Algoritmy vyhledávání a řazení. Zatím nad lineární datovou strukturou (polem)

Rozměr: px
Začít zobrazení ze stránky:

Download "Algoritmy vyhledávání a řazení. Zatím nad lineární datovou strukturou (polem)"

Transkript

1 Algoritmy vyhledávání a řazení Zatím nad lineární datovou strukturou (polem)

2 Vyhledávací problém Vyhledávání je dáno Universum (množina prvků) U je dána konečná množina prvků X U (vyhledávací prostor) mějme prvek x U vyhledávací problém (Najdi(x,X)) je definován jako rozhodovací problém: Najdi(x,X): jestliže x X, pak najdi=1, jinak najdi=0

3 algoritmy vyhledávání závisejí na vyhledávacím prostoru a jeho reprezentaci druhy vyhledávacích problémů: dynamický lexikon vyhledávací prostor se v průběhu zpracování mění (vložení, rušení, náhrada prvku) příklad: autorský katalog knihovny statický lexikon vyhledávací prostor se v průběhu zpracování nemění příklad: telefonní seznam

4 pro jednoduchost se omezíme na čísla typu int (univerzum U = int) množina X, ve které provádíme hledání, bude reprezentována polem čísel (zatím, poznáme i jiné výhodnější reprezentace, např. strom) jako výsledek hledání při programování zpravidla potřebujeme znát index nalezeného prvku (resp. ukazatel)

5 Sekvenční vyhledávání používá se při vyhledávání v poli (seznamu), které je neseřazené princip: sekvenčně (v cyklu) procházím prvky pole, dokud prvek nenaleznu nebo neprojdu celé pole

6 budeme předpokládat následující pole #define MAX 100 int pole[max]; implementujeme vyhledávací funkci, která zjistí, zda je v poli, obsahující n prvků, hledaný prvek x; v kladném případě vrátí funkce index prvku, v případě neúspěchu hodnotu -1

7 int hledej(int x, int *pole, int n) /* x je hledaný prvek, n je počet prvků pole */ { } int i=0; while(i<n && pole[i]!=x) i++; return i!=n? i : -1;

8 někdy se implementovalo sekvenční vyhledávání se zarážkou (tzv. sentinel) pole má o jeden prvek navíc (poslední), do kterého vložím hledaný prvek došlo ke zjednodušení podmínky v cyklu

9 int hledej2(int x, int *pole, int n) { int i=0; pole[n]=x; while(pole[i]!=x) i++; return i!=n? i: -1; }

10 Vyhledávání binárním půlením používá se při vyhledávání v poli, kde jsou prvky seřazeny princip: porovnám hledaný prvek x s prvkem uprostřed pole pole[i] dojde-li ke shodě, prvek je nalezen; je-li x<pole[i], pokračuji v hledání v levé polovině pole bin. půlením, je-li x>pole[i], pokračuji v hledání v pravé polovině pole bin. půlením vyhledávání končí neúspěchem, je-li prohledávaná část pole prázdná

11 int bin_pul(int x, int *pole, int n) { int i,l,p; l=0; p=n-1; do { i = (l+p)/2; if (x<pole[i]) p=i-1; else l=i+1; } while(pole[i]!=x && l<=p); return pole[i]==x? i: -1; }

12 trochu jinak: int bin_pul(int x, int *pole, int n) { } int i,l,p; l=0; p=n-1; do { } i = (l+p)/2; if (x==pole[i]) return i; if (x<pole[i]) p=i-1; else l=i+1; while(l<=p); return -1;

13 binární půlení se někdy vylepšuje jiným výpočtem indexu i (lineární interpolace podle hodnoty hledaného prvku vzhledem k nejmenšímu a největšímu prvku v poli) i = (p-l)*(x-pole[l])/(pole[p]-pole[l])

14 Hodnocení algoritmů rychlost (kvalitu) algoritmů měříme tzv. složitostí (complexity) : operační složitostí O(n) doba trvání (počet kroků) algoritmu v závislosti na rozměru problému, např. na počtu řazených čísel, velikost prohledávacího prostoru paměťovou složitostí M(n) velikost požadované paměti v závislosti na rozměru problému

15 Hodnocení algoritmů rychlost běhu programu závisí na mnoha faktorech rychlost procesoru, velikost cache, progr. jazyku, překladači, stylu programování, snažíme se určit rychlost algoritmu bez ohledu na tyto faktory; zajímá nás většinou chování algoritmu pro velké množství vstupních dat

16 Hodnocení algoritmů rychlost (kvalitu) algoritmů měříme tzv. asymptotickou složitostí (complexity) jak závisí počet kroků algoritmu na počtu vstupních dat n limitně pro n snažíme se eliminovat konstanty složitosti vyjadřujeme tzv. řádem růstu funkce

