Bezpečnost chemických výrob N111001

Rozměr: px
Začít zobrazení ze stránky:

Download "Bezpečnost chemických výrob N111001"

Transkript

1 Bezpečnost chemckých výrob N00 Petr Zámostný místnost: A-72a tel.: 4222 e-mal: Rzka spojená s hořlavým látkam 2 Povaha procesů hoření a výbuchu Požární charakterstk látek Prostředk snížení nebezpečí požáru nebo exploze

2 Požární charakterstk látek Koncentrační rozmezí Meze výbušnost Lmtní koncentrace kslíku Charakterstcké teplot Bod vzplanutí Bod hoření Teplota samovznícení Bod vzplanutí (Flash Pont) Teplota, př níž hořlavá látka vtvoří dostatek par k tomu, ab se vzduchem tvořl hořlavou směs Hoření potřebuje dodatečnou ncac Vzplanutí je pouze dočasné Závsí na tlaku Př teplotách pod teplotou vzplanutí není možné zapálení, protože tlak par látk je přílš malý k tomu, ab se vtvořl zápalné směs par se vzduchem. To však neznamená, že př teplotách pod teplotou vzplanutí neexstují nebezpečí požáru. Zdrojem zapálení může být látka velm rchle zahřátá na svou teplotu vzplanutí. 2

3 Měření bodu vzplanutí Měření bodu vzplanutí uzavřený kelímek otevřený kelímek 3

4 přesnost Určení bodu vzplanutí směsí Expermentálně Z bodů vzplanutí složek v bodu vzplanutí směs je parcální tlak hořlavé složk roven tenz par čsté složk př jejím bodu vzplanutí je součet poměrů parcálních tlaků hořlavých složek jejch tenzím př jejch bodech vzplanutí roven 0 T p T p FP, mx FP0, p T 0 p FP, mx T FP0, p T x p 0 T Raoultův zákon Tenze par p H T T 0 0 v ref 0 T p T exp nebo log T ref RTT p B A T C Bod hoření (zápalnost) (Fre Pont) Teplota, př které pár nad hořlavou látkou po zapálení vtrvale hoří Hoření potřebuje dodatečnou ncac Hoření je trvalé = produkuje teplo pro dostatečnou tvorbu dalších par Všší než bod vzplanutí Bod hoření leží výše než bod vzplanutí. Rozdíl mez oběm teplotam je u nízkovroucích kapaln velm nepatrný, avšak vzrůstá se snžující se těkavostí kapaln. 4

5 Teplota samovznícení (Autognton temperature) Teplota, př které hořlavá látka samovolně vznítí Hoření nepotřebuje dodatečnou ncac Všší než bod zápalnost Vznícení se vvolá poze působením tepla, bez dalšího ncačního zdroje Měření teplot samovznícení Baňka je umístěna v pícce s regulovanou teplotou Hořlavá látka je vpravena dovntř Vzuální dentfkace vznícení odkaz 5

6 Příklad hodnot T FP, C Methanol 2 Benzen - Benzn -40 T AIT, C Methan 538 Methanol 464 Toluen 536 Odhad mezí výbušnost Emprcký odhad ze složení látk (Llodovo pravdlo) DMV C st 3. 5 HMV C st stechometrcká koncentrace C st z rovnce hoření C H O N S O2 x CO2 H O x z w 2 2 C st mol palva 00 mol palva mol vzduchu 00 C st S 0.2 obsah O 2 ve vzduchu 6

7 Odhad mezí výbušnost Llodovo pravdlo platí dobře pro uhlovodíkové směs stejné produkt hoření podobná teplota hoření pro ostatní organcké látk mohou být odhad dost nepřesné Odhad jsou přesnější pro dolní mez výbušnost hlavní složkou těchto směsí je vzduch, takže jsou s navzájem podobnější je lépe defnovaná stechometre spalování Dolní mez výbušnost látek podle jejch spalného tepla 7

8 Horní mez výbušnost látek podle jejch spalného tepla Odhad mezí výbušnost Larrho pravdla zahrnují porovnání různých látek podle jejch spalného tepla a stechometre spalování K DMV Hc 00 K 2 DMV H S c výpočet spodní meze výbušnost DMV 00K SK 2 První Larrho pravdlo K ~ 0, K 2 ~ 00 podobně nepřesné jako Llodovo pravdlo 0 DMV S 8

9 Odhad mezí výbušnost Druhé Larrho pravdlo konstant se spočítají z expermentálně zjštěných mezí výbušnost pro referenční látku K DMV, ref H c, ref 00 K DMV, ref H c, ref referenční látka unverzálně lze použít např. methan lepší výsledk se docílí př použtí co nejpodobnější referenční látk Podrobnější nformace Brtton, L.G.: Usng Heats of Oxdaton to Evaluate Flammablt Hazards, Process Safet Progress 2, 3-54 (2002). 2 S Charakterstk ve fázovém dagramu 9

