základem veškerého aktivního pohybu v živočišnéříši je interakce proteinových vláken CYTOSKELETU
|
|
- Marcel Matějka
- před 7 lety
- Počet zobrazení:
Transkript
1
2 POHYB je jeden ze základních životních projevů pro život je nezbytný POHYB na všech úrovních: subcelulární (pohyb v rámci buňky) celulární (pohyb buňky) orgánový pohyb (pohyb orgánu) organizmální pohyb (pohyb celého organismu) základem veškerého aktivního pohybu v živočišnéříši je interakce proteinových vláken CYTOSKELETU
3 Cytoskelet se někdy ztotožňuje s pojmem buněčná kostra. Skutečně plní funkci vnitřní kostry buňky a navíc má stejně jako kostra organismů funkci pohybovou (kostra organismů má však při pohybu jen funkci pasivní, u cytoskeletu se přidává i funkce aktivní).
4 důležitá součást živočišných buněk funkce: STATICKÁ vnitřní kostra buňky, zajišťuje tvar buňky, určuje pozici organel cytoskelet živočišných buněk pod fluorescenčním mikroskopem DYNAMICKÁ zajištění pohybu buněčných struktur a látek na subcelulární úrovni, schopnost změny tvaru buňky, pohyb celé buňky pohyb chromozomů, fagocytóza, endocytóza, pohyb mikroklků,
5 MIKROTUBULY MIKROFILAMENTA MOLEKULÁRNÍ MOTORY STŘEDNÍ FILAMENTA
6 Při popisu cytoskeletu vycházíme ze dvou základních forem: buď se jedná o uspořádání do tvaru dutého válce (v případě mikrotubulů), nebo o uspořádání vláknité (v případě mikrofilament a středních filament).
7 MIKRO- TUBULUS MIKRO- FILAMENTUM STŘEDNÍ FILAMENTUM
8 subbuněčný i buněčný pohyb založen vždy na spolupráci dvou typů proteinových vláken: 1. funguje jako aktivní motor (lokomotiva), která se za spotřeby energie posouvá po vlákně druhém 2. funguje jako pasivní mechanická podložka (kolejnice) MIKROTUBULÁRNÍ DVOJICE MIKROFILAMENTÁRNÍ DVOJICE dynein kinezin motor myozin motor tubulin aktin kolejnice kolejnice
9 Zatímco vlákna a tubuly cytoskeletu představují především nosnou strukturu, skrze asociované proteiny se uskutečňuje většina jeho pohybových funkcí. Jsou to proteiny, které jsou s cytoskeletem spojeny funkčně. Významnými zástupci těchto proteinů jsou tzv. molekulární motory (dynein, kinezin, myozin). PODSTATA FUNGOVÁNÍ MOLEKULÁRNÍCH MOTORŮ molekulární motory obsahují enzym ATP-ázu, který štěpí ATP rozštěpení makroergních vazeb uvolnění energie energie využita ke změně tvaru motoru (= jeho posunutí po podložce) rozštěpení další molekuly ATP další posunutí motoru motory asociované s mikrotubuly (kinezin, dynein) motory asociované s mikrofilamenty (myozin)
10 asociované proteiny motorické domény motorické domény stopka stopka asociované proteiny asociované proteiny KINEZIN MYOZIN DYNEIN
11 mikrotubulus molekulární motor vezikula s mediátorem
12 součást cytoskeletu všech eukaryotních buněk 1 mikrotubulus = dutý váleček tvořený vlákny tvořené dimery tubulinu (sférický protein) jsou jimi tvořeny různé buněčné výběžky (axony), bičíky, řasinky, centriola, dělící vřeténko mikrotubuly se mohou spojovat do vyšších celků charakteristických pro každou strukturu (př. bičík) určují tvar buňky, pozici organel v buňce a intracelulární transport dimer tubulinu monomer tubulinu α β část válce tvořeného dimery tubulinu
13 dělící se buněčné jádro mikrotubuly chromozomy chromozomy jsou odtahovány na opačné póly buněk pomocí mikrotubulů
14 DYNEIN, KINEZIN tyto molekulární motory přenášející organely či jiné částečky cytoplazmou podél mikrotubulů kinezin/dynein se za spotřeby ATP pohybuje po vláknech mikrotubulů jako nákladní vlak po kolejích a rozváží naložený materiál př. transport vezikul s mediátorem na synapsích vezikula kinezin / dynein ATP mikrotubulus OBECNÉ SCHÉMA POHYBU PO MIKROTUBULECH
15 vezikula určená k transportu kinezin mikrotubulus
16 mikrofilamentum je tvořeno dvojicířetězců, kde základní jejich jednotkou jsou molekuly aktinu základní protein: AKTIN asociované proteiny: více než u mikrotubulů tubulů, př. myozin v cytoplazmě vytvářejí souvislou síť, někdy soustředěnou do specializovaných pohybových struktur filamenta jsou vždy připojená k plazmatické membráně, vyskytují se hojně pod plazmatickou membránou př. v mikroklcích epiteliálních buněk, ve výběžcích vláskových buněk Cortiho orgánu, funkce dynamická i statická zajišťují tvar buňky a její lokomoci jsou základem struktur s čistě pohybovou funkcí
17 = intermediární filamenta tvořené proteinovými vlákny přítomny v místech, kde je buňka vystavena mechanickému namáhání jsou zodpovědná za mechanickou stabilitu buněk a tkání př. kůže vyšších živočichů obsahuje síť středních filament tvořených proteinem keratinem = keratinová filamenta jiným typem jsou neurofilamenta v nervových buňkách (zpevnění axonů) jádra všech buněk obsahují jaderná filamenta (zpevnění jádra) na rozdíl od ostatních složek cytoskeletu se proteiny, tvořící střední filamenta, velmi liší velikostí a složením jak mezi různými typy buněk, tak mezi odpovídajícími si typy buněk v různých organismech
