Fyzika laserů. 7. března Katedra fyzikální elektroniky.

Rozměr: px
Začít zobrazení ze stránky:

Download "Fyzika laserů. 7. března Katedra fyzikální elektroniky."

Transkript

1 Fyzika laserů Poloklasický popis šíření elmg. záření v rezonančním prostředí. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 7. března 2013

2 Program přednášek 1. Kvantová teorie tlumení, řídící rovnice 2. Aplikace na atom, Pauliho rovnice 3. Poloklasický popis interakce záření s látkou 4. Aplikace na šíření rezonančního záření prostředím 5. Aplikace na laser kontinuální režim 6. Aplikace na laser Q-spínání 7. Koherentní šíření impulzů 8. Další jevy v poloklasické aproximaci 9. Spektrum laseru a režim synchronizace módů 10. Kvantová teorie laseru, F.-P. rovnice 11. F.-P. rovnice pro záření a atom 12. F.-P. rovnice pro laser 13. Statistické vlastnosti laserového záření

3 Interakce ATOM REZERVOÁR Systém Rezervoár ĤS S ˆV ĤR R ˆρS ˆρR ĤT, ˆρSR Ĥ S l = E l l l m = δ lm P l l l = 1 ˆϱ I S t = X k,l Hamiltonián celého systému: Obrázek 2.1: Soustava = Systém + Reservoir Ĥ = ĤS + ĤR + ˆV (2.1) Reservoir: Velký počet stupňů volnosti V důsledku interakce se systémem n [ βĥr ] l k ˆϱ exp I ˆρR = S k l w [ βĥr ] lk k k ˆϱ I S w + kllk ˆϱ I S k k w kllk + (2.2) T rr exp Liouvilova rovnice - evoluce statistického operátoru v interakční reprezentaci: i h ˆρI t = [ ˆV I, ˆρ I ] Interakce je dipólová ˆV P = k,l f k,l k l = eˆ r ˆ E h ˆV + Ĥ S + ĤR, ˆρC i i ˆρ C = t Liouvilova rovnice řídící rovnice Elektromagnetické pole v termodynamické rovnováze o X + k k ˆϱ I S l l w + llkk + w llkk k, l (2.3)

4 Interakce rezonančního záření s prostředím poloklasický popis Prostředí soubor kvantových soustav (dvouhladinových), popisuje SR kvantově (diskrétní systém hladin, vlnová funkce, 3 procesy interakce, změna energie změna konfigurace změna dipólového momentu) Záření elektromagnetická vlna, popisují MR klasicky Rezonanční záření frekvence v rezonanci s kvantovým přechodem (Bohrův vztah) Interakce záření s hmotou prostřednictvím polarizace prostředí (dipólového momentu elementárních KS) Ŵ = ˆ d E(t) Pole klasicky + prostředí kvantově poloklasický popis Pauliho rovnice popisují chování tlumené kvantové soustavy s pomocí časového vývoje elementů matice hustoty. Přechodem k makroskopickým veličinám P a N získáme rovnice pro odezvu prostředí.

5 Rovnice poloklasické teorie interakce hmoty a pole E 1 2 E c 2 t = µ 2 P 2 0 (1) t 2 " t ω 21 T 2 t + 1 T 1 # N N 0 = P = 2ω 21 E d 21 2 N (2) 2E ω 21 t + 1 P (3) T 2 Zahrnují všechny kvantové aspekty odezvy dvouhladinové kvantové soustavy Vzájemně vázané nelineární vektorové parciální diferenciální rovnice druhého řádu vlastně je to celkem 7 rovnic E Elmag. pole T 1 Relaxace inverze populace hladin P Makroskopická polarizace T 2 Relaxace makroskopické polarizace N Inverze populace hladin ω 21 Rezonanční frekvence N 0 Inverze populace hladin d 21 Velikost dipólového bez vnějšího pole momentu