17 Hodnocení algoritmů Asymptotická horní mez: O-notace jsou-li dány funkce f(n) a g(n), pak řekneme, že f(n) je nejvýše řádu g(n), f(n) = O(g(n)), jestliže platí c R + + n N : 0 n n 0 : f(n) c.g(n) říkáme také, že f(n) roste maximálně tak rychle jako g(n) používáme ji pro vyjádření horní meze růstu až na multiplikativní konstantu

18 Hodnocení algoritmů Asymptotická dolní mez: Ω-notace jsou-li dány funkce f(n) a g(n), pak řekneme, že f(n) je nejméněřádu g(n), f(n) = Ω(g(n)), jestliže platí c R + + n N : 0 n n 0 : f(n) c.g(n) říkáme také, že f(n) roste minimálně tak rychle jako g(n) používáme ji pro vyjádření dolní meze růstu až na multiplikativní konstantu

19 Hodnocení algoritmů Asymptotická těsná mez: Θ-notace jsou-li dány funkce f(n) a g(n), pak řekneme, že f(n) je téhož řádu jako g(n), f(n) = Θ(g(n)), jestliže platí + + c1, c2 R n0 N : n n0 :c1g ( n) f(n) c2g(n) říkáme také, že f(n) roste stejně tak rychle jako g(n) až na multiplikativní konstantu

20 Hodnocení algoritmů platí f(n) = Θ(g(n)) f(n) = O(g(n)) f(n) = Ω(g(n))

21 např. 3n 2 + 2n + 5 je řádu O(n 2 ) 5n 4 + 3n 2-3 je řádu O(n 4 ) 2 n + 3 je řádu O(2 n ) n! + 3n + 4 je řádu O(n!) polynomiální exponenciální faktoriální

22 Odhadněte operační složitost: sekvenčního vyhledávání O(n) násobení čtvercových matic o rozměru n O(n 3 ) hledání binárním půlením O(log 2 n)

23 někdy se stanovuje složitost pro různé případy uspořádání vstupních dat: v nejlepším případě v průměrném případě často je složité statisticky určit tento případ v nejhorším případě příklad: lineární hledání: hledaný prvek je na prvním místě v poli hledaný prvek je uprostřed hledaný prvek je na konci pole nebo není přítomen

24 Řazení Řazení: vytvoření posloupnosti prvků x i, takové, že x j1 x j2,, x jn resp. x j1 x j2,, x jn univerzální algoritmy řazení: zatřiďováním výběrem maximálního (minimálního) prvku záměnou (Bubble Sort) Quick Sort

25 Řazení zatřiďováním do již seřazené posloupnosti vkládáme každý nový prvek rovnou na správné místo vhodné např. pro spojový seznam, nikoliv pro pole nutné spojit s operací hledání

26 Řazení výběrem maximálního (minimálního) prvku v poli o n prvcích nalezneme maximální (minimální) prvek a vyměníme jej s posledním (prvním) prvkem krok hledání maximálního (minimálního) prvku opakujeme na poli o délce n-1, n- 2,,1

27 imax: 0 max: 6

28 imax: 0 max: 6

29 imax: 1 max: 7

30 imax: 1 max: 7

31 imax: 1 max: 7

32 imax: 1 max: 7

33 imax: 1 max: 7

34 imax: 1 max: 7

35 imax: 0 max: 6

36 imax: 0 max: 6

37 imax: 0 max: 6

38 imax: 0 max: 6

39 imax: 0 max: 6

40 imax: 0 max: 6

41 imax: 0 max: 6

42 imax: 0 max: 6

43 imax: 0 max: 2

44 imax: 0 max: 2

45 imax: 1 max: 5

46 imax: 1 max: 5

47 imax: 1 max: 5

48 imax: 1 max: 5

49 imax: 0 max: 2

50 imax: 0 max: 2

51 imax: 1 max: 3

52 imax: 1 max: 3

53 imax: 1 max: 3

54 void razeni_max_prvek(int *pole, int n) { } int i,j,index_max,d; for(i=n-1;i>=1;i--) { index_max = 0; for(j=1;j<=i;j++) if(pole[j]>pole[index_max]) index_max=j; d=pole[index_max]; pole[index_max]=pole[i]; pole[i]=d; }

55 Řazení záměnou (bublinkové řazení) (Bubble Sort) porovnáváme postupně v celém poli dva sousední prvky; pokud nejsou ve správném pořadí, zaměníme je po tomto kroku je na posledním místě pole největší prvek ( probublá na konec) krok algoritmu probublávání aplikujeme na postupně na pole o délce n-1, n- 2,,1

56

57 porovnám

58 porovnám

59 prohodím

60 prohodím

61 porovnám

62 prohodím

63 prohodím

64

65

66 porovnám

67 prohodím

68 prohodím

69 porovnám

70 prohodím

71 prohodím

72

73

74 porovnám

75 prohodím

76 prohodím

77

78 void bublinka(int *pole, int n) { int i,j,d; for(i=n-1;i>=1;i--) { for(j=0;j<=i-1;j++) if(pole[j]>pole[j+1]) { d=pole[j]; pole[j]=pole[j+1]; pole[j+1]=d; } } }

