Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
|
|
- Jindřiška Müllerová
- před 9 lety
- Počet zobrazení:
Transkript
1
2 Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
3 Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
4 Pravděpodobnost a matematická statistika týden ( ) Data, typy dat, variabilita, frekvenční analýza (histogramy, četnosti absolutní, relativní, prosté, kumulativní), základní statistické charakteristiky (průměr, výběr.rozptyl, minimum, maximum, medián, kvartily, boxplot), sešikmenná rozdělení (vzájemná poloha mediánu a střední hodnoty), chvosty, kvantily 2. týden ( ) Princip statistické indukce, výběr, vlastnosti výběru, experiment. Náhodná veličina, rozdělení pravděpodobnosti a jeho souvislost s histogramem. Pravděpodobnost, pravidla pro počítání s pravděpodobností, podmíněná pravděpodobnost, závislost náhodných veličin. 3.týden ( ) Využití závislosti při stanovení pravděpodobnosti - věta o úplné pravděpodobnosti a Bayesova věta 4.týden ( ) Rozdělení chyb měření - normální rozdělení a počítání s ním. Odhady parametrů normálního rozdělení. Intervaly spolehlivosti pro normální data. Jednovýběrové testy o střední hodnotě 5.týden ( ) Výběrový poměr jako odhad pravděpodobnosti sledovaného jevu. Alternativní rozdělení, binomické rozdělení. Intervalový odhad výběrového poměru. Výběry s vracením a bez vracení (binomické a hypergeometrické rozdělení) 6.týden ( ) odpadá 7.týden ( ) Poruchy v čase (Poissonův proces). Poissonovo rozdělení, exponenciální rozdělení, jeho výhody a nevýhody, modelování doby do poruchy pomocí Weibullova rozdělení, lognormálního rozdělení, případně useknuté normální rozdělení. 8.týden ( ) Testy dobré shody, Q-Q graf (pouze vysvětlení), testy normality. Některé neparametrické testy 9.týden ( ) Dvě náhodné veličiny - srovnání dvou výběrů (dvouvýběrové testy) 10. týden ( ) Dvě náhodné veličiny. Dvourozměrné četnosti jako odhad dvourozměrného rozdělení, frekvenční tabulka. Marginální rozdělení (vše pouze diskrétně s tabulkou) 11. týden ( ) Závislost náhodných veličin, míry závislosti (kovariance, korelace), test významnosti korelačního koeficientu 12. týden ( ) Regrese, lineární regresní model (přímková, kvadratická, polynomická regrese), analýza reziduí, pásy spolehlivosti 13. týden ( ) Více výběrů, jednoduché třídění, ANOVA. 14. týden ( ) Rezerva, opakování, testy normality (náhrada za )
5 Tato přednáška je na
6 X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2
7 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2
8 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2
9 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe známe střední hodnoty a neznáme rozptyly Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2
10 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe známe střední hodnoty a neznáme rozptyly známe rozptyly a neznáme střední hodnoty Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2
11 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe známe střední hodnoty a neznáme rozptyly známe rozptyly a neznáme střední hodnoty žádný z parametrů neznáme Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2
12 X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n
13 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n
14 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m test shody rozptylů X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n
15 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n
16 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n
17 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n
18 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X 2,...,X n párový test shody středních hodnot Y : Y 1,Y 2,..., Y n
19 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n párová pozorování párový test shody středních hodnot
20 nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)
21 1) Srovnání rozptylů dvou nezávislých měření nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)
22 1) Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)
23 1) Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? Lze považovat rozptyl dvou nezávislých měření za shodný při dané hladině významnosti? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)
24 1) Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? Lze považovat rozptyl dvou nezávislých měření za shodný při dané hladině významnosti? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test Fisherovo-Snedecorovo rozdělení F(n-1, m-1) H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)
