Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
|
|
- Adéla Vávrová
- před 9 lety
- Počet zobrazení:
Transkript
1 Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek a odeslat signál. Vyhodnocení signálů dává u 1 voáka během 0 hodin tyto výsledky: 1,16 1,6 1,77 1,15 1,19 0,93 0,87 1,6 1,7 1,31 1,11 0,73 1,5 1,37 1,45 1,08 0,98 0,83 1,17 1,54. Předpokládete, že odhady časového intervalu maí normální rozdělení. a) Zistěte, zda voák v daných podmínkách odhadue správně hodinový interval. Test proveďte na hladině významnosti α = 0,05. b) Sestrote oboustranný interval spolehlivosti pro střední hodnotu odhadů s rizikem α = 0,05 a komentute srovnání s výsledkem testu. Řešení: a) n = 0, x Ä 1,184, s Ä 0,48, α = 0,05 Hypotéza a alternativa H: μ = 1 A: μ 1 Testové kritérium x μ0 1184, 1 t = n = 0 Ä 3,317 s 0, 48 Kritický obor W 0,05 : t t 0,975 (19) 3,317,093 tzn., že hodnota testového kritéria patří do kritického oboru, nulovou hypotézu H na hladině významnosti α = 0,05 zamítáme, platí alternativní hypotéza. S 95% spolehlivostí lze tvrdit, že odhad hodinového intervalu není správný. b) Oboustranný interval spolehlivosti pro střední hodnotu s s x t0, 975( 19) < μ < x + t0, 975(19) n n 0,48 0,48 1,184,093 < μ < 1,184 +, ,068 < μ < 1,300 Hodnota 1 nepatří do 95% intervalu spolehlivosti pro střední hodnotu. Na základě toho můžeme říct, že odhad hodinového intervalu není s pravděpodobností 95 % správný. Výsledky získané na základě testu a intervalu spolehlivosti sou stené. (Odpovídaící intervaly spolehlivosti e možné používat při testování hypotéz.) Provedený test a intervalový odhad lze snadno provést v našem excelovském pracovním sešitu STAT1: Otevřeme si list 1V normální (ednovýběrový problém předpoklad normální rozdělení) a v horní části listu vybereme proměnnou s90p čas. Ve žlutých buňkách se zobrazí ednoduchý výstup popisné statistiky hodnoty n, x, s a s (0; 1,184; 0,48 a 1
2 0,06). V této části také vložíme hladinu významnosti α, v našem případě 0,05. V zelených buňkách se budou zobrazovat ednotlivé výsledky statistických analýz viz obr. 1. V části 1 se zobrazí bodové odhady parametrů normálního rozdělení, t. odhad střední hodnoty ˆ μ = x = 1, 184 a odhad rozptylu σˆ = s = 0,06. Navíc se zobrazí i odhad směrodatné odchylky σˆ = s = 0,48 a odhad směrodatné chyby odhadu střední hodnoty estse = s / n = 0,055. Ve. části si můžeme vložit zvolenou velikost přípustné chyby Δ a dostaneme požadovaný minimální rozsah souboru potřebný k tomu, aby velikost přípustné chyby nepřekročila s danou pravděpodobností stanovenou mez. Např. pro zvolenou přípustnou chybu Δ = 0,1 dostaneme minimální rozsah výběru n = 7. Ve 3. části sou uvedené intervalové odhady parametru μ. Zde e právě uvedený i oboustranný interval (1,068; 1,300), který sme v části b) ručního výpočtu také dostali. Konečně 4. část e určená pro testování hypotéz o střední hodnotě. Neprve vložíme hodnotu μ 0 = 1 a dostaneme hodnotu testového kritéria t = 3,317. Dále si mezi nabídnutými alternativami s ohledem na náš řešený problém vybereme alternativu μ μ 0, t. μ 1. V řádku tabulky odpovídaícím této alternativě dostaneme následuící informace: Hodnota testového kritéria padla do kritického oboru (t W 0,05 ); hodnota testového kritéria 3,317 překročila kritickou hodnotu tou e v našem případě Studentův kvantil t 0,975 (19) =,093; p-hodnota = 0,004 e menší než naše hladina významnosti 0,05. To všechno vede k edinému závěru, který e zde uvedený také: hypotéza H se zamítá a alternativa A se přime. Tento závěr se bude interpretovat zcela shodně ako při ručním zpracování: S 95% spolehlivostí není odhad hodinového intervalu správný. Obr. 1: Příklad 90/ odhad času řešený ve STAT1 list 1V-normální
