ZÁPISKY Z ANALYTICKÉ GEOMETRIE 1 SOUŘADNICE, BODY
|
|
- Jaromír Horáček
- před 8 lety
- Počet zobrazení:
Transkript
1 1 Souřadnice, body 1.1 Prostor prostor můžeme chápat jako nějaké prostředí, ve kterém můžeme mít různé věci na různých místech místo, poloha - tohle potřebujeme nějak popsat abychom mohli změřit nebo říci, kde co je, potřebujeme nějaký souřadný systém většina naší analytické geometrie bude v tzv. euklidovském prostoru euklidovský prostor používají i některé programy pro 3D animaci nebo modelování (např. 3D Studio Max) prostorů jinak existuje celá řada, může to být mapa, dokonce počítačová sít (IP adresy, webové stránky...) 1.2 Popis polohy v prostoru abychom mohli říci, kde přesně se nachází dané místo, potřebujeme nějaké údaje, které budou takové místo jednoznačně identifikovat takové údaje nazýváme souřadnicemi musíme si pro ně zavést nějaký systém - tedy souřadnicový systém (a) na šachovnici použiváme dvojice písmenočíslo (b) IP adresy různých přístrojů jsou de facto také souřadnicemi obrázek 1: příklady použití různých souřadnicových systémů Souřadnicový systém s různými souřadnými systémy se setkáváme naprosto běžně může to být GPS poloha na mapě v navigaci(zeměpisná šířka, délka, nadmořská výška), poštovní adresa, šachovnicová souřadnice nebo i IP adresa počítače, popř. telefonu ( )... příklady vidíte na obrázku 1 pro naše potřeby budeme používat kartézskou soustavu souřadnic 1
2 1.2.2 Kartézská soustava souřadnic jedna z nejužitečnějších soustav, zejména pokud nás zajímají hranaté věci často se to s ní přehání, díky tomu je také známa jako tzv. kartézský mor nejjednodušší forma - číselná osa (viz obrázek 2) představit si ji lze jako tyčku, na které si vyznačíme 0, 1 a zbytek doznačíme podle jejich vzdálenosti kladná čísla jdou zpravidla doprava bez jednotek - nejsme ve fyzice obrázek 2: znázornění číselné osy co když vezmeme dvě osy na sebe kolmé? jako bychom svařili dvě k sobě - na obrázku 3 (a) standardní vyznačení os (b) i takto to lze, otočit si osy můžeme jakkoliv obrázek 3: kartézský kříž v rovině - červená označuje osu x, zelená osu y co třeba třetí? přivaříme ještě jednu - obrázek 4 tři osy, tak jak jsou na obrázku 4a, tvoří tzv. pravotočivou soustavu at takovou soustavu jakkoliv natočíme, pořád bude pravotočivá - můžeme s ní dělat cokoliv, co se svařenými tyčkami, jen prosím nerozbíjet pravotočivá ne proto, jak je natočená, ale protože osy takhle poskládané ( svařené ) mají některé pěkné vlastnosti levotočivé existují také (např. vyměníme osy x a y), ty ale nebudeme používat levotočivé se občas objevují v knížkách - POZOR! musíme mít na paměti, že jsou to matematické tyčky - nikde nepřekážejí, jsou nekonečně tenké a nekonečně dlouhé, naše svařování je přiblížení 2
3 (a) osy ve 3D - naše vyznačení (b) občas existuje i toto vyznačení, ale opět jde jen o otočení obrázek 4: kartézská soustava ve 3D - červená označuje osu x, zelená osu y, modrá osu z 1.3 Souřadnice už máme souřadnou soustavu, tak jak tedy s těmi souřadnicemi? když chceme určit polohu nějakého objektu, někam posadíme tyto svařené tyčky a označíme, jak daleko na každé z nich se daný objekt nachází bude to nějaké reálné číslo - jsou to přeci číselné osy těmto číslům budeme říkat souřadnice každá souřadnice patří ke své ose, takže si je zapíšeme nějak přehledně za sebou, nejlépe [x, y, z] na číselné ose máme jen jednu souřadnici - jednorozměrný prostor (1D) na papíře (v rovině) potřebujeme dvě osy - dvojrozměrný prostor (2D) v místnosti (v prostoru) potřebujeme dvě osy - trojrozměrný prostor (3D) zabývat se budeme hlavně 2D, občas sklouzneme do 3D základním objektem, jehož souřadnice budeme chtít znát, je bod 1.4 Bod bod označuje nějaké