18
19 především u jednobuněčných živočichů dále u epitelových buněk a spermií výše postavených taxonů živočichů princip pohybu brv (řasinek) a bičíků je v zásadě stejný podobná i jejich struktura (9x2 + 2), kolem vláken pevný obal a na bázi řasinky nebo bičíku bazální tělísko mohou se pohybovat pouze v tekutém prostředí savčí spermie nálevník (r. Ophryoscolex) řasinkový epitel průdušnice
20 dvojice perif. tubulů dynein plazm. membrána centrální mikrotubuly bazální tělísko vnitřní pochva příčná spojka FUNKCE DYNEINU V BIČÍKU/ŘASINCE 9 párů mikrotubulů obklopující 2 centrální mikrotubuly (9x2 + 2) dynein transformuje energii ATP na svoji konformační změnu spojení dvou sousedních párů mikrotubulů a jejich vzájemný posun synchronizovaná aktivace dyneinu šroubovicový pohyb bičíku / kmitání řasinek
21 Bičík se obvykle vlní, jeho hadovitý pohyb vede buňku ve směru osy bičíku. (Příkladem bičíkové lokomoce je rychlý posun spermie.) silnější delší malý počet Řasinky vykazují pohyb zpět a tam, který pohybuje buňkou ve směru kolmém na osu řasinky. (Na obrázku hustý pokryv řasinek, kmitající 40 60x za 1s, pokrývá prvoka Paramecium.) tenčí kratší velký počet
22 někteří jednobuněční živočichové př. kořenonožci (rod Amoeba) některé buňky mnohobuněčných živočichů př. amoeboidní pohyb leukocytů obratlovců pohyb buněk k místu svého určení během rané ontogeneze tvorba a pohyb lokomočních výběžků buňky (= pseudopodií) prostřednictvím mikrofilament nebo endocytózou přesný mechanismus není dosud objasněn Amoeba proteus
23 nejčastější forma makroskopického pohybu živočichů založeny na něm základní životní děje mnohobuněčných: vyhledávání potravy vyhledávání sexuálního partnera útěk před predátorem oběh, dýchání, trávicí pochody, termoregulace komunikace, psaní, řeč, základ pro LOKOMOCI živočichů speciální buňky = svalové buňky SVALY MIKROFILAMENTÁRNÍ DVOJICE myozin kolejnice motor svalové buňky specializovány na přeměnu energie ATP na kontraktilní pohyb (kotrakce = přeměna chemické energie na mechanickou) (svalové buňky mají podobně jako neurony vzrušivé membrány s napěťově vrátkovanými kanály schopné generovat a vést akční potenciály) aktin
24 pomocí křídel pomocí nohou pomocí ploutví
25 pohyb pomocí ambulaklárních nožek
26 Někteří živočichové nebyli obdařeni schopností lokomoce (pohyb z místa na místo). UKÁZKY TAXONŮ S PŘISEDLÝMI ZÁSTUPCI Anthozoa Porifera Coccoidea Polycheata Pogonophora
27 UKÁZKY TAXONŮ S PŘISEDLÝMI ZÁSTUPCI Cirripedia Urochordata
28 75 % myoglobin aktin, myozin, tropomyozin, troponin fosfáty (ATP) svalový glykogen 24 % kyselina mléčná enzymy 1 % Ca, Mg, Na, K, Fe, P
29 je složena z buněk, které jsou schopny reagovat na podráždění změnou své délky nebo napětí svalová tkáň patří ke vzrušivým tkáním excitace (na níž navazuje kontrakce) povrchové membrány svalových buněk je spojena se vznikem a šířením akčního potenciálu, který může na membráně vzniknout třemi způsoby: chemicky (působením látek na membránové receptory) elektricky (prostřednictvím komunikačních spojů - nexy) autonomně (pacemakerové buňky) mezi důležité vlastnosti svalů patří pevnost (odolnost proti přetržení) a pružnost (schopnost měnit délku kontrakce x relaxace) svalová tkáň vznikla z mezodermu (výjimka: hladké svaly duhovky vzniklé z ektodermu) TERMINOLOGIE speciální termíny obsahující předpony sarko- a myo-
30 tvoří různě diferencované svalové skupiny připojené na kostru vystýlají stěny tělních dutin a vnitřních orgánů atd. (rozdíl obratlovci x bezobratlí) stavba podobná žíhané svalovině, ale vlastnostmi se blíží hladkým svalům
31 příčně pruhovaný sval je orgán, jehož hlavní funkcí je zajištění pohybu živočicha nebo jeho částí svaly mají schopnost měnit chemickou energii živin v kinetickou energii a teplo sval je tvořen především svalovou tkání, dále vazivem, cévy a nervy u člověka se podílí ze % na celkové tělesné hmotnosti
32 kost šlacha epimysium SVAL epimysium svalový snopec perimysium endomysium svalové vlákno = svalová buňka
33 svalová buňka kosterního svalu = svalové vlákno = základní strukturní jednotka kosterního svalu mnohojaderné dlouhé válcové útvary na povrchu semipermeabilní plazmatická membrána = SARKOLEMA ta se zanořuje do nitra svalového vlákna tzv. TRANSVERZÁLNÍMI TUBULY vlákno obsahuje MYOFIBRILY, cytoplazmu = SARKOPLAZMU, svalové mitochondrie = SARKOZÓMY modifikované endoplazmatické retikulum svalu = SARKOPLAZMATICKÉ RETIKULUM (~ longitudinální tubuly = L-tubuly) má ve svalech speciální funkci: slouží jako skladovací oddíl vápenatých iontů