79 bublinkové řazení se dá vylepšit: pokud jsme při průchodu polem neprovedli ani jedenkrát záměnu, pole je seřazené a cyklus předčasně ukončíme bublání provádíme oběma směry (i k nižším indexům) Domácí úkol: vylepšete bublinkové řazení

80 void bublinka2(int *pole, int n) { int i,j,d; int prohozeno=1; for(i=n-1;i>=1 && prohozeno;i--) { prohozeno = 0; for(j=0;j<=i-1;j++) if(pole[j]>pole[j+1]) { prohozeno = 1; d=pole[j]; pole[j]=pole[j+1]; pole[j+1]=d; } } }

81 odhadněte operační složitost bublinkového řazení a řazení výběrem maximálního prvku O(n 2 )

82 problémy, které lze řešit (vyzkoušením všech možností) v polynomiálním čase, se nazývají P-problémy mnoho problémů v polynomiálním čase řešit nelze (mají nepolynomiální složitost) u některých existuje ale nedeterministický algoritmus, který je řeší v polynomiálním čase (NP nedeterministicky polynomiální) není znám deterministický algoritmus pro nalezení řešení: NP- úplné problémy (NP- complete)

83 Bohužel, většina reálných a zajímavých problémů (i dopravních) je NP-úplných řeší se přibližnými metodami (heuristikami), metodami umělé inteligence, genetickými algoritmy aj.

84 Příklad NP problémů problém obchodního cestujícího odvozený: souřadnicová vrtačka testování obvodů - úplný test splnitelnost booleovských formulí hledání podmnožiny dep hledání všech cest mezi dvěma body Hanojské věže

85 Quick Sort nejrychlejší algoritmus řazení založen na technice řešení problémů rozděl a panuj (divide and conquer) oblast řešení se rozdělí na dvě (stejně) velké oblasti, vyřeší se na každé polovině zvlášť a spojí se do výsledného řešení

86 Aplikace rozděl a panuj na Quick-Sort 1. Vyber pivot prvek ve středu pole 2. Přeskup pole prvky menší než pivot přesuň nalevo od něj, prvky větší než pivot přesuň napravo od něj 3. Seřaď část pole nalevo a napravo od pivota řazení levé a pravé části pole se provádí stejnou technikou (výběr pivota, ) až k části pole o délce 1 nelze naprogramovat jinak než rekurzí

87 void Quick_sort(int l, int r, int *pole) { int pivot,d,i,j; if (l < r) { i = l; j = r; pivot = pole[(l+r)/2]; do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); Quick_sort(l,j-1,pole); Quick_sort(i+1,r,pole); } }

88 volání funkce Quick_sort(0,n-1,pole); nejrychlejší algoritmus řazení, složitost O(nlog 2 n) poznámka: často se při řazení nepřehazují prvky, ale vytváří se pole indexů

89 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 4 pivot: 3 i j

90 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 3 pivot: 3 i j

91 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 3 pivot: 3 i j

92 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 3 pivot: 3 i j

93 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 3 pivot: 3 i j

94 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 3 pivot: 3 i j

95 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 3 pivot: 3 i j

96 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 2 pivot: 3 i j

97 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 2 pivot: 3 i j

98 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 2 pivot: 3 i j

99 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 2 pivot: 3 i j

100 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 2 pivot: 3 i j

101 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); l: 0 r: 4 i: j: 1 pivot: 3 i j

102 do { while (pole[i] < pivot) i++; while (pole[j] > pivot) j--; if (i < j) { d = pole[i]; pole[i] = pole[j]; pole[j] = d; } } while (i < j); QuickSort(l,j-1,pole); QuickSort(j+1,r,pole); l: 0 r: 4 i: j: 1 pivot: QuickSort(0,0,pole) QuickSort(2,4,pole)

103 Mergesort (řazení slučováním) 1. Rozdělíme řazené pole na poloviny 2. Seřadíme každou polovinu 3. Obě seřazené poloviny sloučíme

104 Mergesort void Merge_sort(int l, int r, int *pole) // l - levý index, r - pravý index včetně { int i,j,k,q; int *s; if (l>=r) return; q = (l+r)/2; Merge_sort(l,q,pole); Merge_sort(q+1,r,pole);

105 Mergesort } // slučuji, s je pomocne pole s = (int*)malloc(sizeof(int)*(r-l+1)); i = l; j = q+1; k = 0; while(i<=q && j <= r) { if (pole[i]<pole[j]) s[k++] = pole[i++]; else s[k++] = pole[j++]; } // kopirovani zbytku poli - probehne jen jeden z cyklu while (i<=q) s[k++] = pole[i++]; while (j<=r) s[k++] = pole[j++]; // kopirovani pole s zpet do casti pole od indexu l for(i=0;i<k;i++) pole[l++] = s[i]; free(s);