25 - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)
26 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)
27 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)
28 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? Lze považovat střední hodnoty dvou nezávislých měření za shodné při dané hladině významnosti? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)
29 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? Lze považovat střední hodnoty dvou nezávislých měření za shodné při dané hladině významnosti? Lze od sebe statisticky významně odlišit dvě nezávislá měření podle jejich jejich střední hodnoty? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)
30 - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná) pokud σ 2 X = σ 2 Y pokud σ 2 X = σ 2 Y dvouvýběrový t-test se stejnými rozptyly dvouvýběrový t-test s nestejnými rozptyly
31 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná) pokud σ 2 X = σ 2 Y pokud σ 2 X = σ 2 Y dvouvýběrový t-test se stejnými rozptyly dvouvýběrový t-test s nestejnými rozptyly
32 - Dvouvýběrový t-test pokud σx 2 = σy 2 = σ 2 s 2 X Ȳ = s2 X + s 2 Ȳ = s2 X n + s2 Y m = 1 = s 2 n + 1 m + n = s 2 m n.m dále odhadneme s 2 ze všech naměřených hodnot: s 2 1 n = (X i n + m 2 X) m 2 + (Y i Ȳ )2 = i=1 i=1 1 (n 1)s 2 X +(m 1)s 2 Y tedy: s 2 X Ȳ = n + m 2 n + m nm(n + m 2) (n 1)s 2 X +(m 1)s 2 Y
33 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test pokud σx 2 = σy 2 = σ 2 s 2 X Ȳ = s2 X + s 2 Ȳ = s2 X n + s2 Y m = 1 = s 2 n + 1 m + n = s 2 m n.m dále odhadneme s 2 ze všech naměřených hodnot: s 2 1 n = (X i n + m 2 X) m 2 + (Y i Ȳ )2 = i=1 i=1 1 (n 1)s 2 X +(m 1)s 2 Y tedy: s 2 X Ȳ = n + m 2 n + m nm(n + m 2) (n 1)s 2 X +(m 1)s 2 Y
34 - Dvouvýběrový t-test pokud σx 2 = σy 2, testová statistika bude mít tvar: X T = Ȳ nm(n + m 2) (n 1)s 2 X +(m 1)s 2 n + m Y ta má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n+m-2) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n + m 2) kde t α (n + m 2) je (oboustranná) α -kritická hodnota t-rozdělení o (n+m-2) stupních volnosti.
35 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test pokud σx 2 = σy 2, testová statistika bude mít tvar: X T = Ȳ nm(n + m 2) (n 1)s 2 X +(m 1)s 2 n + m Y ta má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n+m-2) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n + m 2) kde t α (n + m 2) je (oboustranná) α -kritická hodnota t-rozdělení o (n+m-2) stupních volnosti.
36 pokud σ 2 X = σ 2 Y - Dvouvýběrový t-test, testová statistika bude mít tvar: X T = Ȳ 1 n s2 X + 1 m s2 Y a má rozdělení, které je směsí t-rozdělení o (n-1) a (m-1) stupních volnosti. H0 nezamítneme, když pro dané α bude splněna nerovnost T At α (n 1) + Bt α (m 1), kde A a B jsou váhy, A+B=1. A = 1 n s2 X 1 n s2 X + 1 m s2 Y, B = 1 m s2 Y 1 n s2 X + 1 m s2 Y
37 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test pokud σ 2 X = σ 2 Y, testová statistika bude mít tvar: X T = Ȳ 1 n s2 X + 1 m s2 Y a má rozdělení, které je směsí t-rozdělení o (n-1) a (m-1) stupních volnosti. H0 nezamítneme, když pro dané α bude splněna nerovnost T At α (n 1) + Bt α (m 1), kde A a B jsou váhy, A+B=1. A = 1 n s2 X 1 n s2 X + 1 m s2 Y, B = 1 m s2 Y 1 n s2 X + 1 m s2 Y
38 X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0
39 3) Párový test shody středních hodnot dvou závislých měření X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0
40 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0
41 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu měření stejných obektů za různých podmínek X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0
42 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu měření stejných obektů za různých podmínek měření stejné veličiny ve dvou různých časech X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0
43 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu měření stejných obektů za různých podmínek měření stejné veličiny ve dvou různých časech... X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0
44 H 0 : µ Z = a H A : µ Z = a T = Z a n s Z T má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n-1) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n 1) kde t α (n 1) je (oboustranná) α-kritická hodnota t-rozdělení o (n-1) stupních volnosti.