přesné místo, je nekonečně malý a nemá tvar - tedy naše značky na tyčkách budou také přesné každý bod je dán svými souřadnicemi dokonale body budeme značit velkými písmeny - např. A,B,X jejich souřadnice do hranatých závorek, oddělujeme čárkami (nebo středníkem) - např. [2,3] ve 2D nebo [1,2,8] ve 3D celý zápis nějakého bodu: A[1,2] můžeme psát i A=[1,2] nebo A=A[1,2] ve 3D samozřejmě např. A[2,3,1] obecně budu bod a jeho souřadnice značit A[A x, A y ], popř. A[A x, A y, A z ] poznámka - A označuje bod, tedy nějaký matematický objekt, zatímco A x, A y, A z jsou prostě čísla body už umíme popsat i zakreslit (viz obrázky 5 a 6) 3
4 obrázek 5: znázornění bodu A[2,3] v rovině - osa x je vodorovná a jde doprava, osa y jde svisle nahoru Operace s body co s body vlastně můžeme dělat? v analogii s mapou: 1. jak se z jednoho bodu dostanu do druhého? 2. jaká je mezi dvěma body vzdálenost? abych se z bodu A dostal do bodu B, na mapě musím zvolit směr a vzdálenost - kartézská soustava mi tuto úlohu trochu ulehčí body od sebe prostě odečtu a odečítám je tzv. po složkách příklad: obecně: B A = B[3, 5] A[2, 3] = (3 2, 5 3) = (1, 2) B A = B[B x, B y ] A[A x, A y ] = (B x A x, B y A y ) obecně ve 3D: B A = B[B x, B y, B z ] A[A x, A y, A z ] = (B x A x, B y A y, B z A z ) proč najednou kulaté závorky? získali jsme totiž nový objekt - tzv. vektor viz další část textu grafické odvození vzdálenosti vidíme na obrázku 7 - úsečky s rozdíly příslušných souřadnic tvoří odvěsny pravoúhlého trojúhelníka! podle Pythagorovy věty bude tedy vzdálenost dvou bodů (všimněte si označení): B A = (B x A x ) 2 + (B y A y ) 2 4
5 obrázek 6: znázornění bodu A[2,3,1] v prostoru - červená osa je x, zelená y a modrá opět z obrázek 7: grafické znázornění rozdílu dvou bodů příklad zmíněný výše: B A = (3 2) 2 + (5 3) 2 = = 5 Ve 3D vzdálenost dvou bodů obecně počítáme podobně: B A = (B x A x ) 2 + (B y A y ) 2 + (B z A z ) 2 poznámka - vzdálenost bodů A a B také značíme AB 5
Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.
7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,
VíceVýstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky
provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace
VíceMatematický model kamery v afinním prostoru
CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Matematický model kamery v afinním prostoru (Verze 1.0.1) Jan Šochman, Tomáš Pajdla sochmj1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz CTU CMP 2002
VíceModerní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla
Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,
Více4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů
4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici
Více(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3)
Učební tet k přednášce UFY1 Předpokládejme šíření rovinné harmonické vln v kladném směru os z. = i + j kde i, j jsou jednotkové vektor ve směru os respektive a cos ( ) ω ϕ t kz = + () = cos( ωt kz+ ϕ )
Více3.5.8 Otočení. Předpoklady: 3506
3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,
VíceAutodesk Inventor 8 vysunutí
Nyní je náčrt posazen rohem do počátku souřadného systému. Autodesk Inventor 8 vysunutí Následující text popisuje vznik 3D modelu pomocí příkazu Vysunout. Vyjdeme z náčrtu na obrázku 1. Obrázek 1: Náčrt
Více4.5.1 Magnety, magnetické pole
4.5.1 Magnety, magnetické pole Předpoklady: 4101 Pomůcky: magnety, kancelářské sponky, papír, dřevěná dýha, hliníková kulička, měděná kulička (drát), železné piliny, papír, jehla (špendlík), korek (kus
Více1.2.5 Reálná čísla I. Předpoklady: 010204
.2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý
VíceNázev školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.
Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník
Více6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové
VíceKótování na strojnických výkresech 1.část
Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických
VíceMezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů.
Mezní kalibry Mezními kalibry zjistíme, zda je rozměr součástky v povolených mezích, tj. v toleranci. Mají dobrou a zmetkovou stranu. Zmetková strana je označená červenou barvou. Délka zmetkové části je
Vícec sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
VíceÚprava tabulek v MS Word. Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí
Úprava tabulek v MS Word Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Jestli-že chcete uspořádat informace do pravidelných řádků a
VíceStrojní součásti, konstrukční prvky a spoje
Strojní součásti, konstrukční prvky a spoje Šroubové spoje Šrouby jsou nejčastěji používané strojní součástí a neexistuje snad stroj, kde by se nevyskytovaly. Mimo šroubů jsou u některých šroubových spojů
Více- 1 - Vzdělávací oblast : matematika a její aplikace Vyučovací předmět : : matematika Ročník: 3.
- 1 - Vzdělávací oblast : matematika a její aplikace Vyučovací předmět : : matematika Ročník: 3. ČÍSLO A POČETNÍ OPERACE Výstup Učivo Průřezová témata Mezipředmětové vztahy Zápis čísel. Čtení a zápisy
VíceTÉMATICKÝ PLÁN OSV. čte, zapisuje a porovnává přirozená čísla do 20, užívá a zapisuje vztah rovnosti a nerovnosti
TÉMATICKÝ PLÁN MA 1.ročník Očekávaný výstup /dle RVP/ Žák: Konkretizace výstupu, učivo, návrh realizace výstupu PT Číslo a početní operace používá přirozená čísla k modelování reálných situací, počítá
VíceVyhrubování a vystružování válcových otvorů
Vyhrubování a vystružování válcových otvorů Vyhrubováním se dosáhne nejen hladších povrchů otvorů, ale i jejich přesnějších rozměrů a správnějších geometrických tvarů než při vrtání. Vyhrubování je rozšiřování
VícePlánování a organizace práce podle Denig-Holmsové
Vyšší odborná škola pedagogická a sociální, Evropská 33, Praha 6 Předmět: Pedagogická psychologie Plánování a organizace práce podle Denig-Holmsové 4. 1. 2007 Michaela Molková 3A SOP OBECNĚ Je všeobecně
Více2.2.2 Zlomky I. Předpoklady: 020201
.. Zlomky I Předpoklady: 0001 Pedagogická poznámka: V hodině je třeba postupovat tak, aby se ještě před jejím koncem začala vyplňovat tabulka u posledního příkladu 9. V loňském roce jsme si zopakovali
Víceprimární tlačítko (obvykle levé). Klepnutí se nejčastěji používá k výběru (označení) položky nebo k otevření nabídky.