6 Rovnice pro komplexní analyticky sdružený signál Měřitelné veličiny jsou reprezentovány reálnými čísly nebo reálnými funkcemi Někdy je výhodné reálným signálům přiřadit komplexní funkce komplexní analyticky sdružený signál, přitom jeho reálná část je rovna reálnému (skutečnému) signálu. Např. rovinná elektromagnetická vlna: E (r) = i ye 0 cos(ωt kz + Φ) Příslušný komplexní analyticky sdružený signál: E = i ye 0 e i(ωt kz+φ). Z komplexního analyticky sdruženého signálu je snadné vyjádřit reálné signály E (r) = 1 2 ( E + E ), P (r) = 1 2 ( P + P ) Po dosazení do soustavy rovnic poloklasické teorie (DC 2.8): " E 1 2 E c 2 t = µ 2 P 2 0 t, (4) 2 t + 1 T ω 2 21 # P = 2 ω 21 d 21 2 EN, (5). (6) t + 1 T 1 (N N 0 ) = 1 2 ω 21 E t + 1 T 2 P + E t + 1 T 2 P

7 Šíření stacionárních signálů v rezonančním prostředí Stacionární signál monochromatické elektromagnetické pole, jehož amplituda i fáze jsou funkcemi jen prostorových souřadnic. Disperzní prostředí rychlost šíření záření v tomto prostředí závisí na frekvenci. Disperze bývá popisována závislostí susceptibility χ na kruhové frekvenci ω. Homogenní, lineární a isotropní prostředí: Fázová rychlost vlny Index lomu P = ε 0 χ E, E 1 + χ 2 E c0 2 t = 0, 2 v = c 0 p (1 + χ) n ref = p (1 + χ)

8 Disperzní vlastnosti rezonančního prostředí Hledáme výraz pro polarizaci ve tvaru P = ε 0 χ E. Výchozí rovnice: " t # + ω21 2 T 2 t + 1 T 1 N N 0 = P = 2ω 21 E d 21 2 N 2E ω 21 t + 1 P T 2 Uvažujeme slabý signál E bude malá i polarizace P Inverze populace hladin N se blíží své ustálené hodnotě N 0 Šíření harmonických signálů s kruhovou frekvencí ω ve směru osy z: E = E 0 (z, ω)e iω t, P = P0 (z, ω)e iω t Odezvu prostředí popisuje rovnice pro polarizaci: " t # + ω21 2 T 2 P. = 2ω 21 E d 21 2 N 0 Pro susceptibilitu dostaneme ( P/ t = iω P): P χ(ω) = 0 (z, ω). = 2 ω 21 d 21 2 N 0. ε 0E0 (z, ω) ε 0 (iω + 1 ) T 2 + ω Susceptibilita χ(ω) komplexní, frekvenčně závislá veličina

9 Disperzní vlastnosti rezonančního prostředí Pro susceptibilitu máme: χ(ω) =. 2 ω 21 d 21 2 N 0. ε 0 (iω + 1 ) T 2 + ω Pro velké blízké frekvence ω 21 a ω (ω 21 + ω. = 2ω 21, ω ω 21 = ω): χ( ω). = d 21 2 N 0 ε 0 ω + i T T 2 2 ω 21 Předpokládáme T 2 ω 1 21 (T s, ω s 1 ) χ( ω). = d 21 2 N 0 ε 0 ω + i T 2 Susceptibilitu rozložíme na reálnou a imaginární složku (DC 2.10): χ ( ω) = χ( ω) = χ ( ω) + iχ ( ω) d 21 2 N 0 d ω 21 2 N 0 1 ε 0 ( ω) 2 + ( 1 ), T 2 χ ε ( ω) = 0 T 2 ( ω) 2 + ( 1 ). 2 T 2 2

10 Disperzní vlastnosti rezonančního prostředí χ (ω) = d 21 2 N 0 d ω 21 2 N 0 1 ε 0 ( ω) 2 + ( 1 ), T 2 χ ε (ω) = 0 T 2 ( ω) 2 + ( 1 ). 2 T 2 2

11 Šíření rovinné vlny Obecný popis šíření udává vlnová rovnice E 1 c E t 2 = µ 0ε 0 χ 2 E t 2 Šíření slabého harmonického signálu je popsáno řešením homogenní rovnice: E + ω2 c 2 0 E = χ ω2 E c0 2 Předpokládáme řešení ve tvaru rovinné lineárně polarizované vlny: E = i ye 0 exp i(ω t kz + Φ) Nutná podmínka pro existenci řešení v tomto tvaru, tzv. disperzní vztah: k 2 + ω2 c 2 (1 + χ + iχ ) = 0 k je obecně komplexní číslo k = k + ik, pro k k : k = ω p (1 + χ ), k = 1 ω χ p c 2 c (1 + χ ).