34 sarkozóm myofibrila transverzální tubulus (T-tubulus) sarkolema
35 svalová vlákna jádra podélný řez
36 příčný řez svalové buňky jádra svalových buněk
37 příčné pruhování u kosterních a srdečních svalů omezeno na MYOFIBRILY (= kontraktilní vlákna uložená v cytoplazmě svalových buněk) jedno svalové vlákno obsahuje několik set myofibril myofibrily se člení na podjednotky zvané SARKOMERY sarkomera = základní funkční jednotka část myofibrily vymezená příčnými liniemi Z Při pozorování pod mikroskopem vidíme střídavé světlé a tmavé pruhy, které jsou výsledkem uspořádání aktinových a myozinových proteinových vláken.
38 I proužek A proužek H zóna I proužek aktin myozin M disk sarkomera Z disk Z disk
39 Zóna obsahující pouze tenká filamenta, každý I proužek je rozpůlen Z diskem. Zóna obsahující silná filamenta a vnitřní konce tenkých filament, která přesahují silná filamenta. Rozmezí mezi 2 sousedními sarkomerami. Linie ležící ve středu H zóny. Spojuje sousední tlustá filamenta k sobě. Centrálníčást každého A proužku. Obsahuje pouze silná filamenta.
40 aktin myozin
41 aktin myozin tenké filamentum silné filamentum Z disk Tenká aktinová a silná myozinová vlákna mají v myofibrilách pravidelné uspořádání. Kolem 1 aktinového filamenta je v kruhu 6 myozinových filament.
42 START Při svalové kontrakci se tenká aktinová filamenta zasouvají mezi silná filamenta myozinová; přitom se délka silných ani tenkých filament nemění.
43 Triáda tubulů (uprostřed: T-tubulus) Sarkoplazmatické retikulum Jádro Myofibrila Sarkolema Sarkozóm
základem veškerého aktivního pohybu v živočišné říši je interakce proteinových vláken CYTOSKELETU
Lukáš Hlaváček, Katedra zoologie Přf UP Olomouc, 2010 POHYB je jeden ze základních životních projevů pro život je nezbytný POHYB na všech úrovních: subcelulární (pohyb v rámci buňky) celulární (pohyb buňky)
VíceInovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
VíceII. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní
II. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní základní stavební jednotkou svalové vlákno, představující mnohojaderný útvar (soubuní) syncytiálního charakteru; vykazuje příčné pruhování;
VíceBUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY
BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY 1 VÝZNAM BUNĚČNÉ MOTILITY A MOLEKULÁRNÍCH MOTORŮ V MEDICÍNĚ Příklad: Molekulární motor: dynein Onemocnění: Kartagenerův syndrom 2 BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY
VícePŘEHLED OBECNÉ HISTOLOGIE
PŘEDMLUVA 8 1. ZÁKLADY HISTOLOGICKÉ TECHNIKY 9 1.1 Světelný mikroskop a příprava vzorků pro vyšetření (D. Horký) 9 1.1.1 Světelný mikroskop 9 1.1.2 Zásady správného mikroskopování 10 1.1.3 Nejčastější
VíceBp1252 Biochemie. #11 Biochemie svalů
Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické
VíceRozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard)
Fyziologie svalstva Svalstvo patří ke vzrušivým tkáním schopnost kontrakce a relaxace veškerá aktivní tenze a aktivní pohyb (cirkulace krve, transport tráveniny, řeč, mimika, lidská práce) 40% tělesné
VíceB9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY
B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY CYTOSKELETÁLNÍ PRINCIP BUŇKY mikrotubuly střední filamenta aktinová vlákna CYTOSKELETÁLNÍ PRINCIP BUŇKY funkce cytoskeletu - udržovat
Více(VIII.) Časová a prostorová sumace u kosterního svalu. Fyziologický ústav LF MU, 2016 Jana Svačinová
(VIII.) Časová a prostorová sumace u kosterního svalu Fyziologický ústav LF MU, 2016 Jana Svačinová Kontrakce příčně pruhovaného kosterního svalu Myografie metoda umožňující registraci kontrakce svalů
VíceNejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost
BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE
VícePřeměna chemické energie v mechanickou
Přeměna chemické energie v mechanickou Molekulám schopným této energetické přeměny se říká molekulární motory. Nejklasičtějším příkladem je svalový myosin (posouvá se po aktinu), ale patří sem i ATP-syntáza
VícePohyb buněk a organismů
Pohyb buněk a organismů Pohybové buněčné procesy: Vnitrobuněčný transpost organel, membránových váčků Pohyb chromozómů při dělení buněk Cytokineze Lokomoce buněk (améboidní a řasinkový pohyb) Svalový pohyb
VíceFyziologie svalů. Typy svalů: - svaly kosterní (příčně pruhované), - srdeční (modifikovaný kosterní), - hladké svaly.