Říjen Myš Pokud na něco myší ukážeme, e, často se zobrazí krátký popis položky. Pokud například ukážeme na složku Koš na ploše, zobrazí se následující popis: Obsahuje smazané soubory a složky. Takzvaná
Vícehttp://cs.wikipedia.org/wiki/elektromotor
http://cs.wikipedia.org/wiki/elektromotor Krokové motory princip funkce, metody řízení Občas se v praxi vyskytne potřeba pohonu, který umí přesně nastavit svoji polohu a tuto polohu i přes působící síly
VíceSYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G
SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se
VíceTematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý
ČASOVÉ OBDOBÍ Září Říjen KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA Umí zapsat a přečíst čísla do 1 000 000 Porovnává čísla do 1 000 000 Zaokrouhluje čísla na tisíce, desetitisíce, statisíce Umí
Více2.2.10 Slovní úlohy vedoucí na lineární rovnice I
Slovní úlohy vedoucí na lineární rovnice I Předpoklady: 0, 06 Pedagogická poznámka: Řešení slovních úloh představuje pro značnou část studentů nejobtížnější část matematiky Důvod je jednoduchý Po celou
VíceTeleskopie díl pátý (Triedr v astronomii)
Teleskopie díl pátý (Triedr v astronomii) Na první pohled se může zdát, že malé dalekohledy s převracející hranolovou soustavou, tzv. triedry, nejsou pro astronomická pozorování příliš vhodné. Čas od času
VíceČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ
ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)
VícePříprava na 1. čtvrtletní písemku pro třídu 1EB
Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné
Vícepracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Rovnice a jejich soustavy Petra Směšná žák měří dané veličiny, analyzuje a zpracovává naměřená data, rozumí pojmu řešení soustavy dvou lineárních rovnic,
Více1 Matematické základy teorie obvodů
Matematické základy teorie obvodů Vypracoval M. Košek Toto cvičení si klade možná přemrštěný, možná jednoduchý, cíl dosáhnout toho, aby všichní studenti znali základy matematiky (a fyziky) nutné pro pochopení
VíceSada 2 CAD2. 9. CADKON 2D 2011 Překlady
S třední škola stavební Jihlava Sada 2 CAD2 9. CADKON 2D 2011 Překlady Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace
VíceVítězslav Bártl. březen 2013
VY_32_INOVACE_VB08_K Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav
Více5.2.1 Matematika povinný předmět
5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v
Více21 SROVNÁVACÍ LCA ANALÝZA KLASICKÝCH ŽÁROVEK A KOMPAKTNÍCH ZÁŘIVEK
21 SROVNÁVACÍ LCA ANALÝZA KLASICKÝCH ŽÁROVEK A KOMPAKTNÍCH ZÁŘIVEK Pavel Rokos ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra elektrotechnologie Úvod Světelné zdroje jsou jedním
VícePříloha č. 2 Vyhledávání souřadnic definičních bodů v Nahlížení do KN OBSAH
Příloha č. 2 Vyhledávání souřadnic definičních bodů v Nahlížení do KN OBSAH 1) Úvodní informace... 2 2) Vyhledání bodu zadáním souřadnic... 2 Hledání... 2 Mapové podklady... 3 3) Doplňkové funkce... 4
VíceROBOTIKA. univerzální Rozdělení manipulačních zařízení podle způsobu řízení: jednoúčelové manipulátory
ROBOTIKA je obor zabývající se teorií, konstrukcí a využitím robotů slovo robot bylo poprvé použito v roce 1920 ve hře Karla Čapka R.U.R (Rossum s Universal Robots pro umělou bytost) Robot je stroj, který
Vícedoc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Nevyváženost rotorů rotačních strojů je důsledkem změny polohy (posunutí, naklonění) hlavních os setrvačnosti rotorů vzhledem
VíceMechanismy. Vazby členů v mechanismech (v rovině):
Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).