10 Závslost mezí výbušnost na teplotě Závslostí na teplotě se přesně rozumí závslost na počáteční teplotě testované směs Rozmezí výbušnost se s rostoucí teplotou obecně rozšřuje Závslost lze získat % obj. 0 měřením 9 8 emprckým a poloemprckým 7 rovncem 6 Podrobný zdroj Brtton, L.G.: Further Uses of the Heat of Oxdaton n Chemcal Hazards Assesment, Process Safet Progress 2, 3-54 (2002) t Příklad použtí emprckých rovnc pro výpočet dolní meze výbušnost př lbovolné teplotě Míra závslost DMV na teplotě je určena lmtní teplotou, která ještě umožňuje šíření plamene T lm, která závsí na spalném teple stechometrckém poměru kslíku ve spalovací reakc HC uhlovodík Tlm 28 7, 463 S ostatní látk s C, H, O, N atom H Tlm , 6944 S chlorované uhlovodík HC Tlm 28 8, 3846 S C 0

11 Příklad použtí emprckých rovnc pro výpočet dolní meze výbušnost př lbovolné teplotě Mez výbušnost př lbovolné teplotě se vpočítá z lmtní teplot umožňující šíření plamene ze známé hodnot meze výbušnost př normální teplotě T 0 (z bezpečnostního datového lstu) Tlm T DMV DMV,0 T T lm 0 Podobně lze počítat horní mez výbušnost (s menší přesností) Závslost mezí výbušnost na tlaku, obj. % HMV DMV p, kpa

12 Závslost mezí výbušnost na tlaku S klesajícím tlakem se meze výbušnost sblžují Změna dolní meze výbušnost je velm malá s výjmkou velm malých tlaků Př určtém tlaku (pro každou látku) se meze spojí př nžším tlaku neexstuje výbušná směs Nebezpečnost směs roste s rostoucím tlakem klesá s klesajícím tlakem Korekce mezí výbušnost na tlak Obvkle nebývá třeba protože dolní mez se přílš nemění směs nad horní mezí se nepovažuje za bezpečnou Kd to potřeba je? zejména, chceme-l dostat zařízení mmo výbušnou oblast snížením tlaku Jak lze korekc provést expermentálně výpočtem podle metod Arnaldos J. a kol.: Predcton of flammablt lmts at reduced pressures, Chemcal Engneerng Scence 56, (200). 2

13 Meze výbušnost směsí Směs par Le Chatelerova rovnce DMV, mx n HMV, mx n DMV, HMV, Předpoklad konstantní tepelná kapacta produktů podobný adabatcký teplotní ohřev podobná knetka spalování Specfka pro pár kapalných směsí mez výbušnost je dána jako objemový zlomek v plnné fáz složení kapaln je dáno jako DMV, mx n nějaký zlomek v kapalné fáz (x ) tto zlomk nemusí být stejné nedojde-l k odpaření celého objemu kapaln různé látk těkají různě rchle a jsou schopné vtvořt různé koncentrace par rovnováha dána Raoultovým zákonem 0 x p knetka určena rchlostí odpařování DMV, 3

14 Hořlavé kapaln podle ČSN Tříd nebezpečnost: I. třída nebezpečnost teplota vzplanutí do 2 C, II. třída nebezpečnost nad 2 C do 55 C, III. třída nebezpečnost nad 55 C do 00 C, IV. třída nebezpečnost nad 00 C do 250 C. Teplotní tříd: T - teplota vznícení nad 450 C, T2 - teplota vznícení 300 až 450 C, T3 - teplota vznícení 200 až 300 C, T4 - teplota vznícení 35 až 200 C, T5 - teplota vznícení 00 až 35 C, T6 - teplota vznícení 85 až 00 C Hořlavé kapaln podle S-vět extrémně hořlavé kapaln s bodem vzplanutí do 0 C nebo látk vznětlvé př stku se vzduchem za normálních podmínek vsoce hořlavé kapaln s bodem vzplanutí do 2 C; látk u kterých může za normálních podmínek dojít k zahřívání a samovznícení; pevné látk které se mohou vznítt a dále hořet po krátkém stku se zápalným zdrojem; látk uvolňující ve stku s vlhkostí vsoce hořlavé pln Hořlavé s bodem vzplanutí mez 2-55 C 4

15 Cvčení: odhad mezí výbušnost směs Modelová směs koksárenský pln Složení směs oxd uhelnatý 5 % hm. vodík 0 % hm. methan 40 % hm. oxd uhlčtý 0 % hm. dusík 25 % hm. Cvčení: Zjstěte bod vzplanutí ethanolu Vpočítejte bod vzplanutí 40% roztoku ethanolu ve vodě e.html 5

6.10.2009. Fakta o požárech a explozích. Hoření. Exploze. Hoření uhlovodíku. Hoření Exploze. Bezpečnost chemických výrob N111001

6.10.2009. Fakta o požárech a explozích. Hoření. Exploze. Hoření uhlovodíku. Hoření Exploze. Bezpečnost chemických výrob N111001 6..29 Bezpečnost chemckých výrob N Rzka spojená s hořlavým látkam Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostn@vscht.cz Povaha procesů hoření a výbuchu Požární charakterstk látek Prostředk

Více

Bezpečnost chemických výrob N111001

Bezpečnost chemických výrob N111001 Bezpečnost chemických výrob N111 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Rizika spojená s hořlavými látkami Povaha procesů hoření a výbuchu Požární charakteristiky látek