106 volání funkce void razeni_merge(int n, int pole[]) // n velikost pole { } Merge_sort(0,n-1,pole); složitost algoritmu řazení O(nlog 2 n) nevýhoda nutnost existence pomocného pole (větší paměťová složitost)

107 void Merge_sort(int l, int r, int *pole) // l - levý index, r - pravý index včetně { int i,j,k,q; int *s; if (l>=r) return; q = (l+r)/2; Merge_sort(l,q,pole); Merge_sort(q+1,r,pole); l: 0 r: 4 q: l r

108 // slučuji, s je pomocne pole i = l; j = q+1; k = 0; while(i<=q && j <= r) { if (pole[i]<pole[j]) s[k++] = pole[i++]; else s[k++] = pole[j++]; } // kopirovani zbytku poli - probehne jen jeden z cyklu while (i<=q) s[k++] = pole[i++]; while (j<=r) s[k++] = pole[j++]; i: 0 j: 3 k: i j s: 2

109 // slučuji, s je pomocne pole i = l; j = q+1; k = 0; while(i<=q && j <= r) { if (pole[i]<pole[j]) s[k++] = pole[i++]; else s[k++] = pole[j++]; } // kopirovani zbytku poli - probehne jen jeden z cyklu while (i<=q) s[k++] = pole[i++]; while (j<=r) s[k++] = pole[j++]; i: 1 j: 4 k: i j s: 2 3

110 // slučuji, s je pomocne pole i = l; j = q+1; k = 0; while(i<=q && j <= r) { if (pole[i]<pole[j]) s[k++] = pole[i++]; else s[k++] = pole[j++]; } // kopirovani zbytku poli - probehne jen jeden z cyklu while (i<=q) s[k++] = pole[i++]; while (j<=r) s[k++] = pole[j++]; i: 1 j: 5 k: i j s: 2 3 5

111 // slučuji, s je pomocne pole i = l; j = q+1; k = 0; while(i<=q && j <= r) { if (pole[i]<pole[j]) s[k++] = pole[i++]; else s[k++] = pole[j++]; } // kopirovani zbytku poli - probehne jen jeden z cyklu while (i<=q) s[k++] = pole[i++]; while (j<=r) s[k++] = pole[j++]; i: 1 j: 5 k: i j s: 2 3 5

112 // slučuji, s je pomocne pole i = l; j = q+1; k = 0; while(i<=q && j <= r) { if (pole[i]<pole[j]) s[k++] = pole[i++]; else s[k++] = pole[j++]; } // kopirovani zbytku poli - probehne jen jeden z cyklu while (i<=q) s[k++] = pole[i++]; while (j<=r) s[k++] = pole[j++]; i: 1 j: 5 k: i j s:

113 // slučuji, s je pomocne pole i = l; j = q+1; k = 0; while(i<=q && j <= r) { if (pole[i]<pole[j]) s[k++] = pole[i++]; else s[k++] = pole[j++]; } // kopirovani zbytku poli - probehne jen jeden z cyklu while (i<=q) s[k++] = pole[i++]; while (j<=r) s[k++] = pole[j++]; i: 1 j: 5 k: i j s:

114 Poznámky ke složitostem lineární zdvojnásobení velikosti problému vede k dvojnásobnému času výpočtu zrychlení počítače 2x urychlí řešení problému 2x kvadratická zdvojnásobení velikosti problému vede k čtyřnásobnému času výpočtu zrychlení počítače 2x urychlí řešení problému 1,414x

115 Poznámky ke složitostem předpokládejme, že 1 operace trvá 1us, počet operací je dán vztahem v 1. sloupci doba výpočtu: srovnej: počet atomů ve vesmíru se odhaduje na a stáří vesmíru na let) zdroj: přednášky ZDT, FIT ČVUT, doc. Kolář

116 Poznámky ke složitostem pro malé množství dat, resp. určité uspořádání dat může být asymptoticky pomalejší algoritmus rychlejší pokud aplikujeme bublinkové řazení s testem prohození na seřazenou posloupnost, vykoná se pouze n kroků, ale Quick-Sort vykoná n.log 2 n vždy pro malý rozměr pole u algoritmu Quick-Sort převáží konstanty režie související s rekurzivním voláním

117 Poznámky ke složitostem ale vždy existuje určité n 0, od kterého bude asymptoticky rychlejší algoritmus rychlejší bez ohledu na rychlost počítače, jazyk, překladač, výkon počítače, překladač,, mění konstanty vztahu, které posouvají bod n 0

Časová složitost algoritmů

Časová složitost algoritmů Časová složitost algoritmů Důležitou vlastností algoritmu je časová náročnost výpočtů provedené podle daného algoritmu Ta se nezískává měřením doby výpočtu pro různá data, ale analýzou algoritmu, jejímž

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Časová složitost algoritmů, řazení a vyhledávání

Časová složitost algoritmů, řazení a vyhledávání Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Časová složitost algoritmů, řazení a vyhledávání BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík Fakulta