Více4 Vyhodnocení naměřených funkčních závislostí
4 Vyhodnocení naměřených funkčních závislostí Kromě měření konstant je častou úlohou měření zjistit, jak nějaká veličina y (závisle proměnná, jinak řečeno funkce) závisí na jiné proměnlivé veličině x (nezávisle
VíceNÁZEV ŠKOLY: Střední odborné učiliště, Domažlice, Prokopa Velikého 640. V/2 Inovace a zkvalitnění výuky prostřednictvím ICT
NÁZEV ŠKOLY: Střední odborné učiliště, Domažlice, Prokopa Velikého 640 ŠABLONA: NÁZEV PROJEKTU: REGISTRAČNÍ ČÍSLO PROJEKTU: V/2 Inovace a zkvalitnění výuky prostřednictvím ICT Zlepšení podmínek pro vzdělávání
VíceODBORNÝ VÝCVIK VE 3. TISÍCILETÍ. Mel - 2.4 ZAPOJOVÁNÍ SOUČÁSTEK V ELEKTRONICE
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: Mel - 2.4 ZAPOJOVÁNÍ SOUČÁSTEK V ELEKTRONICE Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Bc. Josef Mahdal Střední průmyslová škola Uherský Brod, 2010
VíceSada 2 Geodezie II. 18. Státní mapy
S třední škola stavební Jihlava Sada 2 Geodezie II 18. Státní mapy Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace a zkvalitnění
Více1. a) Přirozená čísla
jednotky desítky stovky tisíce desetitisíce statisíce miliony 1. a) Přirozená čísla Přirozená čísla jsou nejčastějšími čísly, se kterými se setkáváme v běžném životě. Jejich pomocí zapisujeme počet věcí
VíceKONVENČNÍ FRÉZOVÁNÍ Zdeněk Zelinka
KONVENČNÍ FRÉZOVÁNÍ Zdeněk Zelinka Frézování pravoúhlých drážek VY_32_INOVACE_OVZ_1_11 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět
VíceMatematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín
Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Benjamín Úlohy za 3 body 1. Hodnota kterého výrazu je sudé číslo? (A) 200 + 9 (B) 200 9 (C) 200 9 (D) 2 + 0 + 0 + 9 (E) 2 0 + 0 + 9 2. Kolik
Víceplošný 3D NURBS modelář pracující pod Windows NURBS modely jsou při jakkoliv blízkém pohledu dokonale hladké
Úvod do počítačové grafiky Rhino - modelování v rovině Základní úlohy: bod, lomená čára, křivka, kružnice, Volné i přesné zadávání pomocí souřadnic Úvod do Rhina plošný 3D NURBS modelář pracující pod Windows
Více1.7. Mechanické kmitání
1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.17 Technická příprava výroby Kapitola 5
VíceVyučovací předmět / ročník: Matematika / 5. Učivo
Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel
VícePASIVNÍ SOUČÁSTKY. Ivo Malíř
PASIVNÍ SOUČÁSTKY Ivo Malíř Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. Výuková sada
Více2.8.23 Využití Pythagorovy věty III
.8.3 Využití Pythagorovy věty III Předpoklady: 008 Př. 1: Urči obsah rovnoramenného trojúhelníku se základnou 8 cm a rameny 5,8 cm. Pro výpočet obsahu potřebujeme znát jednu ze stran a odpovídající výšku.
VíceVýroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol
Výroba ozubených kol Použití ozubených kol Ozubenými koly se přenášejí otáčivé pohyby a kroutící momenty. Přenos je zde nucený, protože zuby a zubní mezery do sebe zabírají. Kola mohou mít vnější nebo
VíceJakhrátavyhrát Robert Šámal
Jakhrátavyhrát Robert Šámal V přednášce si ukážeme efektivní způsob, jak analyzovat hry. U jednodušších her objevíme úplnou strategii, tj. postup, jak o každé pozici poznat, kdo vyhraje a jak má správně
Více5. VÝROBNÍ STROJE. 5.1. Dělení výrobních strojů
5. VÝROBNÍ STROJE Ke správnému porozumění obsahu této kapitoly je vhodné připomenout význam některých pojmů: Stroj je obecně mechanické zařízení, které má za cíl usnadnění, zrychlení a zpřesnění lidské
VíceVyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích
Změny 1 vyhláška č. 294/2015 Sb. Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích a která s účinností od 1. ledna 2016 nahradí vyhlášku č. 30/2001 Sb. Umístění svislých
VíceOsvětlovací modely v počítačové grafice
Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu Matematické modelování Osvětlovací modely v počítačové grafice 27. ledna 2008 Martin Dohnal A07060 mdohnal@students.zcu.cz
VícePoznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:
Mongeovo promítání základní úlohy metrické (skutečná velikost úsečky - sklápění, kolmice k rovině, vzdálenost bodu od roviny, vzdálenost bodu od přímky, rovina kolmá k přímce, otáčení roviny, trojúhelník
Více4. Připoutejte se, začínáme!