Více

Kinetika spalovacích reakcí

Kinetika spalovacích reakcí Knetka spalovacích reakcí Základy knetky spalování - nauka o průběhu spalovacích reakcí a závslost rychlost reakcí na různých faktorech Hlavní faktory: - koncentrace reagujících látek - teplota - tlak

Více

Metodický pokyn odboru ochrany ovzduší Ministerstva životního prostředí

Metodický pokyn odboru ochrany ovzduší Ministerstva životního prostředí Metodický pokn odboru ochran ovzduší Ministerstva životního prostředí ke způsobu stanovení specifických emisních limitů pro stacionární zdroje tepelně zpracovávající společně s palivem, jiné než spalovn

Více

Otto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 14522

Otto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 14522 Otto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 145 UNCERTAINTY OF DETEMINATION OF THE AUTO-IGNITION TEMPERATURE OF FLAMMABLE GASES OR VAPOURS

Více

Jednosložkové soustavy

Jednosložkové soustavy Jednosložkové soustavy Fázové rovnováhy Prezentace je určena pro výuku. roč. studjního oboru Nanotechnologí a není dovoleno její šíření bez vědomí garanta předmětu. K jejímu vytvoření bylo použto materálů

Více

Modelování rizikových stavů v rodinných domech

Modelování rizikových stavů v rodinných domech 26. 28. června 2012, Mkulov Modelování rzkových stavů v rodnných domech Mlada Kozubková 1, Marán Bojko 2, Jaroslav Krutl 3 1 2 3 Vysoká škola báňská techncká unverzta Ostrava, Fakulta strojní, Katedra

Více

Raoultův zákon, podle kterého je při zvolené teplotě T parciální tlak i-té složky nad roztokem

Raoultův zákon, podle kterého je při zvolené teplotě T parciální tlak i-té složky nad roztokem DVOUSLOŽKOVÉ SYSTÉMY lkace Gbbsova zákona fází v f s 2 3 1 4 2 2 4 mamálně 3 roměnné, ro fázový dagram bchom otřeboval trojrozměrný 1 3 4 graf, oužíváme lošné graf, kd volíme buď konstantní telotu (zotermcký

Více

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln Souhrn 6. přednášky: 1) Terodynaka sěsí a) Ideální sěs: adtvta objeů a entalpí, Aagatův zákon b) Reálná sěs: pops poocí dodatkových velčn E Def. Y Y Y, d Aplkace: - př. obje reálné dvousložkové sěs V xv

Více

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r.

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. L A B O R A T O Ř O B O R U CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. Ústav organcké technologe (111) Ing. J. Trejbal, Ph.D. budova A, místnost č. S25b Název práce : Vedoucí práce: Umístění práce: Rektfkace

Více

Téma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: nebezpečné vlastnosti

Téma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: nebezpečné vlastnosti Téma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: nebezpečné vlastnosti Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1243_nebezpečné_vlastnosti_pwp Název školy: Číslo a název

Více

symetrická rovnice, model Redlich- Kister dvoukonstantové rovnice: Margules, van Laar model Hildebrandt - Scatchard mřížková teorie roztoků příklady

symetrická rovnice, model Redlich- Kister dvoukonstantové rovnice: Margules, van Laar model Hildebrandt - Scatchard mřížková teorie roztoků příklady symetrcá rovnce, model Redlch- Kster dvouonstantové rovnce: Margules, van Laar model Hldebrandt - Scatchard mřížová teore roztoů přílady na procvčení 0 lm Bnární systémy: 0 atvtní oefcenty N I E N I E

Více

Entalpie je extenzívní veličina a označuje se symbolem H. Vyjadřuje se intenzívními veličinami, tj. molární entalpií h či měrnou entalpií h jako

Entalpie je extenzívní veličina a označuje se symbolem H. Vyjadřuje se intenzívními veličinami, tj. molární entalpií h či měrnou entalpií h jako 0 Blance entalpe Vladmír Míka, Jří Vlček, Prokop Nekovář Kaptola obsahuje metody výpočtu hodnoty entalpe čstých látek a směsí, postupy řešení blance entalpe včetně reagujících systémů a odkazy na údaje

Více

3 Základní modely reaktorů

3 Základní modely reaktorů 3 Základní modely reaktorů Rovnce popsující chování reakční směs v reaktoru (v čase a prostoru) vycházejí z blančních rovnc pro hmotu, energ a hybnost. Blanc lze formulovat pro extenzvní velčnu B v obecném

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Destilace

Destilace Výpočtový ý seminář z Procesního inženýrství podzim 2007 Destilace 18.9.2008 1 Tématické okruhy destilace - základní pojmy rovnováha kapalina - pára jednostupňová destilace rektifikace 18.9.2008 2 Destilace

Více

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C?

