KONTEJNERŮ A VÝMĚNNÝCH CISTERNOVÝCH

Více

HŘÍDELOVÉ SPOJKY A BRZDY

HŘÍDELOVÉ SPOJKY A BRZDY HŘÍDELOVÉ SPOJKY A BRZDY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

České vysoké učení technické v Praze Fakulta stavební - zkušební laboratoř Thákurova 7, 166 29 Praha 6 Pracoviště zkušební laboratoře:

České vysoké učení technické v Praze Fakulta stavební - zkušební laboratoř Thákurova 7, 166 29 Praha 6 Pracoviště zkušební laboratoře: Pracoviště zkušební laboratoře: 1. OL 123 Odborná laboratoř stavebních materiálů Thákurova 7, 166 29 Praha 6 2. OL 124 Odborná laboratoř konstrukcí pozemních staveb Thákurova 7, 166 29 Praha 6 3. OL 132

Více

ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI

ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI 1. cvičení ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI Podmínky pro uznání části Konstrukce aktivní účast ve cvičeních, předložení výpočtu zadaných příkladů. Pomůcky pro práci ve cvičeních psací potřeby a kalkulačka.

Více

Metody termické analýzy. 3. Termické metody všeobecně. Uspořádání experimentů.

Metody termické analýzy. 3. Termické metody všeobecně. Uspořádání experimentů. 3. ermické metody všeobecně. Uspořádání experimentů. 3.1. vhodné pro polymery a vlákna ermická analýza je širší pojem pro metody, při nichž se měří fyzikální a chemické vlastnosti látky nebo směsi látek

Více

Životnost povrchové úpravy

Životnost povrchové úpravy téma materiály & technologie Životnost povrchové úpravy dřevěných stavebně-truhlářských konstrukcí a dílů Faktorů ovlivňujících životnost dřeva a jeho povrchové úpravy existuje široká škála a uplatňují

Více

TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA TEXTILNÍ BAKALÁŘSKÁ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA TEXTILNÍ BAKALÁŘSKÁ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA TEXTILNÍ BAKALÁŘSKÁ PRÁCE LIBEREC 2010 IVETA POHÁNKOVÁ TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA TEXTILNÍ Studijní program: B3107 Textil Studijní obor: 3107R007 Textilní

Více

II. pondělí 3) fyzikální vlastnosti

II. pondělí 3) fyzikální vlastnosti II. pondělí 3) fyzikální vlastnosti Graf rovnovážné vlhkosti dřeva stanovuje, jakou vlhkost bude mít dřevo, při dané teplotě a vlhkosti vzduchu v okolí. Všimněte si že i při nejvyšší vlhkosti či teplotě

Více

Seznam technických návodů k NV č. 163/2002 Sb., ve znění NV č. 312/2005 Sb. pro rok 2015

Seznam technických návodů k NV č. 163/2002 Sb., ve znění NV č. 312/2005 Sb. pro rok 2015 Seznam technických návodů k NV č. 163/2002 Sb., ve znění NV č. 312/2005 Sb. pro rok 2015 Seznam-skupina-podskup. zcela / částečně Název skupiny výrobků Název podskupiny výrobků přešlo pod CPR 01_01_01

Více