4. Připoutejte se, začínáme! Pojďme si nyní zrekapitulovat základní principy spreadů, které jsme si vysvětlili v předcházejících kapitolách. Řekli jsme si, že klasický spreadový obchod se skládá ze dvou
Více( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502
.5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady
Více3D modely v programu Rhinoceros
3D modely v programu Rhinoceros Petra Surynková Dep. of Mathematics Education, Fac. of Mathematics and Physics, Charles University in Prague Sokolovská 83, 186 75 Praha 8, Czech Republic email: petra.surynkova@seznam.cz
VíceProvoz a poruchy topných kabelů
Stránka 1 Provoz a poruchy topných kabelů Datum: 31.3.2008 Autor: Jiří Koreš Zdroj: Elektroinstalatér 1/2008 Článek nemá za úkol unavovat teoretickými úvahami a předpisy, ale nabízí pohled na topné kabely
VíceNÁVRH VRTACÍCH PŘÍPRAVKŮ SVOČ FST 2014 Lukáš Vítek, Karel Aron, Střední Průmyslová Škola Ostrov, Klínovecká 1197 Ostrov 363 01
NÁVRH VRTACÍCH PŘÍPRAVKŮ SVOČ FST 2014 Lukáš Vítek, Karel Aron, Střední Průmyslová Škola Ostrov, Klínovecká 1197 Ostrov 363 01 ANOTACE Tato práce zpočátku pojednává o součásti jménem přepínač a zabývá
VíceASYNCHRONNÍ STROJ. Trojfázové asynchronní stroje. n s = 60.f. Ing. M. Bešta
Trojfázové asynchronní stroje Trojfázové asynchronní stroje někdy nazývané indukční se většinou provozují v motorickém režimu tzn. jako asynchronní motory (zkratka ASM). Jsou to konstrukčně nejjednodušší
Více1.1.11 Poměry a úměrnosti I
1.1.11 Poměry a úměrnosti I Předpoklady: základní početní operace, 010110 Poznámka: Následující látka bohužel patří mezi ty, kde je nejvíce rozšířené používání samospasitelných postupů, které umožňují
VíceGymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Teoretické řešení střech Vypracoval: Michal Drašnar Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že
VíceM. Balíková, R. Záhořík, NK ČR 1
M. Balíková, R. Záhořík, NK ČR 1 Geolink.nkp.cz Prototyp aplikace obohacení geografických autorit o údaje souřadnic s následným zobrazením dané lokality na mapě - kartografické matematické údaje v záznamech
VíceOBKLADOVÁ FASÁDNÍ DESKA
Tyto betonové obkladní fasádní desky jsou určeny k vytváření předsazených odvětrávaných fasád občanských a bytových budov zejména montované a skeletové konstrukce. Kotvení obkladových fasádních desek je
VíceDefinice tolerování. Technická dokumentace Ing. Lukáš Procházka
Technická dokumentace Ing. Lukáš Procházka Téma: geometrické tolerance 1) Definice geometrických tolerancí 2) Všeobecné geometrické tolerance 3) Základny geometrických tolerancí 4) Druhy geometrických
Více1.9.5 Středově souměrné útvary
1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.
Více1.2.7 Druhá odmocnina
..7 Druhá odmocnina Předpoklady: umocňování čísel na druhou Pedagogická poznámka: Probrat obsah této hodiny není možné ve 4 minutách. Já osobně druhou část (usměrňování) probírám v další hodině, jejíž
VíceV této části manuálu bude popsán postup jak vytvářet a modifikovat stránky v publikačním systému Moris a jak plně využít všech možností systému.
V této části manuálu bude popsán postup jak vytvářet a modifikovat stránky v publikačním systému Moris a jak plně využít všech možností systému. MENU Tvorba základního menu Ikona Menu umožňuje vytvořit
VíceSpisový, archivační a skartační řád MAS Moravský kras o. s.