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C? TERMOCHEMIE Reakční entalpie při izotermním průběhu reakce, rozsah reakce 1 Kolik tepla se uvolní (nebo spotřebuje) při výrobě 2,2 kg acetaldehydu C 2 H 5 OH(g) = CH 3 CHO(g) + H 2 (g) (a) při teplotě

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek 9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného

Více

Bezpečnostní inženýrství - Požáry a exploze-

Bezpečnostní inženýrství - Požáry a exploze- Bezpečnostní inženýrství - Požáry a exploze- M. Jahoda Úvod 2 Požáry a exploze Statisticky nejčastější typ havárie v chemickém průmyslu požár (31%) exploze (30%) uvolnění toxické látky Nejčastější zdroj

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu. Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

VYUŽITÍ STECHIOMETRICKÝCH VZTAHŮ PŘI POČÍTAČOVÉM MODELOVÁNÍ OHNIŠŤ

VYUŽITÍ STECHIOMETRICKÝCH VZTAHŮ PŘI POČÍTAČOVÉM MODELOVÁNÍ OHNIŠŤ Energe z bomasy III semář Brno 2004 VYUŽITÍ STECHIOMETRICKÝCH VZTAHŮ ŘI OČÍTAČOVÉM MODELOVÁNÍ OHNIŠŤ avel Slezák V příspěvku je popsána jedna z varant přístupu k počítačovému modelování ohnšť. ozornost

Více

Účinnost spalovacích zařízení

Účinnost spalovacích zařízení Účnnost spalovacích zařízení Účnnost je ukazatelem míry dokonalost transformace energe v zařízení. Jedná se o techncko-ekonomcký parametr. Vyjadřuje poměr mez energí využtou a energí přvedenou do zařízení,

Více

rtuť při 0 o C = 470 mn m 1 15,45 17,90 19,80 21,28

rtuť při 0 o C = 470 mn m 1 15,45 17,90 19,80 21,28 zkapalněné plyny - velmi nízké; např. helium 0354 mn m při teplotě 270 C vodík 2 mn m při teplotě 253 C roztavené kovy - velmi vysoké; např. měď při teplotě tání = 00 mn m organické látky při teplotě 25

Více

Základní odborná příprava členů jednotek sborů dobrovolných hasičů

Základní odborná příprava členů jednotek sborů dobrovolných hasičů Základní odborná příprava členů jednotek sborů dobrovolných hasičů Základní odborná příprava členů jednotek sborů dobrovolných hasičů Nebezpečné látky doplňující materiály Hodina: 20. Značení tlakových

Více

PROGRAMY UVÁDĚNÍ PRODUTKŮ ISOPA DĚLÁME, CO ŘÍKÁME. metylénchlorid

PROGRAMY UVÁDĚNÍ PRODUTKŮ ISOPA DĚLÁME, CO ŘÍKÁME. metylénchlorid PROGRAMY UVÁDĚNÍ PRODUTKŮ ISOPA DĚLÁME, CO ŘÍKÁME metylénchlorid 1 Informace na štítcích metylenchloridu CLP Signální slovo: Pozor Údaje o nebezpečnosti H315 Dráždí kůži H319 Způsobuje vážné podráždění

Více

= 2,5R 1,5R =1,667 T 2 =T 1. W =c vm W = ,5R =400,23K. V 1 =p 2. p 1 V 2. =p 2 R T. p 2 p 1 1 T 1 =p 2 1 T 2. =p 1 T 1,667 = ,23

= 2,5R 1,5R =1,667 T 2 =T 1. W =c vm W = ,5R =400,23K. V 1 =p 2. p 1 V 2. =p 2 R T. p 2 p 1 1 T 1 =p 2 1 T 2. =p 1 T 1,667 = ,23 15-17 Jeden mol argonu, o kterém budeme předpokládat, že se chová jako ideální plyn, byl adiabaticky vratně stlačen z tlaku 100 kpa na tlak p 2. Počáteční teplota byla = 300 K. Kompresní práce činila W

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Predikce teploty vzplanutí pro analýzu nebezpečnosti hořlavých kapalin v průmyslu

Predikce teploty vzplanutí pro analýzu nebezpečnosti hořlavých kapalin v průmyslu Predikce teploty vzplanutí pro analýzu nebezpečnosti hořlavých kapalin v průmyslu Skřínská Mária 1, Skřínský Jan 1,2, Sluka Vilém 1, Pražáková Martina 1, Frišhansová Lenka 1, Senčík Josef 1, Malý Stanislav

Více

23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_

23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_ Obsah 23_ Změny skupenství... 2 24_ Tání... 2 25_ Skupenské teplo tání... 2 26_ Anomálie vody... 4 27_ Vypařování... 5 28_ Var... 5 29_ Kapalnění... 5 30_ Jak určíš skupenství látky?... 7 31_ Tepelné motory:...

