Pohyb v prostoru, souřadnice
|
|
- Zbyněk Navrátil
- před 9 lety
- Počet zobrazení:
Transkript
1 Pohb v prostoru, souřadnice Předpoklad: 1103 Vrátíme se téměř na začátek. Při měření pohbu šneka, jsme získali následující údaje: Protože jsme si nechtěli komplikovat situaci úplně za začátku fzik, nahradili jsme obrázek, jiným: 9 Start Cíl Z tohoto obrázku jsme opsali pouze vzdálenosti mezi jednotlivými křížk a na tvar trajektorie, po které se šnek pohboval jsme úplně zapomněli. Jediné, co z celého pohbu zůstalo, bl údaje o vzdálenostech, které šnek ulezl mezi jednotlivými měřeními. Zda zrovna lezl rovně nebo zatáček, jsme se z tabulk nedozvěděli. Tento přístup dobře odpovídá tomu, jak k pohbu přistupujeme pří jízdě autem, vlakem nebo chůzi pěšk. Nestaráme se o to, kde a jak přesně silnice nebo kolej zatáčí, záleží nám jakou máme před sebou vzdálenost a jak rchle se budeme pohbovat. Směr nás nezajímá, předpokládáme, že cesta nás dovede do cíle. V realitě není situace vžd tak jednoduchá. Třeba v krasobruslení nezáleží pouze na tom, kolik metrů závodník najezdí, ale musí se při tom všem vhnout mantinelům a kdž se odráží ke skoku, musí mít poměrně dobře podchcené, na kterém místě se zrovna nachází. U letadel a námořních lodí je pak přesná poloha otázkou života a smrti. Stejně tak nejde pouze o uraženou vzdálenost při odstřelování nebo odpalování raket. 1
2 Př. 1: Na obrázku je zvětšená část milimetrového papíru s prvními šesti polohami šneka. Najdi sstém, jak v číselné podobě uchovat veškerou informaci, která je na papíře zachcena (informace musí být taková, ab podle získaných čísel blo možné zakreslit křížk na prázdný milimetrový papír a získat tím původní obrázek. (4) (5) (6) (3) (2) (1) Nejde o nic nového. Metodu známe z kreslení grafů (tam také pomocí čísel zakreslujeme bod na milimetrový papír tak, že ze stejných čísel získají všichni stejný obrázek). Př. 2: Zapiš souřadnice prvních šesti poloh šneka vzhledem k vznačeným souřadnicím. Kd bl šnek nejblíže bodu, který je v této soustavě souřadnic dán souřadnicemi [ 8;18 ]? (4) (5) (6) (3) (2) (1) poloha č ;24,5, [ mm ] [ 5;0 ] [ 2;5 ] [ 4;16 ] [ 9;20 ] [ 13;24 ] [ ] Nejblíže k bodu [ 8;18 ] bl šnek v kolem 15 sekund. 2
3 Souřadnice si můžeme zvolit i jinak: Př. 3: Zapiš souřadnice prvních šesti poloh šneka vzhledem k další soustavě souřadnic dané osami ' a '. Zapiš rovnicemi vztah mezi souřadnicemi určenými v předchozím a v tomto příkladu? (4) (5) (6) (3) (2) (1) poloha č ; 5 8;0 6;11 1;15 9;19,5, [ mm ] [ ] [ ] [ ] [ ] [ 3;19 ] [ ] Souřadnice vzhledem k původním osám. poloha č ;24,5, [ mm ] [ 5;0 ] [ 2;5 ] [ 4;16 ] [ 9;20 ] [ 13;24 ] [ ] Rozdíl mezi souřadnicemi a (a také souřadnicemi a ) je stále stejný, platí: = 10 (jasné, osa se posunula o 10 m doprava) = 5 (jasné, osa se posunula o 5 m nahoru) Dvojice rovnic, kterou jsme pro dvojice souřadnic napsali, se nazývá transformační rovnice. Na všších úrovních fzik hrají transformační rovnice značnou roli, pro nás je nní důležité, že nezáleží na tom, v jaké soustavě souřadnic budeme pokus měřit, protože pomocí transformačních rovnic a počítače dokážeme naměřené hodnot snadno přepočítat do