Spisový, archivační a skartační řád MAS Moravský kras o. s. Vnitřní směrnice MAS Moravský kras o.s. 1 Obsah I. Úvodní ustanovení... 3 II. Spisový řád... 3 Vymezení pojmů... 3 III. Archivační a skartační
VíceROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH
ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH Vypracoval: Jan Vojtíšek Třída: 8.M Školní rok: 2011/2012 Seminář: Aplikace Deskriptivní geometrie Prohlašuji, že jsem svou ročníkovou práci napsal samostatně a
Více3 Vývojová prostředí, základní prvky jazyka Java, konvence jazyka Java
3 Vývojová prostředí, základní prvky jazyka Java, konvence jazyka Java Studijní cíl V tomto bloku navážeme na konec předchozího bloku a seznámíme se s vývojovými prostředími, které se nejčastěji používají
VíceEkonomika 1. 09. Ochranné prvky bankovek ČR
S třední škola stavební Jihlava Ekonomika 1 09. Ochranné prvky bankovek ČR Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace
VíceSada 1 Geodezie I. 06. Přímé měření délek pásmem
S třední škola stavební Jihlava Sada 1 Geodezie I 06. Přímé měření délek pásmem Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2
VíceL A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméno TUREČEK Daniel Datum měření 3..6 Stud. rok 6/7 Ročník. Datum odevzdání 3..7 Stud. skupina 3 Lab.
Vícea m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.
1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její
VíceBudování aplikačních rozhraní pro obousměrnou komunikaci mezi ERMS a jejich vztah k Národnímu standardu pro komunikaci mezi ERMS.
Budování aplikačních rozhraní pro obousměrnou komunikaci mezi ERMS a jejich vztah k Národnímu standardu pro komunikaci mezi ERMS. Použité zkratky ERMS ESS i AIS ESS elektronická spisová služba AIS agendový
Více10 je 0,1; nebo taky, že 256
LIMITY POSLOUPNOSTÍ N Á V O D Á V O D : - - Co to je Posloupnost je parta očíslovaných čísel. Trabl je v tom, že aby to byla posloupnost, musí těch čísel být nekonečně mnoho. Očíslovaná čísla, to zavání
VíceSRF08 ultrazvukový dálkoměr
SRF08 ultrazvukový dálkoměr Technické údaje Ultrazvukový dálkoměr SRF08 komunikuje pomocí sběrnice I2C, která je dostupná na řadě oblíbených kontrolérů jako OOPic, Stamp BS2p, Atom či Picaxe. Z hlediska
VícePodpůrný výukový materiál s využitím ICT* Podpůrný výukový materiál reedukační hodiny *
Podpůrný výukový materiál s využitím ICT* Podpůrný výukový materiál reedukační hodiny * Název: Pohádkové počítání,sčítání a odčítání do 20-typ příkladů 10+4, 14-4, reedukační pracovní listy Autor: Mgr.
VíceInovace a zkvalitnění výuky prostřednictvím ICT. Obrábění. Název: Ing. Kubíček Miroslav. Autor: Číslo: VY_32_INOVACE_19 09 Anotace:
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Obrábění Frézování Ing. Kubíček Miroslav Číslo: VY_32_INOVACE_19
VíceStřední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Druhy šroubů a matic, třídy
VíceUložení potrubí. Postupy pro navrhování, provoz, kontrolu a údržbu. Volba a hodnocení rezervy posuvu podpěr potrubí
Uložení potrubí Postupy pro navrhování, provoz, kontrolu a údržbu Volba a hodnocení rezervy posuvu podpěr potrubí Obsah: 1. Definice... 2 2. Rozměrový návrh komponent... 2 3. Podpěra nebo vedení na souosém
VíceODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.1 MĚŘENÍ ZÁKLADNÍCH EL. VELIČIN
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEII - 3.1 MĚŘENÍ ZÁKLADNÍCH EL. VELIČIN Obor: Mechanik Elektronik Ročník: 2. Zpracoval(a): Jiří Kolář Střední průmyslová škola Uherský Brod, 2010 Projekt
Více2.5.10 Přímá úměrnost
2.5.10 Přímá úměrost Předpoklady: 020508 Př. 1: 1 kwh hodia elektrické eergie stojí typicky 4,50 Kč. Doplň do tabulky kolik Kč stojí růzá možství objedaé elektrické eergie. Zkus v tabulce ajít zajímavé
VíceAktivity s GPS 3. Měření některých fyzikálních veličin
Aktivity s GPS 3 Měření některých fyzikálních veličin Autor: L. Dvořák Cílem materiálu je pomoci vyučujícím s přípravou a následně i s provedením terénního cvičení s využitím GPS přijímačů se žáky II.
VíceAplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Radek Havlík [ÚLOHA 05 VYŘÍZNUTÍ MATERIÁLU LINEÁRNÍ A ROTACÍ]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Radek Havlík [ÚLOHA 05 VYŘÍZNUTÍ MATERIÁLU LINEÁRNÍ A ROTACÍ] 1 CÍL KAPITOLY Cílem této kapitoly je naučit se efektivní práci ve 3D modelování, s použitím
Více7. Odraz a lom. 7.1 Rovinná rozhraní dielektrik - základní pojmy
Trivium z optiky 45 7 draz a lom V této kapitole se budeme zabývat průchodem (lomem) a odrazem světla od rozhraní dvou homogenních izotropních prostředí Pro jednoduchost se omezíme na rozhraní rovinná
VíceNa následující stránce je poskytnuta informace o tom, komu je tento produkt určen. Pro vyplnění nového hlášení se klikněte na tlačítko Zadat nové
Pro usnadnění podání Ročního hlášení o produkci a nakládání s odpady může posloužit služba firmy INISOFT, která je zdarma přístupná na WWW stránkách firmy. WWW.INISOFT.CZ Celý proces tvorby formuláře hlášení
VíceRukodělná činnost. příručka pro účastníky kurzu pracovní text ke studiu. Pojďme spolu CZ.1.07/1.2.17/01.0011
Rukodělná činnost příručka pro účastníky kurzu pracovní text ke studiu Pojďme spolu CZ.1.07/1.2.17/01.0011 Operační program Vzdělávání pro konkurenceschopnost Rovné příležitosti dětí a žáků, včetně dětí
VíceWEBMAP Mapový server PŘÍRUČKA PRO WWW UŽIVATELE. 2005-2008 Hydrosoft Veleslavín, s.r.o., U Sadu 13, Praha 6 www.hydrosoft.eu
WEBMAP Mapový server PŘÍRUČKA PRO WWW UŽIVATELE 2005-2008 Hydrosoft Veleslavín, s.r.o., U Sadu 13, Praha 6 www.hydrosoft.eu Obsah Obsah 1 1.1 3 Internetový... prohlížeč map 4 Rozložení ovládacích... prvků
VíceVýroba Hofmanových bočních louček pomocí hoblovky. Napsal uživatel Milan Čáp Čtvrtek, 30 Duben 2009 17:47
Zveřejňujeme příspěvek, který byl před časem publikován ve Včelařských novinách. Tento elektronický včelařský web je již delší dobu mimo provoz, proto návod na výrobu bočních louček Hoffmanova typu dnes
VíceZákladní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika.
Matematika Matematika pro žáky 6. až 9. ročníku napomáhá k rozvoji paměti, logického myšlení, kritickému usuzování a srozumitelné a věcné argumentaci prostřednictvím matematických problémů. Žáci si prostřednictvím
VíceRuční práce a obrábění - řezání, pilování, stříhání, ohýbání
Ruční práce a obrábění - řezání, pilování, stříhání, ohýbání Řezání kovů Základní pojmy Obrábění technologický proces, kterým vytváříme povrchy obrobku určitého tvaru, rozměru a kvality odebíráním částic
Více1 Zadání konstrukce. Výška stěny nad terénem (horní líc) h= 3,5 m Sedlová střecha, sklon 45, hřeben ve směru delší stěny
1 1 Zadání konstrukce Základní půdorysné uspořádání i výškové uspořádání je patrné z obrázků. Dřevostavba má obytné zateplené podkroví. Detailní uspořádání a skladby konstrukcí stěny, stropu i střechy
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Anemometrické metody Učební text Ing. Bc. Michal Malík Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl v rámci
Více