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Složitost algoritmů. Třídění Přednáška 8 16. listopadu 2009 Který algoritmus je "lepší"? Různé algoritmy, které řeší stejnou úlohu zbytek = p % i; zbytek = p - p/i*i;

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Třídění, vyhledávání Daniela Szturcová

Více

Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění

Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double

Více

Algoritmizace řazení Bubble Sort

Algoritmizace řazení Bubble Sort Algoritmizace řazení Bubble Sort Cílem této kapitoly je seznámit studenta s třídícím algoritmem Bubble Sort, popíšeme zde tuto metodu a porovnáme s jinými algoritmy. Klíčové pojmy: Třídění, Bubble Sort,

Více

IB111 Úvod do programování skrze Python

IB111 Úvod do programování skrze Python Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově

Více

A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort.

A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort. A4B33ALG 2010/05 ALG 07 Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated Quicksort Stabilita řazení 1 Selection sort Neseřazeno Seřazeno Start T O U B J R M A K D Z E min

Více

V případě jazyka Java bychom abstraktní datový typ Time reprezentující čas mohli definovat pomocí třídy takto:

V případě jazyka Java bychom abstraktní datový typ Time reprezentující čas mohli definovat pomocí třídy takto: 20. Programovací techniky: Abstraktní datový typ, jeho specifikace a implementace. Datový typ zásobník, fronta, tabulka, strom, seznam. Základní algoritmy řazení a vyhledávání. Složitost algoritmů. Abstraktní

Více

IAJCE Přednáška č. 9. int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) { // nikoli 0 if (Pole[i] > max) {

IAJCE Přednáška č. 9. int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) { // nikoli 0 if (Pole[i] > max) { Vyhledání extrému v poli použito v algoritmech řazení hledání maxima int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) // nikoli 0 if (Pole[i] > max) max = pole[i];

Více

Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41

Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby

Více

Časová složitost / Time complexity

Časová složitost / Time complexity Časová složitost / Time complexity Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 24 Složitost algoritmů Algorithm complexity Časová a paměťová složitost Trvání výpočtu v závislosti

Více

10. Složitost a výkon

10. Složitost a výkon Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří

Více

ALGORITMY A DATOVÉ STRUKTURY

ALGORITMY A DATOVÉ STRUKTURY Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu

Více

Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce)

Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce) 13. Metody vyhledávání. Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce). Asociativní vyhledávání (sekvenční, binárním půlením, interpolační, binární vyhledávací

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_146_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Pole a kolekce. v C#, Javě a C++

Pole a kolekce. v C#, Javě a C++ Pole a kolekce v C#, Javě a C++ C# Deklarace pole typ_prvku_pole[] jmeno_pole; Vytvoření pole jmeno_pole = new typ_prvku_pole[pocet_prvku_pole]; Inicializace pole double[] poled = 4.8, 8.2, 7.3, 8.0; Java

Více

DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3

DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3 DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),

Více

Prohledávání do šířky = algoritmus vlny

Prohledávání do šířky = algoritmus vlny Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé

Více

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu

Více

IB111 Úvod do programování skrze Python

IB111 Úvod do programování skrze Python Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2014 1 / 48 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý

Více

Časová a prostorová složitost algoritmů

Časová a prostorová složitost algoritmů .. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová

Více

Složitost. Teoretická informatika Tomáš Foltýnek

Složitost. Teoretická informatika Tomáš Foltýnek Složitost Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika 2 Opakování z minulé přednášky Co říká Churchova teze? Jak lze kódovat Turingův stroj? Co je to Univerzální

Více

Datové struktury 2: Rozptylovací tabulky

Datové struktury 2: Rozptylovací tabulky Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy

Více

Michal Krátký. Úvod do programování. Cíl kurzu. Podmínky získání zápočtu III/III

Michal Krátký. Úvod do programování. Cíl kurzu. Podmínky získání zápočtu III/III Michal Krátký Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 tel.: +420 596 993 239 místnost: A1004 mail: michal.kratky@vsb.cz

Více

Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost

Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost 1 Složitost 1.1 Operační a paměťová složitost Nezávislé určení na konkrétní implementaci Několik typů operací = sčítání T+, logické T L, přiřazení T A(assign), porovnání T C(compare), výpočet adresy pole

Více

Základy řazení. Karel Richta a kol.

Základy řazení. Karel Richta a kol. Základy řazení Karel Richta a kol. Přednášky byly připraveny s pomocí materiálů, které vyrobili Marko Berezovský, Petr Felkel, Josef Kolář, Michal Píše a Pavel Tvrdík Katedra počítačů Fakulta elektrotechnická

Více

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do

Více

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný

Více

NPRG030 Programování I, 2018/19 1 / :03:07

NPRG030 Programování I, 2018/19 1 / :03:07 NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2. 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste

Více

Tato tematika je zpracována v Záznamy přednášek: str

Tato tematika je zpracována v Záznamy přednášek: str Obsah 10. přednášky: Souvislosti Složitost - úvod Výpočet časové složitosti Odhad složitosti - příklady Posuzování složitosti Asymptotická složitost - odhad Přehled technik návrhů algoritmů Tato tematika

Více

Dynamické datové struktury III.