Fyziologie svalů Svalová tkáň - je složena z buněk, které jsou schopny reagovat na podráždění změnou své délky nebo napětí, - slouží k pohybu a udržování polohy organizmu v prostoru, - tvoří stěny dutých
VíceInovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/OBBC LRR/OBB Obecná biologie Živočišné tkáně II. Mgr. Lukáš Spíchal, Ph.D. Cíl přednášky Popis a charakteristika nervové
VíceSvalová tkáň, kontraktilní aparát, mechanismus kontrakce
Svalová tkáň, kontraktilní aparát, mechanismus kontrakce Ústav pro histologii a embryologii Předmět: Histologie a embryologie 1, B01131, obor Zubní lékařství Datum přednášky: 22.10.2013 Svalová tkáň má
VíceNEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly
NEMEMBRÁNOVÉ ORGANELY Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly RIBOSOMY Částice složené z rrna a proteinů, skládají se z velké kulovité
VíceHISTOLOGIE A MIKROSKOPICKÁ ANATOMIE PRO BAKALÁŘE
OBSAH 1. STAVBA BUŇKY (S. Čech, D. Horký) 10 1.1 Stavba biologické membrány 11 1.2 Buněčná membrána a povrch buňky 12 1.2.1 Mikroklky a stereocilie 12 1.2.2 Řasinky (kinocilie) 13 1.2.3 Bičík, flagellum
VíceSvalová tkáň Svalová soustava
Svalová tkáň Svalová soustava Svalová tkáň tvoří svaly Svalová soustava soubor svalů Sval vysoce specializovaný orgán pohyb jako odpověď na vlivy okolí pohyb v prostoru pohyb částí těla vzhledem tělu Fyziologické
VíceTypy svalové tkáně: Hladké svalstvo není ovladatelné vůlí!
SVALSTVO Typy svalové tkáně: 1. Hladké svalstvo Stavba je tvořeno jednojader. b. jádro je tyčinkovité, leží uprostřed buňky Nachází se: v trávicí trubici v děloze v močovodech v moč. měchýři ve vejcovodech
VíceBuňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
VíceMgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_3_08_BI1 SVALOVÁ SOUSTAVA
Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_3_08_BI1 SVALOVÁ SOUSTAVA POHYBOVÁ SOUSTAVA člověk cca 600 svalů svalovina tvoří 40 až 45% hmotnosti těla hladká 3% Svalová
VíceSvaly. MUDr. Tomáš Boráň. Ústav histologie a embryologie 3.LF
Svaly MUDr. Tomáš Boráň Ústav histologie a embryologie 3.LF tomas.boran@lf3.cuni.cz Svalová tkáň aktivní součást pohybového aparátu vysoce diferencovaná tkáň příčně pruhovaná svalovina kosterní svalovina
VíceBIOLOGIE ČLOVĚKA BUŇKA TKÁŇ ORGÁN
BIOLOGIE ČLOVĚKA BUŇKA TKÁŇ ORGÁN Živočišná buňka lysozóm jádro cytoplazma plazmatická membrána centrozom Golgiho aparát ribozomy na drsném endoplazmatickém retikulu mitochondrie Živočišná tkáň soubor
VícePohybová soustava - svalová soustava
Pohybová soustava - svalová soustava - Člověk má asi 600 svalů - Svaly zabezpečují aktivní pohyb z místa na místo - Chrání vnitřní orgány - Tvoří stěny některých orgánů - Udržuje vzpřímenou polohu těla
VíceSvalová tkáň Svalová soustava
Svalová tkáň Svalová soustava Svalová tkáň tvoří svaly Svalová soustava soubor svalů (sval = orgán) Sval vysoce specializovaný orgán pohyb jako odpověď na vlivy okolí pohyb v prostoru pohyb částí těla
VíceBUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
VíceFyziologie svalů. Typy svalů: - svaly kosterní (příčně pruhované), - srdeční (modifikovaný kosterní), - hladké svaly.
