Rigitherm. Systém vnitřního zateplení stěn
|
|
- Bohuslav Matoušek
- před 9 lety
- Počet zobrazení:
Transkript
1 Rigitherm Systém vnitřního zateplení stěn
2 O společnosti Rigips, s.r.o. je členem koncernu Saint-Gobain, který jakožto světový výrobce a distributor zpracovává surovinu (sklo, keramiku, plasty, litinu atd.) na moderní produkty každodenního života a vyvíjí materiály budoucnosti. Počátky Saint-Gobainu spadají do Francie 17. století, půldruhého století nato překračuje Saint-Gobain hranice Francie a dnes již působí ve více jak 50 zemích světa, kde sdružuje na společností a zaměstnává více jak lidí 70ti národností. Saint-Gobain, evropský a světový lídr ve všech svých obchodních odvětvích, patří do první stovky světových průmyslových korporací. Světová jednička v sádrokartonu a sádrových omítkách Světová jednička v izolačních materiálech Evropská jednička v distribuci stavebních materiálů V České republice má společnost Rigips již patnáctiletou tradici. Rigitherm pro účinné Ověřená francouzská kvalita Jednou z možností vytvoření účinné tepelně izolační obálky je systém vnitřního zateplení Rigitherm. Je to systém dlouhodobě propracovaný, jehož základem je sendvičová deska Rigitherm. Ta je tvořena sádrokartonovou deskou RB (A) nebo RBI (H2) opatřenou vrstvou tepelné izolace elastifikovaného polystyrenu Rigifloor Desky Rigitherm po nalepení na stěnovou konstrukci spolu s navázáním na tepelnou izolaci podlahy a stropu tvoří velmi účinnou izolační obálku interiéru. Tento způsob vnitřního zateplení staveb je nejvíce oblíben a rozšířen ve vyspělých státech jako Francie či Belgie pod názvem Doublage (v ČR Rigitherm). Konkrétně ve Francii je vyráběn a dodáván společností Placo ( pod obchodním názvem Doublissimo. Celkově je ve Francii ročně aplikováno přibližně 30 milionů metrů čtverečních vnitřního zateplení systému Doublage. Společnost Placo ve Francii stejně jako Rigips v České republice jsou součástí nadnárodního koncernu Saint-Gobain. Systém Doublage (Rigitherm) je ve Francii používán především pro novostavby v kombinaci s nosnými stěnami ze skořepinových betonových tvárnic. Po vyzdění je celý obvod budovy zevnitř tepelně izolován. Následně jsou montovány příčky a podhledy ze sádrokartonu. Stropní konstrukce je často prováděna z EPS tvarovek ztraceného bednění a následně vybetonována. Tento systém stavění umožňuje jednoduše tepelně izolovat důležité detaily, a tak významně omezit vliv tepelných mostů, aby byly splněny požadavky platných norem. V České republice jsou tyto systémy již také používány, neboť umožňují vytvářet dostupné nízkoenergetické budovy. Hlavní výhody systému zateplení Rigitherm: Ve svých třech výrobních závodech v Českém Brodě a České Skalici (pěnový polystyren) v Horních Počaplech na Mělnicku (sádrokartonové desky) vyrábí produkty nejvyšší světové kvality srovnatelné s předními evropskými výrobci a splňuje nové normy zaváděné v EU. Díky své příslušnosti ke koncernu Saint-Gobain, který ročně vyčleňuje na 345 mil. EUR na výzkum a vývoj, využívá společnost Rigips know-how z celého světa, a je tedy špičkově připravena vyjít vstříc přáním a požadavkům svých zákazníků. Vysoké úspory nákladů na vytápění, popř. klimatizaci (úroveň izolace je možno si zvolit) Možnost zachování vzhledu členitých fasád (hlavně historických) V případě nutnosti je možno aplikovat pouze na vybranou část objektu (např. byt) Aplikace systému není závislá na klimatických podmínkách Montáž systému nevyžaduje stavbu lešení Zateplené stěny nejsou citlivé na poškození Snížení tloušťky a hmotnosti stěn u novostaveb Vysoká produktivita při montáži velkoformátových desek Není nutno používat kotvení hmoždinkami Možnost jednoduché aplikace také u suterénních místností Příznivý vliv na životní prostředí (snížení emisí při výrobě energie na vytápění) 2