Dynamické datové struktury III. Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované

Více

ÚVODNÍ ZNALOSTI. datové struktury. správnost programů. analýza algoritmů

ÚVODNÍ ZNALOSTI. datové struktury. správnost programů. analýza algoritmů ÚVODNÍ ZNALOSTI datové struktury správnost programů analýza algoritmů Datové struktury základní, primitivní, jednoduché datové typy: int, char,... hodnoty: celá čísla, znaky, jednoduché proměnné: int i;

Více

Algoritmizace. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Úvod stránky předmětu: https://cw.felk.cvut.cz/doku.php/courses/a4b33alg/start cíle předmětu Cílem je schopnost samostatné implementace různých variant základních

Více

Složitost algoritmů. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava

Složitost algoritmů. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Složitost algoritmů doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 27. prosince 2015 Jiří Dvorský (VŠB TUO) Složitost algoritmů

Více

Dynamické programování

Dynamické programování Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

Složitost algoritmů. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.

Složitost algoritmů. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol. Složitost algoritmů Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2017 Datové struktury a algoritmy, B6B36DSA 02/2017, Lekce 3

Více

přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí:

přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí: Metody řazení ve vnitřní a vnější paměti. Algoritmy řazení výběrem, vkládáním a zaměňováním. Heapsort, Shell-sort, Radix-sort, Quicksort. Řazení sekvenčních souborů. Řazení souborů s přímým přístupem.

Více

Různé algoritmy mají různou složitost

Různé algoritmy mají různou složitost / 1 Různé algoritmy mají různou složitost 1/ 1 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená?? 2/ 1 Asymptotická složitost y y x x Každému algoritmu

Více

Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem

Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem Test prvočíselnosti Úkol: otestovat dané číslo N, zda je prvočíslem 1. zkusit všechny dělitele od 2 do N-1 časová složitost O(N) cca N testů 2. stačí zkoušet všechny dělitele od 2 do N/2 (větší dělitel

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_148_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Maturitní téma: Programovací jazyk JAVA

Maturitní téma: Programovací jazyk JAVA Maturitní téma: Programovací jazyk JAVA Insert Sort (třídění vkládáním) 1. Jako setříděnou část označíme první prvek pole. Jako nesetříděnou část označíme zbytek pole. 2. Vezmeme první (libovolný) prvek

Více

11 VYPOČITATELNOST A VÝPOČTOVÁ SLOŽITOST

11 VYPOČITATELNOST A VÝPOČTOVÁ SLOŽITOST 11 VYPOČITATELNOST A VÝPOČTOVÁ SLOŽITOST Na první přednášce jsme si neformálně zavedli pojmy problém a algoritmus pro jeho řešení, které jsme na počítači vykonávali pomocí programů. Jako příklad uveďme

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky

Více

Prioritní fronta, halda

Prioritní fronta, halda Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje

Více

Databáze, sítě a techniky programování X33DSP

Databáze, sítě a techniky programování X33DSP Databáze, sítě a techniky programování X33DSP Anotace: Náplní předmětu jsou některé techniky a metody používané ve výpočetních systémech zaměřených na biomedicínské inženýrství. Cílem je položit jednotný

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Vyhledávání, vkládání, odstraňování Vyhledání hodnoty v nesetříděném poli Vyhledání hodnoty v setříděném poli Odstranění hodnoty z pole Vkládání hodnoty do pole Verze pro akademický

Více

Třídící algoritmy. Insert Sort. Bubble Sort. Select Sort. Shell Sort. Quick Sort. Merge Sort. Heap Sort.

Třídící algoritmy. Insert Sort. Bubble Sort. Select Sort. Shell Sort. Quick Sort. Merge Sort. Heap Sort. Třídící algoritmy. Insert Sort. Bubble Sort. Select Sort. Shell Sort. Quick Sort. Merge Sort. Heap Sort. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká

Více

Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C

Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat

Více

3 Algoritmy řazení. prvku a 1 je rovněž seřazená.

3 Algoritmy řazení. prvku a 1 je rovněž seřazená. Specifikace problému řazení (třídění): A... neprázdná množina prvků Posl(A)... množina všech posloupností prvků z A ... prvky množiny Posl(A) q... délka posloupnosti Posl(A), přičemž Delka()

Více

Sada 1 - Základy programování

Sada 1 - Základy programování S třední škola stavební Jihlava Sada 1 - Základy programování 17. Řadící algoritmy Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost

Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost Amortizovaná složitost. Prioritní fronty, haldy binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost 1. Asymptotické odhady Asymptotická složitost je deklarována na základě

Více

5. Vyhledávání a řazení 1

5. Vyhledávání a řazení 1 Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 5 1 Základy algoritmizace 5. Vyhledávání a řazení 1 doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze

Více

Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012

Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012 Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18

Více

Hledání k-tého nejmenšího prvku

Hledání k-tého nejmenšího prvku ALG 14 Hledání k-tého nejmenšího prvku Randomized select CLRS varianta Partition v Quicksortu 0 Hledání k-tého nejmenšího prvku 1. 2. 3. Seřaď seznam/pole a vyber k-tý nejmenší, složitost (N*log(N)). Nevýhodou

Více

Algoritmy výpočetní geometrie

Algoritmy výpočetní geometrie Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

Složitost UPR 2008/09 1

Složitost UPR 2008/09 1 Složitost UPR 2008/09 1 Ohodnocení algoritmu Jak porovnávat efektivitu algoritmů? Požadavky na paměť Požadavky na rychlost výpočtu Asymptotická složitost UPR 2008/09 2 Měření algoritmu Dvě míry: čas x

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška jedenáctá Miroslav Kolařík Zpracováno dle P. Martinek: Základy teoretické informatiky, http://phoenix.inf.upol.cz/esf/ucebni/zti.pdf Obsah 1 Složitost algoritmu 2 Třídy složitostí

Více

COMPLEXITY

COMPLEXITY Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný

Více

Rekurzivní algoritmy

Rekurzivní algoritmy Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS

Více

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk Pavel Töpfer Katedra softwaru a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer

Více

5 Rekurze a zásobník. Rekurzivní volání metody

5 Rekurze a zásobník. Rekurzivní volání metody 5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení

Více

Základní datové struktury III: Stromy, haldy

Základní datové struktury III: Stromy, haldy Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

ˇ razen ı rychlejˇ s ı neˇ z kvadratick e Karel Hor ak, Petr Ryˇsav y 20. dubna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT

ˇ razen ı rychlejˇ s ı neˇ z kvadratick e Karel Hor ak, Petr Ryˇsav y 20. dubna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT řazení rychlejší než kvadratické Karel Horák, Petr Ryšavý 20. dubna 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Která z následujících posloupností představuje haldu uloženou v poli? 1. 9 5 4 6 3 2. 5 4

Více

Doba běhu daného algoritmu/programu. 1. Který fragment programu z následujících dvou proběhne rychleji?

Doba běhu daného algoritmu/programu. 1. Který fragment programu z následujících dvou proběhne rychleji? 1 Doba běhu daného algoritmu/programu 1. Který fragment programu z následujících dvou proběhne rychleji? int n = 100; int sum = 0; for (i = 0; i < n; i++) for (j = 0; j < i; j++) sum += i+j; int n = 75;

Více

Třídění a vyhledávání Searching and sorting

Třídění a vyhledávání Searching and sorting Třídění a vyhledávání Searching and sorting Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 33 Vyhledávání Třídění Třídící algoritmy 2 / 33 Vyhledávání Searching Mějme posloupnost (pole)

Více

13. Třídící algoritmy a násobení matic

13. Třídící algoritmy a násobení matic 13. Třídící algoritmy a násobení matic Minulou přednášku jsme probírali QuickSort, jeden z historicky prvních třídících algoritmů, které překonaly kvadratickou složitost aspoň v průměrném případě. Proč

Více

Pokročilé řazení. Karel Richta a kol. Přednášky byly připraveny s pomocí materiálů, které vyrobili Marko Berezovský a Michal Píše

Pokročilé řazení. Karel Richta a kol. Přednášky byly připraveny s pomocí materiálů, které vyrobili Marko Berezovský a Michal Píše Pokročilé řazení arel ichta a kol. Přednášky byly připraveny s pomocí materiálů, které vyrobili arko erezovský a ichal Píše atedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze

Více

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11 333LP - lgoritmy a programování - Zkouška z předmětu 333LP Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8]

Více

a) b) c) Radek Mařík

a) b) c) Radek Mařík 2012-03-20 Radek Mařík 1. Čísla ze zadané posloupnosti postupně vkládejte do prázdného binárního vyhledávacího stromu (BVS), který nevyvažujte. Jak bude vypadat takto vytvořený BVS? Poté postupně odstraňte

Více

Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz

Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)

Více

Základní informace o předmětu Otázka:

Základní informace o předmětu Otázka: Základní informace o předmětu Otázka: Proč vůbec porovnávat algoritmy? Vlastnosti algoritmů přirozenost a stabilita algoritmu časová náročnost algoritmu asymetrická a asymptotická časová náročnost algoritmů

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620

Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 1. Vymezení pojmů Strom: Strom je takové uspořádání prvků - vrcholů, ve kterém lze rozeznat předchůdce - rodiče a následovníky - syny.