Více

o určení vnějších vlivů a nebezpečných prostorů z hlediska nebezpečí úrazu elektrickým proudem vypracovaný odbornou komisí firmy

o určení vnějších vlivů a nebezpečných prostorů z hlediska nebezpečí úrazu elektrickým proudem vypracovaný odbornou komisí firmy Protokol strana 1 Protokol č. 11 o určení vnějších vlivů a nebezpečných prostorů z hlediska nebezpečí úrazu elektrickým proudem vypracovaný odbornou komisí firmy MONTGAS a.s. U Kyjovky 3953/3, 695 01 Hodonín

Více

Polymerace kyseliny akrylové a esterů kyseliny akrylové

Polymerace kyseliny akrylové a esterů kyseliny akrylové Polymerace kyseliny akrylové a esterů kyseliny akrylové Josef Petr Hexion a.s. Tovární 2093, 356 01 Sokolov, Česká republika Telefon: +420 352 449 320, +420 352 614 320 Fax: +420 352 623 226 MT: +420 603

Více

Interference na tenké vrstvě

Interference na tenké vrstvě Úloha č. 8 Interference na tenké vrstvě Úkoly měření: 1. Pomocí metody nterference na tenké klínové vrstvě stanovte tloušťku vybraného vlákna nebo vašeho vlasu. 2. Pomocí metody, vz bod 1, stanovte ndex

Více

Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172, Ostrava - Poruba

Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172, Ostrava - Poruba Laboratoř plní požadavky na periodická měření emisí dle ČSN P CEN/TS 15675:2009 u zkoušek a odběrů vzorků označených u pořadového čísla symbolem E. Laboratoř je způsobilá aktualizovat normativní dokumenty

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY PROSTŘEDÍ doc. Ing. Josef ŠTETINA, Ph.D. Předmět 3. ročníku BS http://ottp.fme.vutbr.cz/sat/

Více

INŽ ENÝ RSKÁ MECHANIKA 2002

INŽ ENÝ RSKÁ MECHANIKA 2002 Ná dní konference s mezná dní účastí INŽ ENÝ RSÁ MECHANIA 00 1. 16. 5. 00, Svratka, Č eská republka PODRITICÝ RŮ ST TRHLINY VE SVAROVÉ M SPOJI OMORY PŘ EHŘÍVÁ U Jan ouš, Ondřej Belak 1 Abstrakt: V důsledku

Více

Bezpečnost chemických výrob N111001

Bezpečnost chemických výrob N111001 Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Zdroje vznícení, zkapalněné plyny, exploze Zdroje vznícení v chemických procesech Riziko spojené

Více

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel Základy větrání stájových objektů Stájové objekty: objekty otevřené skot, ovce, kozy apod. - přístřešky chránící ustájená zvířata pouze před přímým náporem větru, před dešťovým a sněhovým srážkam, v létě

Více

Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30

Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30 Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30 30. března 2006 1 2 3 4 5 Heterofázové fluktuace vznk nové Nově vznkající (kapalná, krystalcká... ) Matečná (podchlazená

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Bezpečnostní list. podle směrnice EK 2001/58/ES. Datum vydání / 30596P

Bezpečnostní list. podle směrnice EK 2001/58/ES. Datum vydání / 30596P Strana 1 z 5 1. Identifikace látky nebo přípravku a výrobce, dovozce, prvního distributora nebo distributora Identifikace látky nebo přípravku Čislo výrobku 30596 / 30596P Identifikace výrobce, dovozce,

Více

Stanovení křivky rozpustnosti fenol-voda. 3. laboratorní cvičení

Stanovení křivky rozpustnosti fenol-voda. 3. laboratorní cvičení Stanovení křivky rozpustnosti fenol-voda 3. laboratorní cvičení Mgr. Sylvie Pavloková Letní semestr 2016/2017 Cíl pochopení základních principů fázové rovnováhy heterogenních soustav základní principy

Více

2. KINETICKÁ ANALÝZA HOMOGENNÍCH REAKCÍ

2. KINETICKÁ ANALÝZA HOMOGENNÍCH REAKCÍ 2. KINETICKÁ ANALÝZA HOMOGENNÍCH REAKCÍ Úloha 2-1 Řád reakce a rychlostní konstanta integrální metodou stupeň přeměny... 2 Úloha 2-2 Řád reakce a rychlostní konstanta integrální metodou... 2 Úloha 2-3

Více

PRŮBĚH SPALOVÁNÍ (obecně)

PRŮBĚH SPALOVÁNÍ (obecně) PRŮBĚH SPALOVÁNÍ (obecně) 1. PŘÍPRAVA a) Fyzikální část zabezpečuje podmínky pro styk reagentů vytvořením kontaktních ploch paliva s kyslíkem (odpaření, smíšení) vnější nebo vnitřní tvorba směsi ohřátím

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

15,45 17,90 19,80 21,28. 24,38 28,18 27,92 28,48 dichlormethan trichlormethan tetrachlormethan kys. mravenčí kys. octová kys. propionová kys.

15,45 17,90 19,80 21,28. 24,38 28,18 27,92 28,48 dichlormethan trichlormethan tetrachlormethan kys. mravenčí kys. octová kys. propionová kys. zkapalněné plyny - velmi nízké; např. helium 0354 mn m při teplotě 270C vodík 2 mn m při teplotě 253C roztavené kovy - velmi vysoké; např. měď při teplotě tání = 00 mn m rtuť při 0 o C = 470 mn m organické

Více

POŽÁRNÍ TAKTIKA. Rozdělení hořlavých látek a jejich požárně technické charakteristiky

POŽÁRNÍ TAKTIKA. Rozdělení hořlavých látek a jejich požárně technické charakteristiky MV ŘEDITELSTVÍ HASIČSKÉHO ZÁCHRANNÉHO SBORU ČR ODBORNÁ PŘÍPRAVA JEDNOTEK POŽÁRNÍ OCHRANY Konspekt 1-1-02 POŽÁRNÍ TAKTIKA Základy požární taktiky Rozdělení hořlavých látek a jejich požárně technické charakteristiky