Fyziologie svalů Svalová tkáň - je složena z buněk, které jsou schopny reagovat na podráždění změnou své délky nebo napětí, - slouží k pohybu a udržování polohy organizmu v prostoru, - tvoří stěny dutých
VíceRozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Prameny Určeno pro 8. třída (pro 3. 9. třídy) Sekce Základní / Nemocní /
VíceVAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost
VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické
VíceZÁKLADY FUNKČNÍ ANATOMIE
OBSAH Úvod do studia 11 1 Základní jednotky živé hmoty 13 1.1 Lékařské vědy 13 1.2 Buňka - buněčné organely 18 1.2.1 Biomembrány 20 1.2.2 Vláknité a hrudkovité struktury 21 1.2.3 Buněčná membrána 22 1.2.4
VíceStruktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 3. Enzymy a proteinové motory Ivo Frébort Enzymová katalýza Mechanismy enzymové katalýzy o Ztráta entropie při tvorbě komplexu ES odestabilizace komplexu ES
VíceBuňka buňka je základní stavební a funkční jednotka živých organismů
Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a
VíceUniverzita Karlova v Praze, 1. lékařská fakulta
Univerzita Karlova v Praze, 1. lékařská fakulta Tkáň svalová. Obecná charakteristika hladké a příčně pruhované svaloviny (kosterní a srdeční). Funkční morfologie myofibrily. Mechanismus kontrakce. Stavba
VícePrvotní organizmy byly jednobuněčné. Rostla složitost uspořádání jednobuněčných komplikované uspořádání uvnitř buňky (nálevníci).
Prvotní organizmy byly jednobuněčné. Rostla složitost uspořádání jednobuněčných komplikované uspořádání uvnitř buňky (nálevníci). Byla dosažena hranice, kdy jedna buňka už nestačila zajistit všechny nároky
VíceF y z i o l o g i c k é p r i n c i p y p o h y b u
F y z i o l o g i c k é p r i n c i p y p o h y b u Aktivní pohyb je jedním ze základních projevů života. Existuje na úrovni subcelulární, celulární, orgánové a organismální. Zdrojem pohybu v živočišném
VíceÚvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA
Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide
VíceBUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
VíceČLOVĚK. Antropologie (z řeckého anthrópos člověk) - snaží se vytvořit celkový obraz člověka
ČLOVĚK Antropologie (z řeckého anthrópos člověk) - snaží se vytvořit celkový obraz člověka Fyzická antropologie - studuje lidské tělo, jeho vývoj a genetiku anatomie - zkoumá stavbu těla organismů fyziologie
VíceFyziologické principy pohybu
Fyziologické principy pohybu 1 Struktura mikrotubulů a jejich spojení dyneinem 2 3 Struktura příčně pruhovaného svalu 4 Organizace příčně pruhovaného svalu T-tubuly ve svalovém vlákně 5 6 Molekulární struktura
VíceFyziologie svalové činnosti. MUDr. Jiří Vrána
Fyziologie svalové činnosti MUDr. Jiří Vrána Syllabus 2) Obecný úvod 4) Kosterní svaly a) funkční stavební jednotky b) akční pot., molek. podklad kontrakce, elektromech. spřažení c) sumace, tetanus, závislost
VíceSvaly. Svaly. Svalovina. Rozdělení svalů. Kosterní svalovina
Svaly Svaly Aktivní tenze a pohyb Komunikace, práce Krevní cirkulace Trávení Vylučování Reprodukční systém Michaela Popková Dráždivá tkáň Elasticita Schopnost kontrakce a relaxace Kosterní (příčně pruhovaná)
VíceENERGIE BUNĚČNÁ RESPIRACE FOTOSYNTÉZA. 2013 Doc. MVDr. Eva Bártová, Ph.D.
ENERGIE BUNĚČNÁ RESPIRACE FOTOSYNTÉZA 2013 Doc. MVDr. Eva Bártová, Ph.D. ZÍSKÁVÁNÍ a PŘENOS ENERGIE BUŇKOU 1. termodynamická věta - různé formy energie se mohou navzájem přeměňovat 2. termodynamická věta
VíceTéma I: Tkáň svalová
Téma I: Tkáň svalová Charakteristika: Morfologie: buňky nebo vlákna, spojená intersticiálním vazivem - hladký sval buňky bez příčného žíhání - kosterní sval vlákna (syncytium) příčně pruhovaná - srdeční
Vícepracovní list studenta
Výstup RVP: Klíčová slova: Pohybová soustava Renáta Řezníčková žák využívá znalosti o orgánových soustavách pro pochopení vztahů mezi procesy probíhajícími ve vlastním těle; usiluje o pozitivní změny ve
VíceFyziologie svalů. Autor přednášky: Mgr. Martina Novotná, Ph.D. Přednáška se prochází klikáním nebo klávesou Enter.