12 Šíření rovinné vlny χ (ω) = k = ω c p (1 + χ ), k = 1 ω χ p 2 c (1 + χ ) d 21 2 N 0 d ω 21 2 N 0 1 ε 0 ( ω) 2 + ( 1 ), T 2 χ ε (ω) = 0 T 2 ( ω) 2 + ( 1 ). 2 T 2 2

13 Zesílení Komplexní intenzita elektrického pole: E = i ye 0 e k z e i(ωt k z+φ) Příslušné reálné pole: E (r) = i ye 0 e k z cos (ωt k z + Φ) V závislosti na znaménku k (znaménko N 0 ) amplituda vlny bud exponenciálně vzrůstá (+) nebo klesá ( ). Plošná hustota výkonu I = 1 2 c 0ε 0 E 2 : I(z) = I 0 e g 0z I 0 je intenzita záření v rovině z = 0 a g 0 = 2k je součinitel zesílení slabého signálu.

14 Součinitel zesílení Spektrální závislost součinitele zesílení (absorbce): g 0 (ω) = 2k (ω) = ω 21 d 21 2 N 0 cε 0 1 T T 2 ( ω) 2 + ( 1 ) = g T ( ω) T 2 Šířka spektrální čáry převrácená hodnota doby relaxace polarizace T 2 Přesná rezonance ( ω = 0): g 0 = ω 21 d 21 2 cε 0 N 0 T 2 = σn 0 Účinný průřez pro stimulovanou emisi (absorpci): σ = ω 21 d 21 2 T 2 cε 0

15 Tvar spektrální čáry Homogenní rozšíření Nehomogenní rozšíření Jednotlivé kvantové soustavy mají stejnou rezonanční frekvenci ω 21. Výsledný spektrální profil se shoduje se spektrem jedné KS. Lorentzovská křivka Jednotlivé kvantové soustavy mají různé rezonanční frekvence. Výsledný spektrální profil je superpozicí příspěvku od všech KS. Gaussovská křivka

16 Saturace zesílení Předpokládáme harmonickou vlnu a přesnou rezonanci ω = ω 21. Z rovnice dostaneme: Po dosazení do rovnice " t # + ω21 2 T 2 d 21 P 2 = 2 ω 21 EN P = 2ωT 2 d 21 2 (2iω + 1 T 2 ) N E t + 1 (N N 0 ) = 1 E T 1 2 ω 21 t + 1 P + E T 2 t + 1 P T 2 a pro ω 1 T 2 : 1 (N N 0 ) = d 21 2 T T E 2 N Ustálená hodnota rozdílu populace hladin: N = N d T 2 T 1 E 2.

17 Saturace zesílení Zavedeme saturační intenzitu materiálový parametr I s = c 2 ε 0, 2 d 21 2 T 2 T 1 Saturace inverze populace hladin (DC 2.11 a 2.12) N = N I I s, Saturace zisku (zesílení) je tedy: g = g I I s.

18 Saturace zesílení Signál o intenzitě I << I s je součinitel zesílení roven g 0. Signál, jehož intenzita je srovnatelná, nebo podstatně větší než I s, je zesilován méně.

19 Impuls elektromagnetického pole s pomalu proměnnou obálkou Lineárně polarizovaná harmonická vlna Doba trvání pulsu T doba jednoho kmitu pole 2π/ω Vektor makroskopické polarizace a vektor elektromagnetického pole pomalu proměnné amplitudy (v čase i v prostoru)

20 Impuls elektromagnetického pole s pomalu proměnnou obálkou Předpokládáme následující průběh pole a polarizace (pomalu proměnná amplituda s harmonickou nosnou vlnou): E = i ye(z, t)cos [ωt kz + Φ(z, t)] P = i y {P 1 (z, t)cos [ωt kz + Φ(z, t)] + P 2 (z, t)sin [ωt kz + Φ(z, t)]} E 1 t E ω, Φ t ω, P 1 t E z 1 P 1 ω, 1 E k, P 2 t Φ z 1 P 2 ω k, P t 1 P ω