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Slajdy pro výuku na KS Ondřej Čepek Sylabus 1. Prostředky pro popis složitosti algoritmů a operací nad datovými strukturami (asymptotická notace), příklady použití asymptotické

Více

Úvod do problematiky

Úvod do problematiky Úvod do problematiky Karel Richta a kol. Přednášky byly připraveny i s pomocí materiálů, které vyrobili Marko Berezovský, Petr Felkel, Josef Kolář, Michal Píše a Pavel Tvrdík Katedra počítačů Fakulta elektrotechnická

Více

Programování v C++, 2. cvičení

Programování v C++, 2. cvičení Programování v C++, 2. cvičení 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 Operátory new a delete 2 3 Operátory new a delete minule

Více

2. Složitost, grafové algoritmy (zapsal Martin Koutecký)

2. Složitost, grafové algoritmy (zapsal Martin Koutecký) 2. Složitost, grafové algoritmy (zapsal Martin Koutecký) Model Ram Při analýze algoritmu bychom chtěli nějak popsat jeho složitost. Abychom mohli udělat toto, potřebujeme nejprve definovat výpočetní model.

Více

Funkce pokročilé možnosti. Úvod do programování 2 Tomáš Kühr

Funkce pokročilé možnosti. Úvod do programování 2 Tomáš Kühr Funkce pokročilé možnosti Úvod do programování 2 Tomáš Kühr Funkce co už víme u Nebo alespoň máme vědět... J u Co je to funkce? u Co jsou to parametry funkce? u Co je to deklarace a definice funkce? K

Více

Maturitní otázky z předmětu PROGRAMOVÁNÍ

Maturitní otázky z předmětu PROGRAMOVÁNÍ Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu PROGRAMOVÁNÍ 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu ověřování správnosti

Více

Bubble sort. příklad. Shaker sort

Bubble sort. příklad. Shaker sort Bubble sort pseudokód function bubblesort(array a) for i in 1 -> a.length - 1 do for j in 1 -> a.length - i - 1 do if a[j] < a[j+1] prohoď(a[j], a[j+1]); //razeni od nejvyssiho function bubblesort(int[]

Více

Základy programování (IZP)

Základy programování (IZP) Základy programování (IZP) Osmé počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 20.11.2017,

Více

Slepé prohledávání do šířky Algoritmus prohledávání do šířky Při tomto způsobu prohledávání máme jistotu, že vždy nalezneme koncový stav, musíme ale p

Slepé prohledávání do šířky Algoritmus prohledávání do šířky Při tomto způsobu prohledávání máme jistotu, že vždy nalezneme koncový stav, musíme ale p Hanojská věž Stavový prostor 1. množina stavů S = {s} 2. množina přechodů mezi stavy (operátorů) Φ = {φ} s k = φ ki (s i ) zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3] který tah

Více

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31 Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu

Více

NMIN101 Programování 1 2/2 Z --- NMIN102 Programování /2 Z, Zk

NMIN101 Programování 1 2/2 Z --- NMIN102 Programování /2 Z, Zk NMIN101 Programování 1 2/2 Z --- NMIN102 Programování 2 --- 2/2 Z, Zk Pavel Töpfer Katedra software a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer

Více

Vyvažování a rotace v BVS, všude se předpokládá AVL strom

Vyvažování a rotace v BVS, všude se předpokládá AVL strom Vyvažování a rotace v BVS, všude se předpokládá AVL strom 1. Jednoduchá levá rotace v uzlu u má operační složitost a) závislou na výšce levého podstromu uzlu u b) mezi O(1) a Θ(n) c) závislou na hloubce

Více

ALG 09. Radix sort (přihrádkové řazení) Counting sort. Přehled asymptotických rychlostí jednotlivých řazení. Ilustrační experiment řazení

ALG 09. Radix sort (přihrádkové řazení) Counting sort. Přehled asymptotických rychlostí jednotlivých řazení. Ilustrační experiment řazení ALG Radix sort (přihrádkové řazení) Counting sort Přehled asymptotických rychlostí jednotlivých řazení Ilustrační experiment řazení Radix sort Neseřazeno Řaď podle. znaku Cbb DaD adb DCa CCC add DDb adc

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_145_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Složitosti základních operací B + stromu

Složitosti základních operací B + stromu Složitosti základních operací B + stromu Radim Bača VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky ŠKOMAM 2010-1- 28/1/2010 Složitosti základních operací B +

Více

Robert Haken [MVP ASP.NET/IIS, MCT] software architect, HAVIT, Základní algoritmy v praxi

Robert Haken [MVP ASP.NET/IIS, MCT] software architect, HAVIT, Základní algoritmy v praxi Robert Haken [MVP ASP.NET/IIS, MCT] software architect, HAVIT, s.r.o. haken@havit.cz, @RobertHaken Základní algoritmy v praxi Agenda Intro Řazení Vyhledávání Datové struktury LINQ to Objects Intro Asymptotická

Více

Pokročilé haldy. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010

Pokročilé haldy. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Pokročilé haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (I-EFA) ZS 2010/11,

Více

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer 4. Rekurze BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze

Více

Úvod do programování 10. hodina

Úvod do programování 10. hodina Úvod do programování 10. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Syntax Dvojrozměrné pole

Více