Fyziologie svalů Tato přednáška pochází z informačního systému Masarykovy univerzity v Brně, kde byla zveřejněna jako studijní materiál pro studenty předmětu dfgdfgdfgdfgdfg Fyziologie. Autor přednášky:
VíceSeminář pro maturanty
Úvod do biologie člověka Seminář pro maturanty 2006 Organismy mají hierarchickou strukturu Buňka - tkáň - orgán - orgánová soustava celkem asi 216 typů buněk v lidském těle tkáň = skupina buněk stejné
VíceFyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK
Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK Fyziologie srdce Akční potenciál v srdci (pracovní myokard) Automacie srdeční aktivity a převodní systém Mechanismus
VícePatofyziologie srdce. 1. Funkce kardiomyocytu. Kontraktilní systém
Patofyziologie srdce Funkce kardiomyocytu Systolická funkce srdce Diastolická funkce srdce Etiopatogeneze systolické a diastolické dysfunkce levé komory a srdečního selhání 1. Funkce kardiomyocytu Kardiomyocyty
VíceSval. Svalová tkáň. Svalová tkáň. Tvary svalů. Druhy svalů dle funkce. Inervace tkáně. aktivní součást pohybového aparátu vysoce diferencovaná tkáň
Svalová tkáň Svalová tkáň Modul B aktivní součást pohybového aparátu vysoce diferencovaná tkáň příčně pruhovaná svalovina kosterní svalovina srdeční svalovina hladká svalovina nespecifický kontraktilní
Více- pro učitele - na procvičení a upevnění probírané látky - prezentace
Číslo projektu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 10 obecná biologie Organely eukaryotní buňky Ročník 1. Datum tvorby
VícePORUCHY SVALOVÉHO NAPĚTÍ
Lukáš Hlaváček, Katedra zoologie Přf UP Olomouc, 2010 svaly jsou stále v mírné kontrakci, kterou označujeme jako svalové napětí (svalový tonus) svalové napětí představuje základní nervosvalový děj není
VíceSVALOVÁ TKÁŇ. Ústav histologie a embryologie
SVALOVÁ TKÁŇ Obecná charakteristika hladké a příčně pruhované svaloviny (kosterní a srdeční). Stavba interkalárního disku. Funkční morfologie myofibrily. Mechanismus kontrakce. Ústav histologie a embryologie
VíceKosterní svalstvo tlustých a tenkých filament
Kosterní svalstvo Základní pojmy: Sarkoplazmatické retikulum zásobárna iontů vápníku - depolarizace membrány uvolnění vápníku v blízkosti kontraktilního aparátu vazba na proteiny zajišťující kontrakci
VícePřednáška 5 Biomechanika svalu
13.11.2013 Přednáška 5 Biomechanika svalu ANATOMIE MUDr. Vyšatová ANATOMIE MUDr. Vyšatová Obecná myologie Svalová vlákna, myofibrily, proteiny, sarcomery, skluzný model svalového stahu, stavba kosterního
VíceStavba dřeva. Základy cytologie. přednáška
Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná
VíceBuňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308
Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech
VíceCytologie. Přednáška 2010
Cytologie Přednáška 2010 Buňka 1.Velikost 6 200 µm, průměrná velikost 20um 2. JÁDRO a CYTOPLAZMA 3. ORGANELY (membránové) 4. CYTOPLAZMATICKÉ INKLUZE 5. CYTOSKELET 6. Funkční systémy eukaryotické buňky:
VícePohyb přípravný text kategorie A, B
ÚSTŘEDNÍ KOMISE BIOLOGICKÉ OLYMPIÁDY BIOLOGICKÁ OLYMPIÁDA 2005/2006 40. ROČNÍK Pohyb přípravný text kategorie A, B Ivan ČEPIČKA Petr L. JEDELSKÝ Magdalena KUBEŠOVÁ Jana LIŠKOVÁ Jan MATĚJŮ Vendula STRÁDALOVÁ
VíceFyziologie pro trenéry. MUDr. Jana Picmausová
Fyziologie pro trenéry MUDr. Jana Picmausová Patří mezi základní biogenní prvky (spolu s C,N,H) Tvoří asi 20% složení lidského těla a 20.9% atmosferického vzduchu Současně je klíčovou molekulou pro dýchání
VíceBuňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.
Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,
VíceProkaryota x Eukaryota. Vibrio cholerae
Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky
VíceEPITELOVÁ TKÁŇ. šita. guru. sthira. ušna. mridu višada. drva. laghu. čala. Epitelová tkáň potní žlázy. Vše co cítíme na rukou, je epitelová tkáň
EPITELOVÁ TKÁŇ Epitelová tkáň potní žlázy Vše co cítíme na rukou, je epitelová tkáň Epitel tvoří vrstvy buněk, které kryjí vnější a vnitřní povrchy Epitel, kterým cítíme, je běžně nazýván kůže Sekrece
VíceSada živočišná buňka 12 preparátů Kat.číslo 111.3125
Sada živočišná buňka 12 preparátů Kat.číslo 111.3125 Strana 1 ze 14 Strana 2 ze 14 POKYNY PRO PRÁCI S MIKROPREPARÁTY 1. Preparát si vždy začněte prohlížet nejprve s nejslabším zvětšením nebo s nejmenším
Více- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )
Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna
VíceMITÓZA V BUŇKÁCH KOŘÍNKU CIBULE
Cvičení 6: BUNĚČNÝ CYKLUS, MITÓZA Jméno: Skupina: MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Trvalý preparát: kořínek cibule obarvený v acetorceinu V buňkách kořínku cibule jsou viditelné různé mitotické figury.
VíceObecná stavba a funkce svalu. Motorická svalová jednotka. Základy svalové nomenklatury. Energetické zdroje svalu. Svalová práce a únava.
Obecná stavba a funkce svalu. Motorická svalová jednotka. Základy svalové nomenklatury. Energetické zdroje svalu. Svalová práce a únava. Somatologie Mgr. Naděžda Procházková Sval - MUSCULUS Složitá struktura,
VíceCytoskelet a molekulární motory: Biologie a patologie. Prof. MUDr. Augustin Svoboda, CSc.