21 Rovnice pro pomalu proměnné amplitudy Φ z + 1 Φ + k c t E = µ 0ω 21 c P 1 (7) 2 E z + 1 E = µ 0ω 21 c P 2 (8) c t 2 P 1 = P 1 ω + Φ P 2 (9) t T 2 t P 2 = P 2 + ω + Φ P 1 d 21 2 EN (10) t T 2 t N = 1 (N N 0 ) + 1 t T 1 EP 2 (11) kde ω = ω ω 21 a k = ω/c k. Tato uzavřená soustava pěti parciálních diferenciálních rovnic prvního řádu je matematickým modelem koherentního šíření záření. Popisuje kooperativní chování celého souboru kvantových soustav pod vlivem elektrického pole elektromagnetického záření i zpětný vliv souboru kvantových soustav na elektromagnetické pole. V řadě zvláštních případů je možné tento model ještě dále zjednodušovat.

22 Signál v rezonanci a bez fázové modulace Další zjednodušení rovnic nastane, pokud se předpokládá šíření signálu bez fázové modulace s frekvencí odpovídající přesně frekvenci kvantového přechodu, tj. Φ = const., ω = 0 a k = 0: Φ z + 1 Φ + k c t E z + 1 E c t P 1 t P 2 t N t E z + 1 E c t P 2 t N t E = µ 0ω 21 c 2 = µ 0ω 21 c 2 = P 1 T 2 = P 2 T 2 + P 1 P 1 0 P 2 ω + Φ P 2 0 = 0 t ω + Φ P 1 d 21 2 t EN = 1 T 1 (N N 0 ) + 1 EP 2 = µ 0ω 21 c P 2, P = P 2 d 21 2 T 2 EN = (N N 0) T EP 2

23 ... a ještě zavedeme tzv. lokální čas t = t z c z = z t = Potom: t + z t t z t t = t ; z = E z = µ 0ω 21 c P 2 2 P 2 = P 2 d 21 2 t T 2 EN N = N N t T 1 EP 2 t t z + z z z z = z + 1 c t Rovnice nelineární Neplatí princip superpozice E (1) in E (1) out, E (2) in E (2) out E (1) in + E (2) in E (1) out + E (2) out Amplitudy pole a polarizace a také inverze populace hladin závisí na souřadnicích v prostoru i čase

24 Šíření stacionárního rezonančního signálu bez fázové modulace Výchozí rovnice E z = µ 0ω 21 c P 2 2 P 2 = P 2 d 21 2 t T 2 EN N = N N t T 1 EP 2 E z = µ 0ω 21 c P 2 2 P 2 = P 2 d 21 2 t T 2 EN N = N N t T 1 EP 2 Stacionární signál položíme časové derivace 0 Získáme rovnice pro P 2 (z), N(z) 0 = P 2 d 21 2 T 2 EN P 2(z) = d 21 2 T 2EN 0 = (N N 0) + 1 T 1 EP N 0 2 N(z) = 1 + d 21 2 T 2 1 T 2 E 2

25 Šíření stacionárního rezonančního signálu bez fázové modulace Rovnice pro intenzitu optického záření Přejdeme od intenzity elektrického pole k intenzitě světla I = 1 2 cε 0E 2 E z = d 21 2 µ 0 ω 21 c 2 E T 2 N d 21 2 T 2 1 T 2 E 2 Přitom využijeme vztah pro derivaci složené funkce: di dz = g I/I s I E 2 z = 2E E z Zisk pro slabý signál g 0 = σn 0 Účinný průřez pro stimulovanou emisi Saturační intenzita σ = µ 0ω 21 c d 21 2 T 2 I s = ω 2σT 1

26 Šíření stacionárního rezonančního signálu bez fázové modulace zesilování Rovnice popisující zesilování rezonančního záření Normovaná intenzita záření Separace proměnných Okrajová (počáteční) podmínka di dz = g I/I s I J = I I s dj dz = g J J 1 + J dj = g 0 dz J J z=0 = J 1 Řešení (z = L) ln J 2 J 1 + (J 2 J 1 ) = g 0 L