Více

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE USE OF FUGITY FOR HEDSPE METHODS VYUŽITÍ FUGITNÍ TEORIE PRO METODY HEDSPE Veronka Rppelová, Elška Pevná, Josef Janků Ústav cheme ochrany prostředí, Vysoká škola chemcko-technologcká v Praze, Techncká 5,

Více

LINDE VÍTKOVICE a. s. BEZPEČNOSTNÍ LIST. dusíko-vodíková směs. podle nařízení EP a Rady (ES) č. 1907/2006

LINDE VÍTKOVICE a. s. BEZPEČNOSTNÍ LIST. dusíko-vodíková směs. podle nařízení EP a Rady (ES) č. 1907/2006 LINDE VÍTKOVICE a. s. BEZPEČNOSTNÍ LIST Dusíko-vodíková směs podle nařízení EP a Rady (ES) č. 1907/2006 Datum vydání: 02.01.2004 Datum revize: 01.12.2008 1. Identifikace látky / přípravku a společnosti

Více

PEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety

PEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety PEVNÁ PALIVA Základní dělení: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety Biomasa obnovitelný zdroj energie u našich výrobků se týká dřeva a dřevních briket Složení

Více

Požární pojmy ve stavebním zákoně

Požární pojmy ve stavebním zákoně 1 - Hořlavé látky 2 - Výbušniny 3 - Tuhé hořlavé látky a jejich skladování 4 - Kapalné hořlavé látky a jejich skladování 5 - Plynné hořlavé látky a jejich skladování 6 - Hořlavé a nehořlavé stavební výrobky

Více

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi 1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4

Více

Požáry v uzavřených prostorech

Požáry v uzavřených prostorech Požáry v uzavřených prostorech Flashover kontejner HAMRY, HZS Olomouckého kraje, ÚO Prostějov mjr. Ing. Ivo Jahn Výcvik Flashover kontejner TEORIE prezentace požárů v uzavřených prostorech prezentace 3D

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Teplotní analýza konstrukce Sdílení tepla

Více

PROGRAMY ZODPOVĚDNÉ SPRÁVY PRODUKTŮ ISOPA. Walk the Talk RŮZNÉ CHEMICKÉ LÁTKY

PROGRAMY ZODPOVĚDNÉ SPRÁVY PRODUKTŮ ISOPA. Walk the Talk RŮZNÉ CHEMICKÉ LÁTKY PROGRAMY ZODPOVĚDNÉ SPRÁVY PRODUKTŮ ISOPA Walk the Talk RŮZNÉ CHEMICKÉ LÁTKY Seznámení s bezpečnostními listy vašeho dodavatele, případně s jejich elektronickou verzí, je vaší POVINNOSTÍ, protože obsahují

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

o určení vnějších vlivů a nebezpečných prostorů z hlediska nebezpečí úrazu elektrickým proudem vypracovaný odbornou komisí firmy

o určení vnějších vlivů a nebezpečných prostorů z hlediska nebezpečí úrazu elektrickým proudem vypracovaný odbornou komisí firmy Protokol strana 1 Protokol č. 10 o určení vnějších vlivů a nebezpečných prostorů z hlediska nebezpečí úrazu elektrickým proudem vypracovaný odbornou komisí firmy MONTGAS a.s. U Kyjovky 3953/3, 695 01 Hodonín

Více

Tep e e p l e né n é str st o r j o e e z po p h o l h ed e u d u zákl zá ad a n d í n h í o h o kur ku su r su fyzi f ky 3. 3 Poznámky k přednášce

Tep e e p l e né n é str st o r j o e e z po p h o l h ed e u d u zákl zá ad a n d í n h í o h o kur ku su r su fyzi f ky 3. 3 Poznámky k přednášce Tepelné stroje z pohledu základního kursu fyziky. Poznámky k přednášce osnova. Idealizované tepelné cykly strojů s vnitřním spalováním, Ottův cyklus, Dieselův cyklus, Atkinsonův cyklus,. Způsob výměny

Více

BEZPEČNOSTNÍ LIST podle předpisu EU č. 1907/2006 (REACH) Verze: 01.09

BEZPEČNOSTNÍ LIST podle předpisu EU č. 1907/2006 (REACH) Verze: 01.09 1. Identifikace látky nebo přípravku a společnosti nebo podniku 1.1 Chemický název látky nebo obchodní název výrobku: Metan 2.5, Metan 3.5, Metan 4.5, Metan 5.5 1.2 Číslo CAS: 74-82-8, Číslo ES (EINECS):

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Požadavky na vzorek u zkoušek OVV a OPTE (zkoušky č. 37, 39-75)

Požadavky na vzorek u zkoušek OVV a OPTE (zkoušky č. 37, 39-75) Požadavky na vzorek u zkoušek OVV a OPTE ( č. 37, 39-75) 37 Stanovení odolnosti proti teplu ochranných oděvů, rukavic a obuvi pro hasiče 37.1 Zkouška sálavým teplem ČSN EN ISO 6942 ČSN EN 1486, čl. 6.2

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

Bezpečnostní list podle vyhlášky č. 231/2004 Sb.