Cytoskelet a molekulární motory: Biologie a patologie Prof. MUDr. Augustin Svoboda, CSc. Cytosol: tekutá hmota, vyplňující prostor uvnitř buňky mezi organelami. Ve světelném mikroskopu se jeví jako amorfní
Více1/II. Cvičení 2: ŽIVOČIŠNÁ BUŇKA, PROTOZOA Jméno: TVAR BUNĚK NERVOVÁ BUŇKA
Cvičení 2: ŽIVOČIŠNÁ BUŇKA, PROTOZOA Jméno: Skupina: TVAR BUNĚK NERVOVÁ BUŇKA Trvalý preparát: mícha Vyhledejte nervové buňky (neurony) ve ventrálních rozích šedé hmoty míšní. Pozorujte při zvětšení, zakreslete
VíceDruhy tkání. Autor: Mgr. Vlasta Hlobilová. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: přírodopis
Druhy tkání Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 23. 10. 2012 Ročník: osmý Vzdělávací oblast: přírodopis Anotace: Žáci si rozšíří znalosti o tkáních, z kterých se pak vytváří větší celky
VíceVýuka histologie pro studenty fyzioterapie, optometrie a ortoptiky
Výuka histologie pro studenty fyzioterapie, optometrie a ortoptiky Prof. MUDr. RNDr. Svatopluk Čech, DrSc. MUDr. Irena Lauschová, Ph.D. FYZI přednášky, praktika mikrosk. sál budova A1, přízemí, mikrosk.
VíceAnotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky.
Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky. Materiál je plně funkční pouze s použitím internetu. základní projevy života
VíceZáklady buněčné biologie
Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních
VíceVýukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: Šablona/číslo materiálu: Jméno autora: CZ.1.07/1.5.00/34.0996 III/2 VY_32_INOVACE_TVD540 Mgr. Lucie Křepelová Třída/ročník
VíceŽivá soustava, hierarchie ž.s.
Téma: Tkáně Živá soustava, hierarchie ž.s. Charakteristiky ž.s.: 1) Biochemické složení 2) Autoreprodukce 3) Dědičnost 4) Složitost, hierarchické uspořádání 5) Metabolismus 6) Dráždivost 7) Růst 8) Řízení
VíceTéma: MORFOLOGIE ŢIVOČIŠNÝCH BUNĚK
Téma: MORFOLOGIE ŢIVOČIŠNÝCH BUNĚK ŢIVÉ SOUSTAVY Nebuňečné (priony, viroidy, viry) Buněčné (jedno- i mnohobuněčné organismy) PROKARYOTICKÝ TYP BUNĚK 1-10 µm Archebakterie Eubakterie (bakterie a sinice)
Více- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal
Buňka buňka : 10-30 mikrometrů největší buňka : vajíčko životnost : hodiny: leukocyty, erytrocyty: 110 130 dní, hepatocyty: 1 2 roky, celý život organismu: neuron počet bb v těle: 30 biliónů pojem buňka
VíceInovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/OBBC LRR/OBB Obecná biologie Živočišné tkáně I. Mgr. Lukáš Spíchal, Ph.D. Cíl přednášky Popis struktury a funkce živočišných
VíceNeurony a neuroglie /
Nervová tkáň Jedna ze 4 základních typů tkání Vysoce specializovaná - přijímá /dráždivost/, vede /vodivost/, porovnává, ukládá, vytváří informace, zabezpečuje přiměřenou reakci Původ: neuroektoderm CNS
VíceCytologie I, stavba buňky
Cytologie I, stavba buňky Ústav pro histologii a embryologii Předmět: Histologie a embryologie 1, B01131, obor Zubní lékařství Datum přednášky: 1.10.2013 Buňka je základní strukturální a funkční jednotka
VíceStřední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Soustavy člověka Typy svalů, složení
VíceTEST: Bc. BLG FYZ (2017) Varianta:
TEST: Bc. BLG FYZ (2017) Varianta:0 1. Mezi buněčné inkluze živočišné buňky patří: 1) glukan 2) peptidoglykan 3) glykogen 4) chitin 2. Voda o hmotnosti 0,6 kg zvýšila svoji teplotu z 20 C na 60 C. Jak
VíceBuňka. Kristýna Obhlídalová 7.A
Buňka Kristýna Obhlídalová 7.A Buňka Buňky jsou nejmenší a nejjednodušší útvary schopné samostatného života. Buňka je základní stavební a funkční jednotkou živých organismů. Zatímco některé organismy jsou
VíceFYZIOLOGIE BUŇKY BUŇKA 5.3.2015. Základní funkce buněk: PROKARYOTICKÁ BUŇKA. Funkce zajišťují základní životní projevy buněk: EUKARYOTICKÁ BUŇKA
FYZIOLOGIE BUŇKY BUŇKA - nejmenší samostatná morfologická a funkční jednotka živého organismu, schopná nezávislé existence buňky tkáně orgány organismus - fyziologie orgánů a systémů založena na komplexní
VíceBROWNŮV MOLEKULÁRNÍ POHYB
Cvičení 3: POHYB A DRÁŽDIVOST Jméno: Skupina: BROWNŮV MOLEKULÁRNÍ POHYB Kápněte na podložní sklo suspenzi oxidu železitého (Fe 2 O 3 ) a přikryjte krycím sklem a pozorujte pohyb jedné malé částice. Zakreslete
Víceod eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z :
Otázka: Buňka Předmět: Biologie Přidal(a): konca88 MO BI 01 Buňka je základní stavební jednotka živých organismů. Je to nejmenší živý útvar schopný samostatné existence a rozmnožování. Každá buňka má svůj
VíceTEST:Bc-1314-BLG Varianta:0 Tisknuto:18/06/2013 ------------------------------------------------------------------------------------------ 1.