27 Šíření stacionárního rezonančního signálu bez fázové modulace zesilování Řešení (z = L) transcendentní rovnice Slabý signál ln J 2 J 1 + (J 2 J 1 ) = g 0 L J 1 1, J 2 1 ln J 2 J 1 0, J 2 = J 1 e g 0 L Silný signál tj. J 2 = J 1 + g 0 L J 2 J 1 1 Obecné řešení transcendentní rovnice (pro libovolné J 1 a zesílení) J 2 = LambertW nj o 1 e [J 1 + g 0 L]

28 Šíření stacionárního rezonančního signálu bez fázové modulace zesilování (g 0 L = 4)

29 Šíření stacionárního rezonančního signálu bez fázové modulace zesilování + ztráty Přidáme součinitel ztrát β: Řešení (DC 3.2) Limita g 0 L dj dz = βj + g J J ln J 2 J 1 g 0 β ln g 0 β(1 + J 2 ) g 0 β(1 + J 1 ) = (g 0 β) L I max 2 = g 0 β Is Existuje mezní hustota výkonu nekonečně dlouhého zesilovače saturovaný zisk právě kompenzuje ztráty

30 Šíření impulsů Charakter šíření určuje délka obálky impulzu T imp v porovnání s relaxačními časy T 1 a T 2 E z = µ 0ω 21 c P 2 2 P 2 = P 2 d 21 2 t T 2 EN N = N N t T 1 EP 2 KOHERENTNÍ NEKOHERNTNÍ T imp T 1, T 2 T imp T 1, T 2 APROXIMACE RYCHLOSTNÍCH ROVNIC T 2 T imp T 1

31 Shrnutí Rezonanční prostředí je disperzní Rezonanční prostředí je nelineární Pro popis síření impulzů s pomalu proměnnou obálkou stačí 5 rovnic časový vývoj obálky impulzu, amplitudu polarizace prostředí a inverzi populace hladin. Dokonalá rezonance, konstantní fáze: E z = µ 0ω 21 c P 2 2 P 2 = P 2 d 21 2 t T 2 EN N = N N t T 1 EP 2 Stacionární řešení poskytuje rovnici popisující zesilování rezonančního záření di dz = g I/I s I βi

32 Literatura VRBOVÁ M., ŠULC J.: Interakce rezonančního záření s látkou, Skriptum FJFI ČVUT, Praha, 2006 LOUISELL, W. H.: Quantum statistical properties of radiation, John Wiley & Sons, New York, 1973 VRBOVÁ M. a kol.: Lasery a moderní optika - Oborová encyklopedie, Prometheus, Praha, 1994 VRBOVÁ M., JELÍNKOVÁ H., GAVRILOV P.: Úvod do laserové techniky, Skriptum FJFI ČVUT, Praha, LONČAR, G.: Elektrodynamika I, Skriptum FJFI ČVUT, Praha, 1990 Přednášky:

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Fyzika laserů. Aproximace rychlostních rovnic. 18. března Katedra fyzikální elektroniky.

Fyzika laserů. Aproximace rychlostních rovnic. 18. března Katedra fyzikální elektroniky. Fyzika laserů Aproximace rychlostních rovnic Metody generace nanosekundových impulsů. Q-spínání. Spínání ziskem Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz

Více

Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 22. prosince Katedra fyzikální elektroniky.

Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 22. prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Rychlostní rovnice pro Q-spínaný laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program přednášek

Více

Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 16. prosince 2013. Katedra fyzikální elektroniky. jan.sulc@fjfi.cvut.

Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 16. prosince 2013. Katedra fyzikální elektroniky. jan.sulc@fjfi.cvut. Laserová technika 1 Aktivní prostředí Rychlostní rovnice pro Q-spínaný laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 16. prosince 2013 Program přednášek

Více

Laserová technika 1. Laser v aproximaci rychlostních rovnic. 22. prosince Katedra fyzikální elektroniky.

Laserová technika 1. Laser v aproximaci rychlostních rovnic. 22. prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Laser v aproximaci rychlostních rovnic Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program přednášek

Více

Fyzika laserů. 4. dubna Katedra fyzikální elektroniky.

Fyzika laserů. 4. dubna Katedra fyzikální elektroniky. Fyzika laserů Přitahováni frekvencí. Spektrum laserového záření. Modelocking Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 4. dubna 2013 Program přednášek 1.

Více

Fyzika laserů. Plocha impulsu. Soliton. Samoindukovaná propustnost. Fotonové echo. Katedra fyzikální elektroniky.