libovolné jiné soustav souřadnic. Co vlastně znamenají čísla v tabulce? Jde o dráh, které musíme ujít ve směru (nebo u záporných hodnot proti směru) souřadných, pokud se chceme dostat z počátku (místo, kde se os kříží) do zaznamenávaného bodu. Ke každému místu v rovině eistuje právě jedna uspořádaná dvojice čísel, s jejíž pomocí k tomuto místu můžeme dojít ze zvoleného počátku ve směrech dvou zvolených navzájem kolmých os. Této uspořádané dvojici čísel říkáme kartézské souřadnice. 3
4 Dvě souřadnice nám vstačí, kdž budeme chtít sledovat pohb na ploše. Kdb se šnek naučil létat, papír b nám na zachcení jeho pohbu nestačil a dvě souřadnice také. Museli bchom zavést i třetí souřadnici, která b odpovídala třetímu směru kolmému na předchozí dva. Př. 4: Ve třídě je zaveden kartézský souřadný sstém s počátkem dole v rohu tříd u tabule u okna. Osa směřuje podél oken k zadním lavicím, osa ke dveřím a osa z nahoru. Urči přibližné souřadnice následujících bodů: a) poutko ručníku u umvadla b) klika u dveří c) nos studenta sedícího v poslední lavici uprostřed na místě u dveří d) horní levý roh (při pohledu ze tříd) okna nejvzdálenějšího od katedr a) poutko ručníku u umvadla [ 0;4;1,3 ] b) klika u dveří [ 3;7;1, 2 ] c) nos studenta sedícího v poslední lavici uprostřed na místě u dveří [ 8;4;1,3 ] d) horní levý roh (při pohledu ze tříd) okna nejvzdálenějšího od katedr [ 8;0;3 ] Pedagogická poznámka: Hodnot souřadnic jsou v každé třídě samozřejmě jiné, ale uvedené bod b mělo být možné najít v každé třídě. Po zadání příkladu si nejprve řekneme rozměr tříd (studenti mají často velmi špatný odhad). Než zkontrolujeme první bod, ukážeme si soustavu souřadnic. Po malé pauze pak kontrolujeme jednotlivé bod postupně, vžd si ukazujeme odpovídající vzdálenosti a před dalším bodem necháváme malý čas v případě, že někdo ze studentů neměl předchozí bod v pořádku. Př. 5: Najdi bod určené v předchozí soustavě souřadnic souřadnicemi: 10; 4; 2 a) [ 3;2;1 ] b) [ 0;4;0 ] c) [ ] Výsledk platné v učebně fzika1 v gmnáziu ve Strakonicích: 3;2;1 - nos člověka sedícího v první lavici u okna a) [ ] b) [ 0;4;0 ] - podlaha pod ručníkem c) [ 10; 4; 2] - něco v laboratoři chemie 4
5 Př. 6: Najdi souřadnice bodů vznačených na obrázku: D F A 4m E 3m 3m B 3m 3m C G A [ 2;3;3], B [ 4;0;0], C [ 4;3;0], D[ 2; 2;4], E [ 3;0;0], F [ 0;0;3], G[ 2;3; 2] Pedagogická poznámka: Velká většina studentů nemá s předchozím příkladem problém, ale vžd se objeví několik studentů, kteří to v obrázku prostě nevidí a potřebují konzultaci po hodině. Není nutné používat pro zachcení pohbu vžd kompletní sadu všech souřadnic. Každá další souřadnice přináší nemalé komplikace při výpočtech. Například při pohbu zachceném na následujícím milimetrovém papíře není rozumné používat nakreslenou soustavu souřadnic. Daleko výhodnější je souřadnice otočit tak, ab blo potřeba sledovat pouze jednu jedinou souřadnici. 5