3 Dvouvýběrové testy 97/1 hmotnost sýru Vážením sme získali údae o přesné hmotnosti balíčků sýrů automaticky balených po 50 g, náhodně vybraných před a po seřízení automatu. Údae o hmotnostech [v gramech] před seřízením: 43, 44,8 53,1 47,5 51,0 51,7 54,0 5,5 5,8 50,1 47,3 50,9 53, 5,7 51,8 45,5 po seřízení: 50,4 50, 51,1 48,9 49,9 50, 5,4 50,8 Na 5% hladině významnosti ověřte, zda se seřízením automatu nezměnila nastavená úroveň hmotnosti. Předpokládete normální rozdělení hmotnosti balíčků. Řešení: Před seřízením: n 1 = 16, x Ä 50,131, Po seřízení: n = 8, y Ä 50,488, s1 Ä 11,465, s 1 Ä 3,386, α = 0,05. s Ä 1,04, s Ä 1,01. Neprve provedeme test o shodě rozptylů. H: σ = A: σ 1 σ 1 σ Testové kriterium s1 11, 465 F = = Ä 11,196 s 1, 04 Kritický obor W 0,05 : F F 0,05 (15; 7) F F 0,975 (15; 7) 11,196 0,304 11,196 4,568 Jelikož 11,196 > 4,568, tzn., že hodnota testového kriteria patří do kritického oboru, hypotézu o shodě rozptylů na hladině významnosti 0,05 tedy zamítáme. V dalších výpočtech budeme předpokládat, že rozptyly obou výběrů sou různé. Nyní přistoupíme k testu o shodě středních hodnot. H: μ 1 = μ A: μ 1 μ Testové kriterium x y 50, , 488 t = = Ä 0,388 s 11, 465 1, 04 1 s + + n n 16 8 Kritický obor 1 W 0,05 : t t 0,975 (ν*), kde ν* = [k*] a s1 s ,, + 1 k* n n 16 8 = 1 s s,, n n n n Ä 19,504. 3
4 Protože ν* = [19,504] = 19 (funkce [x] znamená celou část argumentu, např. [3,8] = 3), potom W 0,05 : t t 0,975 (19) 0,388,093 0,388,093 Protože tato nerovnost neplatí, znamená to, že hodnota testového kriteria nepaří do kritického oboru a hypotézu o shodě středních hodnot nemůžeme na hladině významnosti 0,05 zamítnout. Změna úrovně hmotnosti před a po seřízení automatu tedy nebyla prokázána. Také tuto úlohu můžeme pohodlně řešit v našem excelovském pracovním sešitu STAT1: Otevřeme si list V normální (dvouvýběrový problém předpoklad normální rozdělení) a v horní části listu vybereme proměnné s97p1 sýry-před a s97p1 sýry-po. Ve žlutých buňkách se zobrazí ednoduché výstupy popisné statistiky obou souborů hodnoty n 1, x, s 1 a s 1 resp. n, y, s a s (16; 50,131; 3,386 a 11,465 resp. 8; 50,488; 1,01 a 1,04). V této části také vložíme hladinu významnosti α, v našem případě 0,05. V zelených buňkách se budou zobrazovat ednotlivé výsledky statistických analýz viz obr.. Obr. : Příklad 97/1 hmotnost sýru řešený ve STAT1 list V-normální V souladu s teorií testování hypotéz o shodě dvou středních hodnot musíme neprve otestovat 4
5 shodu obou rozptylů. Výsledky sou v 1. části listu, hodnota testového kritéria e F = 11,195, a pro alternativu σ 1 σ překračue kvantil F 0,975 (15; 7) = 4,568, také p-hodnota = 0,003 e menší než α = 0,05. Tyto výsledky znamenaí, že s 95% pravděpodobností nelze akceptovat shodu rozptylů homoskedasticitu. Budeme předpokládat neshodu rozptylů heteroskedasticitu, tento výsledek e v 1. části listu také zobrazený. Ve. a 3. části listu řeší STAT1 testy hypotéz o shodě středních hodnot, a to za předpokladu shody (. část) resp. neshody (3. část) rozptylů. S ohledem na náš výsledek prvního testu předpoklad heteroskedasticita použieme pro další řešení problému 3. část. Hodnota testového kritéria t = 0,388, stupně volnosti ν* = 19, Studentův kvantil t 0,975 (19) =,093 a p-hodnota = 0,703 vede pro alternativu μ 1 μ k závěru, že shoda středních hodnot μ 1 = μ se nezamítá. To prakticky znamená, že změna úrovně hmotnosti před a po seřízení automatu tedy nebyla prokázána. 