TEST:Bc-1314-BLG Varianta:0 Tisknuto:18/06/2013 1. Genotyp je 1) soubor genů, které jsou uloženy v rámci 1 buněčného jádra 2) soubor pozorovatelných vnějších znaků 3) soubor všech genů organismu 4) soubor
Víceší šířenší
Fyziologie svalstva Úvod Svalstvo patří meziexcitabilní excitabilní tkáně Schopnost kontrakce/relaxace Kontrakce navazuje na excitaci a projevuje se: Tenzí Zkrácm Svaly (všech typů) zajišťují: Aktivní
VíceROZMNOŽOVÁNÍ A VÝVIN MNOHOBUNĚČNÝCH, TKÁNĚ
ROZMNOŽOVÁNÍ A VÝVIN MNOHOBUNĚČNÝCH, TKÁNĚ 1. Doplň následující věty. Pohlavní buňky u fylogeneticky nižších živočichů vznikají z nediferenciovaných buněk. Přeměna těchto buněk v buňky pohlavní je určována
VíceAplikované vědy. Hraniční obory o ţivotě
BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)
VíceSoustava krycí od protist po hlístice
Soustava krycí od protist po hlístice Tematická oblast Datum vytvoření 2. 9. 2012 Ročník Stručný obsah Způsob využití Autor Kód Biologie - biologie živočichů 3. ročník čtyřletého G a 7. ročník osmiletého
VíceKOSTERNÍ, SRDEČNÍ A HLADKÝ SVAL
KOSTERNÍ, SRDEČNÍ A HLADKÝ SVAL KOSTERNÍ, SRDEČNÍ A HLADKÝ SVAL Strukturální rozdíly Elektrická a mechanická aktivita Molekulární mechanizmy kontrakce Biofyzikální vlastnosti svalů Stupňování a modulace
VíceInterakce buněk s mezibuněčnou hmotou. B. Dvořánková
Interakce buněk s mezibuněčnou hmotou B. Dvořánková Obsah přednášky Buňka a její organely Extracelulární matrix Interakce buněk s ECM i navzájem Kultivace buněk in vitro Buněčné jádro Alberts: Molecular
VíceSvalová tkáň. Petr Vaňhara, PhD. Ústav histologie a embryologie LF MU.
Svalová tkáň Petr Vaňhara, PhD Ústav histologie a embryologie LF MU pvanhara@med.muni.cz Současná klasifikace základních typů tkání Na základě morfologických a funkčních znaků Epitelová Svalová Kontinuální,
Více- základní stavební i funkční jednotka všech živých organizmů ( jednotka života )
Otázka: Buňka význam a stavba Předmět: Biologie Přidal(a): Janča 1) Buňka (=cellula) význam a stavba - základní stavební i funkční jednotka všech živých organizmů ( jednotka života ) - organizační základ
VíceŽivočišné tkáně EPITELOVÁ TKÁŇ
PL 15 /LP 4 Živočišné tkáně EPITELOVÁ TKÁŇ Teorie: Stavba a funkce tkání Tkáně představují soubory buněk stejného původu, metabolismu, funkce i tvaru. Z hlediska vývoje, stavby a funkce je dělíme na tkáně:
VícePOHYBOVÉ ÚSTROJÍ. 10 100 svalových vláken + řídká vaziva = snopečky + snopečky = snopce + snopce = sval 18.
POHYBOVÉ ÚSTROJÍ - rozlišujeme ho podle složení buněk : HLADKÉ(útrobní) PŘÍČNĚ PRUHOVANÉ ( kosterní) SRDEČNÍ - tělo obsahuje až 600 svalů, tj. 40% tělesné hmotnosti HISTORIE: - vypracované svalstvo bylo
VíceANATOMIE A FYZIOLOGIE ÈLOVÌKA Pro humanitní obory. doc. MUDr. Alena Merkunová, CSc. MUDr. PhDr. Miroslav Orel
doc. MUDr. Alena Merkunová, CSc. MUDr. PhDr. Miroslav Orel ANATOMIE A FYZIOLOGIE ÈLOVÌKA Pro humanitní obory Vydala Grada Publishing, a.s. U Prùhonu 22, 170 00 Praha 7 tel.: +420 220 386401, fax: +420
VíceZákladní stavební složka živočišného těla TKÁŇ
Tkáně lidského těla Základní stavební složka živočišného těla TKÁŇ buněčná složka mezibuněčná složka 1typ buněk nositel funkce extracelulární matrix Tkáně Složené ze souborů (populací) buněk, které mají
Více