6 Př. 7: Navrhni volbu vhodné soustav souřadnic pro následující pokus: a) kolmý pád kamene z věže b) pohb káči na lavici c) kývání kvadla hodin d) jízda auta na dálkové ovládání po podlaze dětského pokoje e) pohb prcka na kolotoči f) pohb letadla při letecké akrobacii g) jízda vlaku po vodorovné zkušební trati h) pohb po nakloněné rovině i) pohb po nakloněné a vodorovné rovině a) kolmý pád kamene z věže Počátek bude v místě odkud kámen padá (na vrcholu věže), osa z bude svisle vzhůru (pak budou všechn naměřené hodnot záporné). Osa z může také směřovat kolmo dolů (pak budou naměřené hodnot kladné). b) pohb káči na lavici Potřebujeme pouze dvě souřadnice. Počátek umístíme na roh lavice, os a budou rovnoběžné s hranami lavice. c) kývání kvadla hodin Potřebuju zase dvě souřadnice. Počátek bude v místě, kde b blo kvadlo, kdb se nekývalo. Osa z je svislá, osa (nebo osa ) bude ve směru, ve kterém kývá kvadlo. Počátek bsme mohli dát i do místa, kde je kvadlo připevněno a kolem kterého se kývá. d) jízda auta na dálkové ovládání po podlaze dětského pokoje Svislou osu z nebudeme měřit. Os a položíme podél hran místnosti, počátek necháme v rohu místnosti, nebo v místě, odkud auto startovalo. Jsou potřeba dvě souřadnice. e) pohb prcka na kolotoči Pokud nebudeme brát v úvahu, že sedačka po roztočení kolotoče trochu stoupne, tak ušetříme svislou osu z. Počátek bude v ose kolotoče, ve výšce, kde se sedačka točí, os a necháme normálně vodorovné. Pokud bereme v úvahu stoupnutí sedačk, necháme počátek ve výšce v které bl prcek dokud bl v klidu. Ostatní se nemění. 6
7 Podle toho, jestli bude podstatné stoupnutí sedačk, budu potřebovat buď dvě nebo všechn tři souřadnice. f) pohb letadla při letecké akrobacii Počátek si necháme někde na zemi, os a budou vodorovné a osa z bude kolmá. Budou potřeba všechn tři souřadnice. g) jízda vlaku po vodorovné zkušební trati. Bude stačit jedna souřadnice, osu zorientujeme ve směru kolejí, ostatní souřadnice nebudou třeba. h) pohb po nakloněné rovině Os a položíme do nakloněné rovin, pokud se bude předmět pohbovat po přímce natočíme do směru pohbu. Tak nám zbude pouze jedna souřadnice, jinak budeme muset používat dvě. Osu z takhle ušetříme určitě. i) pohb po nakloněné a vodorovné rovině Použijeme osu ve směru pohbu po vodorovné rovině a svislou osu z. Shrnutí: Pokud chceme zachtit polohu předmětu, používáme kartézské soustav souřadnic, které známe z matematik. Počátek a směr os si můžeme volit libovolně, naměřené hodnot můžeme přepočítat. 7
10.1.13 Asymptoty grafu funkce
.. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol
2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic
.3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =
2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková
.. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.
2.6.4 Lineární lomené funkce s absolutní hodnotou
.6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody
Rostislav Horčík. 13. října 2006
3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem
Lineární algebra. Vektorové prostory
Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:
(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.
. Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce
Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY
Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí
Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.
Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například
Numerická integrace. 6. listopadu 2012
Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme
( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502
.5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady
5.1.2 Volné rovnoběžné promítání
5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty
UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
2.8.8 Kvadratické nerovnice s parametrem
.8.8 Kvadratické nerovnice s arametrem Předoklady: 806 Pedagogická oznámka: Z hlediska orientace v tom, co studenti očítají, atří tato hodina určitě mezi nejtěžší během celého středoškolského studia. Proto
Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány.
.8.5 Druhá odmocnina Předpoklady: 0080 V této hodině jsou kalkulačky zakázány. Druhá mocnina nám umožňuje určit z délky strany plochu čtverce. Druhá mocnina 1 1 9 11 81 11 délky stran čtverců obsahy čtverců
ZÁPISKY Z ANALYTICKÉ GEOMETRIE 1 SOUŘADNICE, BODY
1 Souřadnice, body 1.1 Prostor prostor můžeme chápat jako nějaké prostředí, ve kterém můžeme mít různé věci na různých místech místo, poloha - tohle potřebujeme nějak popsat abychom mohli změřit nebo říci,
Goniometrie trigonometrie
Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických
M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby
M-10 Jméno a příjmení holka nebo kluk * Třída Datum Škola AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km V následující tabulce je závislost doby a/au T/rok oběhu planety (okolo
MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE
MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE 1 ZAPNUTÍ SLEDOVÁNÍ ZMĚN Pokud zapnete funkci Sledování změn, aplikace Word vloží značky tam, kde provedete mazání, vkládání a změny formátu. Na kartě Revize klepněte
2.7.15 Rovnice s neznámou pod odmocninou I
.7.15 Rovnice s neznámou pod odmocninou I Předpoklady: 711, 71 Pedagogická poznámka: Látka této hodiny vyžaduje tak jeden a půl vyučovací hodiny, pokud nepospícháte můžete obětovat hodiny dvě a nechat
Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.
Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v
Jan Březina. Technical University of Liberec. 17. března 2015
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
Autodesk Inventor 8 vysunutí
Nyní je náčrt posazen rohem do počátku souřadného systému. Autodesk Inventor 8 vysunutí Následující text popisuje vznik 3D modelu pomocí příkazu Vysunout. Vyjdeme z náčrtu na obrázku 1. Obrázek 1: Náčrt
7. Silně zakřivený prut
7. Silně zakřivený prut 2011/2012 Zadání Zjistěte rozložení napětí v průřezu silně zakřiveného prutu namáhaného ohybem analyticky a experimentálně. Výsledky ověřte numerickým výpočtem. Rozbor Pruty, které
( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201
7.. Sčítání ektorů Předpoklady: 70 Pedagogická poznámka: Stdenti ětšino necítí potřeb postpoat při definici sčítání ektorů (obecně při zaádění jakékoli operace) tak striktně, jak yžadje matematika. Upozorňji
1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15
Varianta A 4 4 4 4 4 4 4 4 1) Vypočítej A) 32 B) 44 C) 48 D) 56 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 20 120 A. A) 12 B) 13 C) 14 D) 15 3) Najdi největší a nejmenší trojciferné číslo skládající
Vítězslav Bártl. prosinec 2013
VY_32_INOVACE_VB09_ČaP Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav
ÚVOD DO HRY PRINCIP HRY
Počet hráčů: 2-6 Věk: od 6 let Délka hry: cca 20 min. Obsah: 66 hracích karet: 45 karet s čísly (hodnota 0 8 čtyřikrát, hodnota 9 devětkrát), 21 speciálních karet (9 karet Výměna, 7 karet Špehuj, 5 karet
souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem
souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem kartézský souřadný systém Z Y X kartézský souřadný systém Z Y X kartézský souřadný systém Z x y Y X kartézský souřadný systém
Ozobot aktivita lov velikonočních vajíček
Ozobot aktivita lov velikonočních vajíček Autor: Ozobot Publikováno dne: 9. března 2016 Popis: Tato hra by měla zábavnou formou procvičit programování ozokódů. Studenti mají za úkol pomoci Ozobotovi najít
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Uživatelská nastavení parametrických modelářů, využití
( ) ( ) 9.2.12 Podmíněné pravděpodobnosti I. Předpoklady: 9207
9.. Podmíněné pravděpodobnosti I Předpoklady: 907 Pedagogická poznámka: Podmíněné pravděpodobnosti se často vynechávají jako velmi těžké a nepochopitelné učivo. Moje zkušenosti ukazují, že situace není
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
Matematika pro 9. ročník základní školy
Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Rovnice a jejich soustavy Petra Směšná žák měří dané veličiny, analyzuje a zpracovává naměřená data, rozumí pojmu řešení soustavy dvou lineárních rovnic,
Funkce Vypracovala: Mgr. Zuzana Kopečková
Funkce Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů OP
3.5.8 Otočení. Předpoklady: 3506
3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Informační
Business Contact Manager Správa kontaktů pro tisk štítků
Business Contact Manager Správa kontaktů pro tisk štítků 1 Obsah 1. Základní orientace v BCM... 3 2. Přidání a správa kontaktu... 4 3. Nastavení filtrů... 5 4. Hromadná korespondence... 6 5. Tisk pouze
5.2.3 Kolmost přímek a rovin I
5.2.3 Kolmost římek rovin I ředokldy: 5202 vě římky jsou k soě kolmé rávě tehdy, když jejich odchylk je 90. Nvzájem kolmé mohou ýt i mimoěžky. vě úsečky jsou kolmé, rávě když leží n kolmých římkách. íšeme:
Kótování na strojnických výkresech 1.část
Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických
Laserové skenování principy
fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 Co je a co umí laserové skenování? Laserové skenovací systémy umožňují bezkontaktní určování prostorových souřadnic, 3D modelování vizualizaci složitých
Příručka pro práci s dataloggerem Labquest 2. Zapínání a domácí obrazovka
Příručka pro práci s dataloggerem Labquest 2 Obsah: 1. Zapínaní a domácí obrazovka 2. Senzory a obrazovka aktuální hodnota 3. Sběr dat a obrazovka graf 4. Vkládání a výpočet dat - obrazovka tabulka 5.
MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika
MODEL MOSTU Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti Model mostu Teoretický úvod: Příhradové nosníky (prutové soustavy) jsou složené z prutů, které jsou vzájemně spojené
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla
Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,
1 Měření kapacity kondenzátorů
. Zadání úlohy a) Změřte kapacitu kondenzátorů, 2 a 3 LR můstkem. b) Vypočítejte výslednou kapacitu jejich sériového a paralelního zapojení. Hodnoty kapacit těchto zapojení změř LR můstkem. c) Změřte kapacitu
1.2.5 Reálná čísla I. Předpoklady: 010204
.2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý
Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů.
Mezní kalibry Mezními kalibry zjistíme, zda je rozměr součástky v povolených mezích, tj. v toleranci. Mají dobrou a zmetkovou stranu. Zmetková strana je označená červenou barvou. Délka zmetkové části je
Návrh rozměrů plošného základu
Inženýrský manuál č. 9 Aktualizace: 02/2016 Návrh rozměrů plošného základu Program: Soubor: Patk Demo_manual_09.gpa V tomto inženýrském manuálu je představeno, jak lze jednoduše a ektivně navrhnout železobetonovou
1.9.5 Středově souměrné útvary
1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.
Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.