Bezpečnostní list podle vyhlášky č. 231/2004 Sb. podle vyhlášky č.231/2004 Sb. Datum vydání: 11.08.2005 List 1 z 5 listů 1. Označení látek, přípravy a firmy 1.1 Označení výrobku: Obchodní název: 1.2 Užití výrobku: Těsnicí materiál pro užití v přírubových

Více

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv

Více

Ocelové konstrukce požární návrh

Ocelové konstrukce požární návrh Ocelové konstrukce požární návrh Zdeněk Sokol František Wald, 17.2.2005 1 2 Obsah prezentace Úvod Přestup tepla do konstrukce Požárně nechráněné prvky Požárně chráněné prvky Mechanické vlastnosti oceli

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

Výfukové plyny pístových spalovacích motorů

Výfukové plyny pístových spalovacích motorů Výfukové plyny pístových spalovacích motorů Hlavními složkami výfukových plynů při spalování směsi uhlovodíkových paliv a vzduchu jsou dusík, oxid uhličitý, vodní pára a zbytkový kyslík. Jejich obvyklá

Více

PROGRAMY ZODPOVĚDNÉ SPRÁVY PRODUKTŮ ISOPA. Walk the Talk RŮZNÉ CHEMICKÉ LÁTKY

PROGRAMY ZODPOVĚDNÉ SPRÁVY PRODUKTŮ ISOPA. Walk the Talk RŮZNÉ CHEMICKÉ LÁTKY PROGRAMY ZODPOVĚDNÉ SPRÁVY PRODUKTŮ ISOPA Walk the Talk RŮZNÉ CHEMICKÉ LÁTKY Seznámení s bezpečnostními listy vašeho dodavatele, případně s jejich elektronickou verzí, je vaší POVINNOSTÍ, protože obsahují

Více

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv

Více

1. PROCES A PODMÍNKY HOŘENÍ, HOŘLAVÉ LÁTKY

1. PROCES A PODMÍNKY HOŘENÍ, HOŘLAVÉ LÁTKY 1. PROCES A PODMÍNKY HOŘENÍ, HOŘLAVÉ LÁTKY V této kapitole se dozvíte: Jak lze definovat hoření? Jak lze vysvětlit proces hoření? Jaké jsou základní podmínky pro hoření? Co jsou hořlavé látky (hořlaviny)

Více

Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky

Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky Příloha č. 20 (Příloha č. 1 NV č. 352/2002 Sb.) Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky 1. Emisní limity

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY

CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY V reakční kinetice jsme si ukázali, že zvratné reakce jsou charakterizovány tím, že probíhají současně oběma směry, tj. od výchozích látek k produktům

Více

Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials

Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials Fázové rovnováhy I PCM phase change materials akumulace tepla pomocí fázové změny (tání-tuhnutí) parafin, mastné kyseliny tání endotermní tuhnutí - exotermní Phase change cooling vest $149.95 with Free

Více

kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ]

kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ] KINETIKA JEDNODUCHÝCH REAKCÍ Různé vyjádření reakční rychlosti a rychlostní konstanty 1 Rychlost reakce, rychlosti přírůstku a úbytku jednotlivých složek Rozklad kyseliny dusité je popsán stechiometrickou

Více

Bezpečnostní list podle vyhlášky č. 231/2004 Sb.

Bezpečnostní list podle vyhlášky č. 231/2004 Sb. podle vyhlášky č.231/2004 Sb. Datum vydání: 11.08.2005 List 1 z 5 listů 1. Označení látek, přípravy a firmy 1.1 Označení výrobku: Obchodní název: KLINGERSIL soft-chem 1.2 Užití výrobku: Těsnicí materiál

Více

Termochemie. Katedra materiálového inženýrství a chemie A Ing. Martin Keppert Ph.D.

Termochemie. Katedra materiálového inženýrství a chemie A Ing. Martin Keppert Ph.D. Termochemie Ing. Martin Keppert Ph.D. Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz A 329 http://tpm.fsv.cvut.cz/ Termochemie: tepelné jevy při chemických reakcích Chemická reakce: CH

Více

Bezpečnost chemických výrob N111001

Bezpečnost chemických výrob N111001 Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Specifická rizika chemických reakcí Reaktivita látek Laboratorní měření reaktivity Reaktory s

Více

Bezpečnostní list NEOPOLEN* P 9230 A 1. IDENTIFIKACE LÁTKY NEBO PŘÍPRAVKU A VÝROBCE NEBO DOVOZCE 2. ÚDAJE O NEBEZPEČNOSTI LÁTKY NEBO PŘÍPRAVKU

Bezpečnostní list NEOPOLEN* P 9230 A 1. IDENTIFIKACE LÁTKY NEBO PŘÍPRAVKU A VÝROBCE NEBO DOVOZCE 2. ÚDAJE O NEBEZPEČNOSTI LÁTKY NEBO PŘÍPRAVKU Bezpečnostní list Strana: 1/6 1. IDENTIFIKACE LÁTKY NEBO PŘÍPRAVKU A VÝROBCE NEBO DOVOZCE NEOPOLEN* P 9230 A Použití: pěnové částice pro výrobu tvarovek v automobilovém a balírenském průmyslu Výrobce:

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

ÚČINNOST KOTLE. Součinitel přebytku spalovacího vzduchu z měřené koncentrace O2 Účinnost kotle nepřímou metodou Účinnost kotle přímou metodou

ÚČINNOST KOTLE. Součinitel přebytku spalovacího vzduchu z měřené koncentrace O2 Účinnost kotle nepřímou metodou Účinnost kotle přímou metodou ÚČINNOST KOTLE 1. Cíl páce: Roštový kotel o jmenovtém výkonu 100 kw, vybavený automatckým podáváním palva, je učen po spalování dřevní štěpky. Teplo z topného okuhu je předáváno do chladícího okuhu pomocí

Více

Výpočet objemu spalin

Výpočet objemu spalin Výpočet objemu spalin Ing. Vladimír Neužil, CSc. KONEKO marketing, spol. s r. o., Praha 2012 1. Teoretické základy výpočtu objemu spalin z jejich složení Při spalování paliv se mění v palivu obsažená chemicky

Více

Novela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP

Novela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP Novela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP Právní základ ČR» zákon o ochraně ovzduší č. 86/2002 Sb. ve znění zákonů č. 521/2002 Sb., č. 92/2004 Sb., č. 186/2004 Sb., č.

Více

2.6. Koncentrace elektronů a děr

2.6. Koncentrace elektronů a děr Obr. 2-11 Rozložení nosičů při poloze Fermiho hladiny: a) v horní polovině zakázaného pásu (p. typu N), b) uprostřed zakázaného pásu (vlastní p.), c) v dolní polovině zakázaného pásu (p. typu P) 2.6. Koncentrace

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

Delegace naleznou v příloze dokument D033542/02 - ANNEX.

Delegace naleznou v příloze dokument D033542/02 - ANNEX. Rada Evropské unie Brusel 14. července 2014 (OR. en) 11888/14 ADD 1 ENV 672 ENT 161 PRŮVODNÍ POZNÁMKA Odesílatel: Evropská komise Datum přijetí: 11. července 2014 Příjemce: Předmět: Generální sekretariát

Více

NEBEZPEČNÉ VLASTNOSTI LÁTEK

NEBEZPEČNÉ VLASTNOSTI LÁTEK NEBEZPEČNÉ VLASTNOSTI LÁTEK Globálně harmonizovaný systém klasifikace a označování chemikálií Globálně harmonizovaný systém klasifikace a označování chemikálií (GHS) je systém Organizace spojených národů

Více

Nebezpečné látky živě!

Nebezpečné látky živě! Nebezpečné látky živě! Nebezpečné látky živě - Marc Eder - 12. listopad 2014 Nebezpečné látky živě! 12. listopad Praha konference SpeedCHAIN přednášející: Marc Eder hazardous materials live - Marc Eder

Více

VLIV TOPNÉHO REŽIMU NA EMISE KRBOVÝCH KAMEN SPALUJÍCÍCH DŘEVO

VLIV TOPNÉHO REŽIMU NA EMISE KRBOVÝCH KAMEN SPALUJÍCÍCH DŘEVO VLIV TOPNÉHO REŽIMU NA EMISE KRBOVÝCH KAMEN SPALUJÍCÍCH DŘEVO Jiřina Čermáková, Martin Vosecký, Jiří Malecha a Bohumil Koutský V této práci byl sledován vliv topného režimu na emise krbových kamen spalujících

Více

Vyrovnání měření přímých stejné přesnosti

Vyrovnání měření přímých stejné přesnosti Vyrovnání měření přímých stejné přesnost 1) Určíme přblžnou hodnotu x pro přehlednější výpočet v pracovní tabulce: x ) Vypočteme hodnoty doplňků δ k přblžné hodnotě x : δ l x, protože l x + δ 3) Výpočet

Více

2.4. Rovnováhy v mezifází

2.4. Rovnováhy v mezifází 2.4. Rovováhy v mezfází Mezfázím se rozumí teká vrstv (tloušťk řádově odpovídá molekulárím dmezím) rozhrí dvou fází, která se svým složeím lší od složeí stýkjících se fází. Je-l styčá ploch fází mlá, lze

Více

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU. Cíl práce: Roštový kotel o jmenovitém výkonu 00 kw, vybavený automatickým podáváním paliva, je určen pro spalování dřevní štěpky. Teplo z topného okruhu je předáváno

Více

TVORBA UHLÍKATÝCH PRODUKTŮ PŘI I PYROLÝZE UHLOVODÍKŮ

TVORBA UHLÍKATÝCH PRODUKTŮ PŘI I PYROLÝZE UHLOVODÍKŮ TVORBA UHLÍKATÝCH PRODUKTŮ PŘI I PYROLÝZE UHLOVODÍKŮ Martin Hrádel 5. ročník Školitel: Doc. Ing. Zdeněk Bělohlav, CSc. Obsah Úvod Mechanismus vzniku a vlastnosti uhlíkatých produktů Provozního sledování

Více