3 Testy o tvaru rozdělení Pokud sledueme reálně istou náhodnou veličinu prostřednictvím náhodného výběru, potom ednou ze zásadních informací, které budeme při statistické analýze potřebovat, e informace o rozdělení této náhodné veličiny. Přesněi řečeno budeme rozhodovat, zda náš náhodný výběr pochází z normálního rozdělení, nebo zda normální rozdělení ako teoretický model nebude možné akceptovat. I když tuto informaci už můžeme vysledovat z tabulky rozdělení četností resp. z grafu rozdělení četností, korektněi tuto informaci získáme pomocí testů o normalitě konkrétně pomocí testů o nulové šikmosti a nulové špičatosti resp. C-testu. V některých reálných situacích může být užitečné ověřit, zda náš výběr nepochází z iného než normálního rozdělení, např. z Poissonova rozdělení, logaritmicko-normálního rozdělení apod. K tomu slouží χ -test dobré shody, kterým lze otestovat shodu dat s akýmkoliv rozdělením. 99/3 a 91/9 pneumatiky Byl proveden test životnosti u 80 kusů pneumatik. Výsledky sou uvedeny v tabulce. tisíc km počet a) Vypočítete koeficienty šikmosti a špičatosti. b) Pomocí testů o nulové šikmosti a nulové špičatosti ověřte, zda výběr pochází z normálního rozdělení. Použite hladinu významnosti 0,05 i 0,01. c) C-testem normality ověřte, zda výběr pochází z normálního rozdělení. Použite také hladinu významnosti 0,05 i 0,01. Řešení: a) Výběrové koeficienty šikmosti a špičatosti určíme v programu STAT1 ako momentové koeficienty a 3 = 0,64 a a 4 = 0,068 viz obr. 1. b) Ověření normality e založené na skutečnosti, že normální rozdělení má nulovou šikmost a současně nulovou špičatost: α 3 = 0 α 4 = 0. Proto použieme tuto neednodušší filozofii, která spočívá pouze ve snaze zamítnout nulovou šikmost nebo zamítnout nulovou špičatost. Pokud by se to podařilo, potom prohlásíme, že výběr z normálního rozdělení nepochází. V opačném případě, tedy když nulovou šikmost ani nulovou špičatost 5
6 nezamítneme, bude možné normální rozdělení ako model pro popis sledované náhodné veličiny akceptovat. Neprve otestueme nulovou šikmost pro α = 0,05: užieme n = 80 a a 3 = 0,64 H: α 3 = 0 A: α 3 0 a3 0,64 u 3 = = Ä,365, kde D(a 3 ) = D( a 3 ) 0,0696 W 0,05 : u 3 u 0,975,365 1,960 platí H se zamítá 6( n ) = ( n + 1)( n + 3) 6 78 Ä 0, Výběr tedy pochází z rozdělení, které s 95% spolehlivostí vykazue nenulovou šikmost, to tedy znamená, že normální rozdělení není vhodným modelem pro popis naší náhodné veličiny! V takovém případě test o nulové špičatosti už není potřebné provádět. Nyní otestueme nulovou šikmost pro α = 0,01: užieme n = 80 a a 3 = 0,64 H: α 3 = 0 A: α 3 0 výpočet D(a 3 ) = 0,0696 a u 3 =,365 se nemění W 0,01 : u 3 u 0,995,365,576 neplatí H se nezamítá V tomto případě se s 99% spolehlivostí nepodařila prokázat nenulová šikmost. To tedy znamená, že výběr pochází ze symetrického rozdělení, a o normálním rozdělení musíme rozhodnout pomocí testu o nulové špičatosti pro α = 0,01: užieme n = 80 a a 4 = 0,068 H: α 4 = 0 A: α 4 0 a , u 4 = n = Ä 0,01, D( a4 ) 0,49 4n( n )( n 3) kde D(a 4 ) = = ( n + 1) ( n + 