45 3) Párový test shody středních hodnot dvou závislých měření H 0 : µ Z = a H A : µ Z = a T = Z a s Z n T má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n-1) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n 1) kde t α (n 1) je (oboustranná) α-kritická hodnota t-rozdělení o (n-1) stupních volnosti.
46 dolní nebo horní jednostranná alternativa : H 0 : µ X = µ Y H A : µ X <µ Y H 0 : µ X = µ Y H A : µ X >µ Y H0 nezamítneme, když pro dané α bude buď T< t α (n 1) nebo T>t α (n 1) kde t α (n 1) je (jednostranná) α -kritická hodnota t-rozdělení o (n-1) stupních volnosti. oboustranná α-kritická hodnota je (1 α/2) -kvantil t 1 α/2 (n 1) jednostranná α -kritická hodnota je (1 α) -kvantil t 1 α (n 1)
47 Jednostranné testy dolní nebo horní jednostranná alternativa : H 0 : µ X = µ Y H A : µ X <µ Y H 0 : µ X = µ Y H A : µ X >µ Y H0 nezamítneme, když pro dané α bude buď T< t α (n 1) nebo T>t α (n 1) kde t α (n 1) je (jednostranná) α -kritická hodnota t-rozdělení o (n-1) stupních volnosti. oboustranná α-kritická hodnota je (1 α/2) -kvantil t 1 α/2 (n 1) jednostranná α -kritická hodnota je (1 α) -kvantil t 1 α (n 1)
48 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. Lze považovat délky tyčí od různých dodavatelů za shodné na hladině významnosti 5%? > x [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115] Dodavatel X:
49 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. Lze považovat délky tyčí od různých dodavatelů za shodné na hladině významnosti 5%? > y [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] Dodavatel Y:
50 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. 1) Vizualizace dat: Box&Whiskers diagram X Y
51 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. 2) Srovnání rozptylů: F-test > var.test(x,y) F test to compare two variances data: x and y F = , num df = 119, denom df = 99, p- value = alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: sample estimates: ratio of variances => nulovou hypotézu nezamítáme, rozptyly se statisticky významně neliší
52 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. 3) Srovnání středních hodnot: dvouvýběrový t-test se shodnými rozptyly > t.test(x,y, var.equal=t) Two Sample t- test data: x and y t = , df = 218, p- value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y => nulovou hypotézu nezamítáme, střední hodnoty se statisticky významně neliší
53 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 1) Data: > pred_cvicenim [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]
54 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 1) Data: > po_cviceni [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]
55 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 2) Grafické zobrazení
56 Dvě náhodné veličiny Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 3) Rozdíl: > rozdil = pred_cvicenim - po_cviceni > rozdil [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]
57 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 3) Rozdíl:
58 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 4) Párový t-test: > t.test(rozdil, mu=0) One Sample t- test data: rozdil t = , df = 119, p- value = 9.54e- 05 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: sample estimates: mean of x => nulovou hypotézu zamítáme, cvičení mělo vliv a rychlost reakce se statisticky významně zvýšila
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceII. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipa.cz Pravděpodobnost a matematická statistika 2010 1.týden 20.09.-24.09. Data, tp dat, variabilita, frekvenční analýza histogram,
VíceIntervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VíceIntervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VíceSTATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
VíceUNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
VíceParametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
VíceÚstav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze
Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Popis vstupních dat Vstupní data pro úlohu (A) se nacházejí v souboru "glukoza.csv".
VíceParametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
Víceletní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test
Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma
Víceletní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza
VíceZápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Vícediskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme
motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky
Více31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
VíceDesign Experimentu a Statistika - AGA46E
Design Experimentu a Statistika - AGA46E Czech University of Life Sciences in Prague Department of Genetics and Breeding Summer Term 2015 Matúš Maciak (@ A 211) Office Hours: T 9:00 10:30 or by appointment
VícePříklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
VíceTesty nezávislosti kardinálních veličin
Testy nezávislosti kardinálních veličin Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Načtení vstupních dat Vstupní data
VícePSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
VíceCvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
Více676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Více4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
VíceTestování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
VícePorovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
VíceCharakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
VíceStatistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
VíceRNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
VíceSTATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
VíceKatedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
VíceSeminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se Ježkovy a Širůčkovy seminární skupiny liší ve výsledcích v. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
VíceAnalýza rozptylu. Ekonometrie. Jiří Neubauer. Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel
Analýza rozptylu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO Brno) Analýza rozptylu 1 / 30 Analýza
VíceZákladní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
VíceNadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.
Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
VíceStatgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu
VíceTestování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
VícePlánovací diář a Google Calendar
České vysoké učení technické v Praze FAKULTA ELEKTROTECHNICKÁ Kvantitativní test uživatelského rozhraní Plánovací diář a Google Calendar Semestrální práce do předmětu Testování uživatelského rozhraní LS
VícePříklad datového souboru. Pravděpodobnost vs. statistika. Formální definice. Teorie odhadu
Pravděpodobnost vs. statistika Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými veličinami, jejichž rozdělení je známo Statistika odvozovali jsme charakteristiky těchto rozdělení
Více11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
VíceVYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
VíceGrafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
VíceStatistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
VíceZáklady biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
VíceStatistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
VíceTestování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceRNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 4 Jak a kdy použít parametrické a
VíceTestování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Více12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
VíceVymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.
Testování hypotéz 1. vymezení důležitých pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test 4. t-test pro nezávislé výběry 5. t-test pro závislé výběry Vymezení důležitých pojmů nulová
VíceOpakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality
Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův
VíceTECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA
TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová
VíceRozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
VíceADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
VíceSeminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
VíceVysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
VíceAplikovaná statistika v R - cvičení 2
Aplikovaná statistika v R - cvičení 2 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.6.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.6.2014 1 / 18 Přehled Rkových
Více1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
VíceTestování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
VíceNáhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
VícePlánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
VícePravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Více15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceKarta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.
VíceSTATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
VíceVybrané partie z biostatistiky
1 Úvod Vybrané partie z biostatistiky 10.7.2017, Běstvina Marie Turčičová (turcic@karlin.mff.cuni.cz), MFF UK Pracovat budeme v programu R a jeho nástavbě RStudio, které si můžete bezplatně stáhnout zde:
VícePřednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
VíceTestování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
VíceKorelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
VíceDVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
VíceMatematická statistika. Testy v. v binomickém. Test pravděpodobnosti. Test homogenity dvou. Neparametrické testy. statistika. Testy v.
Opakování Opakování: y o střední hodnotě normálního 1 jednovýběrový t-test 2 párový t-test 3 výběrový t-test Šárka Hudecová Katedra a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy
VíceVzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
VíceTechnická univerzita v Liberci
Technická univerzita v Liberci Ekonomická fakulta Analýza výsledků z dotazníkového šetření Jména studentů: Adam Pavlíček Michal Karlas Tomáš Vávra Anna Votavová Ročník: 2015/2016 Datum odevzdání: 13/05/2016
VíceÚvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
VíceInovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
VíceKorelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
VíceBakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
Více5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VícePřednáška IX. Analýza rozptylu (ANOVA)
Přednáška IX. Analýza rozptylu (ANOVA) Princip a metodika výpočtu Předpoklady analýzy rozptylu a jejich ověření Rozbor rozdílů jednotlivých skupin násobné testování hypotéz Analýza rozptylu jako lineární
VíceTestování uživatelského rozhraní
České vysoké učení technické v Praze, fakulta elektrotechnická 2012/2013 Semestrální práce na předmět Testování uživatelského rozhraní Kvantitativní test Jiří Blažek blazej18@fel.cvut.cz Obsah Obsah...1
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
VíceTestování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
VíceANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
VíceFisherův exaktní test
Katedra pravděpodobnosti a matematické statistiky Karel Kozmík Fisherův exaktní test 4. prosince 2017 Motivace Máme kontingenční tabulku 2x2 a předpokládáme, že četnosti vznikly z pozorování s multinomickým
VíceJEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
VíceTématické okruhy pro státní závěrečné zkoušky. magisterské studium
Tématické okruhy pro státní závěrečné zkoušky magisterské studium studijní obor "Řízení jakosti" školní rok 2009/2010 Management jakosti A 1. Koncepce managementu jakosti, charakteristiky a účel, normy
VíceAnalýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Více