Fyzika laserů. Plocha impulsu. Soliton. Samoindukovaná propustnost. Fotonové echo. Katedra fyzikální elektroniky. Fyzika laserů Koherentní šíření impulzů Plocha impulsu. Soliton. Samoindukovaná propustnost. Fotonové echo. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 25.

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice

Více

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

ρ = 0 (nepřítomnost volných nábojů)

ρ = 0 (nepřítomnost volných nábojů) Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření II. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 6. října 016 Kontakty Ing. Jan

Více

V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6.

V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6. Nekvantový popis interakce světla s pasivní látkou Zcela nekvantová fyzika nemůže interakci elektromagnetického záření s látkou popsat, např. atom jako soustava kladných a záporných nábojů by vůbec nebyl

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5.

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

KMS cvičení 6. Ondřej Marek

KMS cvičení 6. Ondřej Marek KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m

Více

Metody nelineární optiky v Ramanově spektroskopii

Metody nelineární optiky v Ramanově spektroskopii Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Vznik a šíření elektromagnetických vln

Vznik a šíření elektromagnetických vln Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 29. října 2012 Světlo a jeho interakce s hmotou opakování Světlo = elektromagnetická

Více

Daniel Franta Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita

Daniel Franta Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita Pokročilé disperzní modely v optice tenkých vrstev Lekce 3: Kvantově mechanický popis Thomas-Reiche-Kuhnovo (TRK) sumační pravidlo; Fermiho zlaté pravidlo; dipólová aproximace; dielektrická odezva Daniel

Více

DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ

DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ P. Hora, O. Červená Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory grantu cíleného vývoje a výzkumu AV ČR č. IBS276356 Ultrazvukové metody

Více

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických

Více

ZPOMALENÉ A ZASTAVENÉ SVĚTLO. A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha

ZPOMALENÉ A ZASTAVENÉ SVĚTLO. A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha ZPOMALENÉ A ZASTAVENÉ SVĚTLO A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha ... po pěti letech A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha historicky první,

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

Přechodné děje 2. řádu v časové oblasti

Přechodné děje 2. řádu v časové oblasti Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak

Více

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2) Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném

Více

Inverzní Laplaceova transformace

Inverzní Laplaceova transformace Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

FYZIKA II. Marek Procházka 1. Přednáška

FYZIKA II. Marek Procházka 1. Přednáška FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení

Více

1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické

1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické Úloha č. 1 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

Fabry Perotův interferometr

Fabry Perotův interferometr Fabry Perotův interferometr Princip Dvě zrcadla jsou sestavena tak aby tvořila tzv. Fabry Perotův interferometr, s jehož pomocí je vyšetřován svazek paprsků vycházejících z laseru. Při experimentu se pohybuje

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated

Více

Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole

Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Vliv na tvar

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

Daniel Franta. jaro Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita

Daniel Franta. jaro Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita Pokročilé disperzní modely v optice tenkých vrstev Lekce 2: Kvantově mechanický popis Thomas-Reiche-Kuhnovo (TRK) sumační pravidlo; Fermiho zlaté pravidlo; dipólová aproximace; dielektrická odezva Daniel

Více

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D18_Z_OPAK_E_Elektromagneticke_kmitani_a_ vlneni_t Člověk a příroda Fyzika Elektromagnetické

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Připnutí LC větví FKZ k přípojnici 27 kv trakční napájecí stanice

Připnutí LC větví FKZ k přípojnici 27 kv trakční napájecí stanice Vědeckotechnický sborník ČD č. /006 Doc. Ing. Karel Hlava, Sc. Ing. adovan Doleček, Ph.D. Připnutí větví FKZ k přípojnici 7 kv trakční napájecí stanice Klíčová slova: trakční proudová soustava 5 kv, 50

Více

Měření charakteristik pevnolátkového infračerveného Er:Yag laseru

Měření charakteristik pevnolátkového infračerveného Er:Yag laseru Měření charakteristik pevnolátkového infračerveného Er:Yag laseru Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Abstrakt: Úkolem bylo proměření základních charakteristik záření pevnolátkového infračerveného

Více

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23 Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Zobrazování. Zdeněk Tošner