3)( n + 5) W 0,01 : u 4 u 0,995 0,01,576 neplatí H se nezamítá Ä 0,49 S 99% spolehlivostí se nepodařila prokázat ani nenulová špičatost, to tedy znamená, že na hladině významnosti α = 0,01 lze normální rozdělení akceptovat ako vhodný model pro popis sledované veličiny. Dáme-li dohromady naše úvahy, e patrné, že normalita se na hladině významnosti 0,05 zamítá (koeficient šikmosti e nenulový, říkáme také, že e statisticky významný), avšak na hladině významnosti 0,01 e možné považovat data za výběr z normálního rozdělení (oba koeficienty sou statisticky nevýznamné). c) C-test normality e založený na skutečnosti, že součet čtverců normovaných veličin u 3 a u 4 má Pearsonovo rozdělení se dvěma stupni volnosti. Neprve otestueme normalitu pro α = 0,05: užieme u 3 =,365 a u 4 = 0,01 H: X má normální rozdělení A: X nemá normální rozdělení C = u + =, ,01 Ä 5,593 3 u4 6
7 W 0,05 : C χ 0,95() 5,593 5,991 neplatí H se nezamítá S 95% spolehlivostí se nepodařilo hypotézu o normálním rozdělení zamítnout, a proto budeme normální rozdělení považovat za vhodný model pro popis naší náhodné veličiny. Dále otestueme normalitu pro α = 0,01: užieme u 3 =,365, u 4 = 0,01 a C = 5,593. H: X má normální rozdělení A: X nemá normální rozdělení W 0,05 : C χ 0,99() 5,593 9,10 neplatí H se nezamítá S 99% spolehlivostí se také nepodařilo hypotézu o normálním rozdělení zamítnout, a proto budeme i v tomto případě normální rozdělení považovat za vhodný model pro popis naší náhodné veličiny. Rozdíly od normality nesou tedy na obou hladinách významnosti statisticky významné. Excelovský pracovní sešit STAT1 nám poskytue základní informace o normalitě na 3 listech, které sou určené pro základní zpracování dat: Popisné charakteristiky, Bodové rozdělení a Intervalové rozdělení. Pod tabulkou s popisnými charakteristikami a grafy se nachází část Ověření normality viz obr. 1. Samostatně e zde provedený test o nulové šikmosti, test o nulové špičatosti (závěr o normalitě si musí uživatel udělat sám!) a C-test o normalitě. Na obr. 1 se týkaí všechny výstupy našeho řešeného příkladu 91/9 pneumatiky, všechny na hladině významnosti 0,05. Obr. 1: Příklad 91/9 pneumatiky řešený ve STAT1 list Popisná statistika 101/15 myčka Po dobu 3 měsíců se v pracovních dnech sledoval počet aut na mycí lince za den. počet aut počet případů Předpokládete, že počet aut na myčce má Poissonovo rozdělení. Je tento předpoklad opodstatněný? Použite χ -test dobré shody a řešte na hladině významnosti 0,05. 7
8 Řešení: Odhad parametru lambda provedeme pomocí výběrového průměru (pro Poissonovo rozdělení totiž platí E(X) = λ a odhad ˆ λ = x = 5 ). Zformulueme hypotézu a alternativu: H: X má Poissonovo rozdělení s parametrem λ = 5 A: X nemá Poissonovo rozdělení s parametrem λ = 5 Jako testové kriterium použieme statistiku k ( n nπ ) χ =, = 1 nπ která má při platnosti hypotézy Pearsonovo rozdělení s ν = k c 1 stupni volnosti, kde n e rozsah výběrového souboru, k e počet tříd, c e počet neznámých parametrů ověřovaného rozdělení. Potom kritický obor e W α = {χ ; χ χ1 α ( ν ) }. x n četnosti π hodnoty pravděpodobnostní funkce nπ teoretické četnosti nπ sdružené n ( n n 0 0 0, , ,03369, , , ,084 5, , , , , , , , , , , , , ,146 9, , , , , , , ,0658 4, ,0367,318 8, , a více 1 0,03183, , , , ,3149 nπ π ) V tabulce e uveden výpočet testové statistiky. V prvním sloupci e uvedený obor hodnot náhodné veličiny s Poissonovým