7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,
Fyzikální praktikum 3 - úloha 7
Fyzikální praktikum 3 - úloha 7 Operační zesilovač, jeho vlastnosti a využití Teorie: Operační zesilovač je elektronická součástka využívaná v měřící, regulační a výpočetní technice. Ideální model má nekonečně
ZADÁNÍ: ÚVOD: SCHÉMA:
ZADÁNÍ: ) U daného síťového transformátoru vyhodnoťte osciloskopickou metodou ze zobrazení hysterezní smyčky hlavní magnetické vlastnosti jádra - H MAX,H 0,B r při B MAX T. 2) Ze zjištěného průběhu hysterezní
Novinky v programu Majetek 2.06
Novinky v programu Majetek 2.06 Možnost použít zvětšené formuláře program Majetek 2.06 je dodávám s ovládacím programem ProVIS 1.58, který umožňuje nastavit tzv. Zvětšené formuláře. Znamená to, že se formuláře
Habermaaß-hra 5657A /4796N. Maják v obležení
CZ Habermaaß-hra 5657A /4796N Maják v obležení Maják v obležení Kooperativní hra pro 2 až 4 strážce majáku ve věku od 4 do 99 let. Zahrnuje soutěžní variantu. Autoři: Carmen & Thorsten Löpmann Ilustrace:
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ] 1 CÍL KAPITOLY. Cílem této kapitoly je sžití se s win prostředím
Změnu DPH na kartách a v ceníku prací lze provést i v jednotlivých modulech.
Způsob změny DPH pro rok 2013 Verze 2012.34 a vyšší Úvod Vzhledem k tomu, že dnes 23.11.2012 nikdo netuší, zda od 1.1.2013 bude DPH snížená i základní 17.5% nebo 15% a 21%, bylo nutné všechny programy
3. Slimák lezl na strom 10m vysoký. Přes den vylezl 4m ale v noci vždycky sklouzl o 3m. Za kolik dní dosáhl vrcholu stromu?
Logické úlohy 1. Katka přišla k Janě, která krmila na dvoře drůbež. Katka se ptala: Víš, kolik máte kuřat, kolik housat a kolik kachňat? Jana odpověděla: Vím, a ty si to vypočítej: dohromady máme 90hlav.
Montáž plastového okapového systému Gamrat
Montáž plastového okapového systému Gamrat Montáž systému je velmi jednoduchá, protože spojky, rohy, čela, ústí svod mají západku a gumové těsnění. K troubám a žlabem se připevňují pomocí zacvaknutí. Předpokladem
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)
ZPRÁVA o stavebně technickém průzkumu železobetonové konstrukce v areálu Kolejí 17. listopadu UK, Pátkova ul., Praha 8 - Libeň
Beranových 65 Letňany 199 21, Praha 9 tel. 283 920 588 ZPRÁVA o stavebně technickém průzkumu železobetonové konstrukce v areálu Kolejí 17. listopadu UK, Pátkova ul., Praha 8 - Libeň Číslo zakázky : Odpovědný
( ) 4.2.13 Slovní úlohy o společné práci I. Předpoklady: 040212. Sepiš postup na řešení příkladů o společné práci.
.. Slovní úlohy o společné práci I Předpoklady: 00 Př. : Sepiš postup na řešení příkladů o společné práci. Ze zadání si určíme jakou část práce vykonali účastníci za jednotku času. Vyjádříme si jakou část
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor013 Vypracoval(a),
VY_62_INOVACE_VK53. Datum (období), ve kterém byl VM vytvořen Květen 2012 Ročník, pro který je VM určen
VY_62_INOVACE_VK53 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen Květen 2012 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 9. ročník
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Anemometrické metody Učební text Ing. Bc. Michal Malík Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl v rámci
DMX512 PC Control Stručný návod k použití programu Verze 1.0 Copyright 2007 Dokumentace: Ing. Jaroslav Nušl
Stručný návod k použití programu Verze 1.0 Copyright 2007 Dokumentace: Ing. Jaroslav Nušl Obsah Obsah Nastavení programu... 3 Příklady... 3 Přidávání a ubíraní hlasitosti pomocí DMX kanálu 3 a 4... 3 Přehrání
Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.
Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný
4.5.1 Magnety, magnetické pole
4.5.1 Magnety, magnetické pole Předpoklady: 4101 Pomůcky: magnety, kancelářské sponky, papír, dřevěná dýha, hliníková kulička, měděná kulička (drát), železné piliny, papír, jehla (špendlík), korek (kus
1) Určete ohniskové vzdálenosti čoček, jsou-li jejich optické mohutnosti 2 D, 16 D, - 4 D, - 12 D.
ČOČKY ) Určete ohniskové vzdálenosti čoček, jsou-li jejich optické mohutnosti 2 D, 6 D, - 4 D, - 2 D. φ = 2 D φ 2 = 6 D φ = 4 D φ = 2 D f 4 =? (m) Optická mohutnost je převrácená hodnota ohniskové vzdálenosti
c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
Vyučovací předmět / ročník: Matematika / 5. Učivo
Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel
Název: VY_32_INOVACE_PG3307 Vytváření objektů z křivek pomocí Extrude a Lathe
Název: VY_32_INOVACE_PG3307 Vytváření objektů z křivek pomocí Extrude a Lathe Autor: Mgr. Tomáš Javorský Datum vytvoření: 06 / 2012 Ročník: 3 Vzdělávací oblast / téma: 3D grafika, počítačová grafika, 3DS
( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208
.. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla
MAGNETICKÉ A ZEMĚPISNÉ PÓLY ZEMĚ
MAGNETICKÉ A ZEMĚPISNÉ PÓLY ZEMĚ Vzdělávací předmět: Fyzika Tematický celek dle RVP: Látky a tělesa Tematická oblast: Vlastnosti látek a těles magnetické vlastnosti látek Cílová skupina: Žák 6. ročníku
Novinky verze ArCon 14 Small Business
Novinky verze ArCon 14 Small Business Windows 7 Struktura souborů ArCon 14 Small Business je již optimalizována pro operační systém Windows 7 a nové typy procesorů Intel. Uživatelské prostředí Uživatelské
Matematický model kamery v afinním prostoru
CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Matematický model kamery v afinním prostoru (Verze 1.0.1) Jan Šochman, Tomáš Pajdla sochmj1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz CTU CMP 2002
SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G
SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se
Výsledky zpracujte do tabulek a grafů; v pracovní oblasti si zvolte bod a v tomto bodě vypočítejte diferenciální odpor.
ZADÁNÍ: Změřte VA charakteristiky polovodičových prvků: 1) D1: germaniová dioda 2) a) D2: křemíková dioda b) D2+R S : křemíková dioda s linearizačním rezistorem 3) D3: výkonnová křemíková dioda 4) a) D4:
2.2.10 Slovní úlohy vedoucí na lineární rovnice I
Slovní úlohy vedoucí na lineární rovnice I Předpoklady: 0, 06 Pedagogická poznámka: Řešení slovních úloh představuje pro značnou část studentů nejobtížnější část matematiky Důvod je jednoduchý Po celou
1 Zadání konstrukce. Výška stěny nad terénem (horní líc) h= 3,5 m Sedlová střecha, sklon 45, hřeben ve směru delší stěny
1 1 Zadání konstrukce Základní půdorysné uspořádání i výškové uspořádání je patrné z obrázků. Dřevostavba má obytné zateplené podkroví. Detailní uspořádání a skladby konstrukcí stěny, stropu i střechy
Pokusy s kolem na hřídeli (experimenty s výpočty)
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Pokusy s kolem na hřídeli (experimenty s výpočty) Označení: EU-Inovace-F-7-08 Předmět: fyzika Cílová skupina: 7. třída
Analytická geometrie (3. - 4. lekce)
Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky
PALETOVÉ REGÁLY SUPERBUILD NÁVOD NA MONTÁŽ
PALETOVÉ REGÁLY SUPERBUILD NÁVOD NA MONTÁŽ Charakteristika a použití Příhradový regál SUPERBUILD je určen pro zakládání všech druhů palet, přepravek a beden všech rozměrů a pro ukládání kusového, volně
Poruchy modul pro rychlé hlášení poruch z provozu.