Zobrazování. Zdeněk Tošner Zobrazování Zdeněk Tošner Ultrazvuk Zobrazování pomocí magnetické rezonance Rentgen a počítačová tomografie (CT) Ultrazvuk Akustické vlnění 20 khz 1 GHz materiálová defektoskopie sonar sonografie (v lékařství

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém

Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém Omezení se na nerovnážné systémy v blízkosti rovnováhy Chování systému lze popsat v rámci linear response theory (teorie lineární odezvy)

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů

Více

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 26, překlad: Vladimír Scholtz (27) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 61: RL OBVOD 2 OTÁZKA 62: LC OBVOD 2 OTÁZKA 63: LC

Více

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx 1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f

Více

Elektromagnetické vlnění

Elektromagnetické vlnění Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

1 Zadání. 2 Úvod. Název a číslo úlohy 9 - Nelineární jevy v ultrarychlé optice. Měření provedli Jan Fait, Marek Vlk Vypracoval

1 Zadání. 2 Úvod. Název a číslo úlohy 9 - Nelineární jevy v ultrarychlé optice. Měření provedli Jan Fait, Marek Vlk Vypracoval Název a číslo úlohy 9 - Nelineární jevy v ultrarychlé optice Datum měření 30.11.2015 Měření provedli Jan Fait, Marek Vlk Vypracoval Marek Vlk Datum 19.12.2015 Hodnocení 1 Zadání 1. Naladění systému; Naved

Více

3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY

3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY 3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY Modulací nazýváme proces při kterém je jedním signálem přetvář en jiný signál za účelem př enosu informace. Př i amplitudové modulaci dochází k ovlivňování amplitudy nosného

Více

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e 8 Atom vodíku Správné řešení atomu vodíku je jedním z velkých vítězství kvantové mechaniky. Podle klasické fyziky náboj, který se pohybuje se zrychlením (elektron obíhající vodíkové jádro proton), by měl

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.

Více

Vlnění, optika a atomová fyzika (2. ročník)

Vlnění, optika a atomová fyzika (2. ročník) Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné

Více

Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast

Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast zdrojů pro harmonický časový průběh veličin Laplaceův

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Fourierova transformace

Fourierova transformace Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen

Více

OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3

OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3 OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3 GARANT PEDMTU: Prof. RNDr. Jií Petráek, Dr. (ÚFI) VYUUJÍCÍ PEDMTU: Prof. RNDr. Jií Petráek, Dr. (ÚFI), CSc., Mgr. Vlastimil Kápek, Ph.D. (ÚFI) JAZYK VÝUKY:

Více

Potenciální proudění

Potenciální proudění Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Modelování anelastické odezvy vlastních kmitů zemětřesení v Chile 2010

Modelování anelastické odezvy vlastních kmitů zemětřesení v Chile 2010 Modelování anelastické odezvy vlastních kmitů zemětřesení v Chile 2010 Eliška Zábranová Katedra geofyziky MFF UK, VCDZ Úvod Vlastní kmity jsou elementy stojatého vlnění s nekonečným počtem stupňů volnosti.

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS

Více

Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy

Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných

Více

Singulární charakter klasické limity

Singulární charakter klasické limity Singulární charakter klasické limity obecná speciální Teorie O Teorie S Parametr δ : δ ) O S) O S Pieter Bruegel starší +569) Velké ryby jedí malé ryby 556) obecná speciální Teorie O Teorie S Parametr

Více

Kvantová mechanika - model téměř volných elektronů. model těsné vazby

Kvantová mechanika - model téměř volných elektronů. model těsné vazby Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme

Více

3 Posunovací operátory, harmonický oscilátor

3 Posunovací operátory, harmonický oscilátor 3 Posunovací operátory, harmonický oscilátor 3.1 Jednoduchý algebraický systém Mějme operátor  a operátor  k němu sdružený, které mezi sebou splňují komutační relace 1 [Â, = m, m R +. (3.1.1) Definujme

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

1.3. Módy laseru, divergence svazku, fokuzace svazku, Q- spínání

1.3. Módy laseru, divergence svazku, fokuzace svazku, Q- spínání 1.3. Módy laseru, divergence svazku, fokuzace svazku, Q- spínání Mody optického rezonátoru kmitající soustava je charakterizována vlastními frekvencemi. Optický rezonátor jako kmitající soustava nekonečný

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více