rozdělením, ve druhém sloupci sou empirické četnosti. Ve třetím a čtvrtém sloupci sou pravděpodobnosti (např. z tabulek) a vypočítáme teoretické četnosti. Vzhledem k tomu, že teoretické četnosti v prvních třech a posledních třech třídách sou menší než 5, provedeme eich sloučení; sdružené hodnoty sou uvedené v pátém a šestém sloupci. Sedmý sloupec obsahue ednotlivé vypočítané hodnoty testového kritéria a eich součet = hodnota testového kritéria. Kritický obor pro α = 0,05 e χ χ 0,95(5), tedy 3,315 11,1 (neplatí). Stupně volnosti určíme ze vztahu ν = k c 1 = = 5. Protože hodnota testového kriteria nepatří do kritického oboru, testovanou hypotézu, že Poissonovo rozdělení s parametrem λ = 5 e vhodným modelem pro popis naší náhodné veličiny počet aut na myčce, nemůžeme na hladině významnosti 0,05 zamítnout. Na obr. e zobrazené srovnání teoretických a empirických četností, ze kterého e vidět, ak empirické četnosti přibližně kopíruí teoretický model, což vizuálně také napovídá, že Poissonův model s parametrem λ = 5 bude možné považovat pro popis naší veličiny ako 8
9 vhodný. Zobrazený grafický výstup e vytvořený v běžném excelovském prostředí, není součástí programu STAT1. Srovnání teoretických a empirických četností n a více počet aut Obr. : Srovnání teoretických a empirických četností 9
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.
Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
Jednovýběrové testy. Komentované řešení pomocí MS Excel
Jednovýběrové testy Komentované řešení pomocí MS Excel Vstupní data V dalším budeme předpokládat, že tabulka se vstupními daty je umístěna v oblasti A1:C23 (viz. obrázek) Základní statistiky vložíme vzorce
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Národníinformačnístředisko pro podporu jakosti
Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov
SOFTWARE STAT1 A R. Literatura 4. kontrolní skupině (viz obr. 4). Proto budeme testovat shodu středních hodnot µ 1 = µ 2 proti alternativní
ŘEŠENÍ PRAKTICKÝCH ÚLOH UŽITÍM SOFTWARE STAT1 A R Obsah 1 Užití software STAT1 1 2 Užití software R 3 Literatura 4 Příklady k procvičení 6 1 Užití software STAT1 Praktické užití aplikace STAT1 si ukažme
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
t-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =
Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21
Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8
STATISTICA Téma 7. Testy na základě více než 2 výběrů
STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Ilustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
Dvouvýběrové a párové testy. Komentované řešení pomocí MS Excel
Dvouvýběrové a párové testy Komentované řešení pomocí MS Excel Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci glukózy v
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Vzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
Analýza rozptylu. Ekonometrie. Jiří Neubauer. Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel
Analýza rozptylu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO Brno) Analýza rozptylu 1 / 30 Analýza
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Pythagoras Statistické zpracování experimentálních dat Semestrální práce ANOVA vypracoval: Ing. David Dušek
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Test dobré shody v KONTINGENČNÍCH TABULKÁCH
Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,