Poruchy modul pro rychlé hlášení poruch z provozu. Účelem tohoto programu je sbírat data o poruchách a nedostatcích v činnosti strojů a zařízení a jednak je zapisovat přímo do programu evidence údržby,
VÝZNAMOVÉ POMĚRY MEZI VH
Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 VÝZNAMOVÉ
B Kvantitativní test. Semestrální práce TUR. Novotný Michal novotm60@fel.cvut.cz
B Kvantitativní test Semestrální práce TUR Novotný Michal novotm60@fel.cvut.cz OBSAH 1. Úvod... 2 1.1. Předmět testování... 2 1.2. Cílová skupina... 2 2. Testování... 2 2.1. Nulová hypotéza... 2 2.2. Metoda
Teleskopie díl pátý (Triedr v astronomii)
Teleskopie díl pátý (Triedr v astronomii) Na první pohled se může zdát, že malé dalekohledy s převracející hranolovou soustavou, tzv. triedry, nejsou pro astronomická pozorování příliš vhodné. Čas od času
MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy
MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy Jednání zastupitelstva města dne: 08. 04. 2015 Věc: Odměny uvolněným a neuvolněným členům zastupitelstva a další odměny Předkládá: Ing. Eva Burešová, starostka
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Výukový materiál zpracován v rámci projektu EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0767 Šablona: III/2 2. č. materiálu: VY_ 32_INOVACE_135 Jméno
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové
Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R },
Hra a hry Václav Vopravil Úvod 1 Kombinatorické hry Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována pomocí jednodušších her, tj. jako uspořádaná dvojice množin her.
1.1.11 Poměry a úměrnosti I
1.1.11 Poměry a úměrnosti I Předpoklady: základní početní operace, 010110 Poznámka: Následující látka bohužel patří mezi ty, kde je nejvíce rozšířené používání samospasitelných postupů, které umožňují
7. Stropní chlazení, Sálavé panely a pasy - 1. část
Základy sálavého vytápění (2162063) 7. Stropní chlazení, Sálavé panely a pasy - 1. část 30. 3. 2016 Ing. Jindřich Boháč Obsah přednášek ZSV 1. Obecný úvod o sdílení tepla 2. Tepelná pohoda 3. Velkoplošné
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Teoretické řešení střech Vypracoval: Michal Drašnar Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že
1.2.7 Druhá odmocnina
..7 Druhá odmocnina Předpoklady: umocňování čísel na druhou Pedagogická poznámka: Probrat obsah této hodiny není možné ve 4 minutách. Já osobně druhou část (usměrňování) probírám v další hodině, jejíž
Jednofázový alternátor
Jednofázový alternátor - 1 - Jednofázový alternátor Ing. Ladislav Kopecký, 2007 Ke generování elektrického napětí pro energetické účely se nejčastěji využívá dvou principů. Prvním z nich je indukce elektrického
2.4.11 Nerovnice s absolutní hodnotou
.. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na
NUMEROLOGIE CO JE NUMEROSKOP
CO JE NUMEROSKOP Čísla mají překvapivé vlastnosti například v podobě výpisu z bankovního účtu dovedou v lidech vyvolat nejrůznější emoce. Oplývají ale ještě mnohem dalekosáhlejšími významy a kvalitami.
Účetní případ MD D DOTACE OD ZŘIZOVATELE. Neinvestiční dotace (1/12, čtvrtletní platby, mimořádné platby) předpis 34611 6911x úhrada 221 34611
DOTACE OD ZŘIZOVATELE Neinvestiční dotace (1/12, čtvrtletní platby, mimořádné platby) předpis 34611 6911x úhrada 221 34611 časové rozlišení dotace (příjem letos, výnos v dalším roce) 34611 3848 vratka
2.7.2 Mocninné funkce se záporným celým mocnitelem
.7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,