3 vnitřní zateplení Stejně jako u jiných systémů je u vnitřního zateplení Rigitherm nutno dodržet požadavek na odborný návrh i provedení celého systému, zejména nejdůležitějších detailů. Při odborném návrhu systému Rigitherm je třeba vždy posoudit splnění základních požadavků ČSN : Součinitel prostupu tepla lehké obvodové stěny musí být U = < U N = 0,30 W.m -2.K -1 Konstrukce musí mít ve všech místech vnitřní povrchovou teplotu v zimním období vyšší, než je kritická teplota zvýšená o bezpečnostní přirážku: θ > si = θ si,n Omezení kondenzace uvnitř konstrukce a) zkondenzovaná vodní pára neohrozí funkci konstrukce (v oblasti kondenzace není možno použít materiály, které může vznikající kondenzát poškozovat např. dřevěné stropní trámy) b) roční množství zkondenzované vodní páry je menší než množství vypařené vodní páry c) roční množství zkondenzované vodní páry je menší než 0,5 kg.m -2.rok -1 Důležité detaily, kde je zeslabena tepelná izolace (tepelné mosty) a které je nutno vyřešit a posoudit: napojení stropu, vnitřních stěn a příček, okenních otvorů předměty procházející přes tepelnou izolaci (zejména kovové) instalační rozvody zapuštěné do tepelné izolace (krabice elektroinstalace, rozvod vody apod.) Součástí projektu vnitřního zateplení je posouzení dalších souvisejících otázek, jako např.: teplotní stability v zimním a letním období (např. letní stínění oken) technologických možností provádění celkových finančních nákladů Význam tepelných izolací neustále roste V rámci celosvětového zvyšování cen energií se stále větší pozornost obrací na snižování jejich spotřeby. Jednou z nejefektivnějších cest je použití účinných tepelných izolací. Bylo prokázáno, že kvalitní tepelnou izolací budov je možno snížit spotřebu energie na vytápění až o 60%, u nízkoenergetických domů až o 90% oproti stávající výstavbě. Přitom ekonomická návratnost investic se pohybuje od několika měsíců do několika let. V nových evropských předpisech se tak setkáváme s účinnými tepelnými izolacemi ve výrazně zvýšených tloušťkách (běžně mm). Optimálním řešením je vytvoření souvislé tepelně izolační obálky budovy bez tepelných mostů. Díky výborným vlastnostem a nízkým pořizovacím nákladům je pěnový polystyren materiálem, bez něhož v současnosti není možné energeticky hospodárné a cenově dostupné stavění. Základní rozměry a vlastnosti desek Rigitherm Desky se vyrábějí v základním rozměru mm x mm v tloušťkách mm (viz Ceník Rigips). Tepelný odpor a součinitel prostupu tepla vybraných desek Rigitherm Označení Rigitherm 50 Rigitherm 60 Rigitherm 80 Rigitherm 100 Rigitherm 120 Rigitherm 140 Rigitherm 160 Rigitherm 180 Rigitherm 200 Tloušťka (SDK+EPS) Tepelný odpor R [(m 2.K)/W] Součinitel prostupu tepla U [W/(m 2.K)] 12, , , , , , , , , ,30 1,55 2,05 2,55 3,05 3,55 4,05 4,55 5,05 0,68 0,58 0,45 0,37 0,31 0,27 0,24 0,21 0,19 Pozn.: Desky Rigitherm obsahují elastifikovaný polystyren λ D = 0,040 W/m.K s dynamickou tuhostí < = 10 MPa/m. Dimenzování EPS pro stěny dle ČSN Doporučené tepelné izolace dle ČSN Stěnová konstrukce lehká (100 kg/m 2 a méně) Stěnová konstrukce těžká (nad 100 kg/m 2 ) Součinitel prostupu tepla U N [W/(m 2.K)] Doporučené normové hodnoty Tepelný odpor konstrukce R N [(m 2.K)/W] Odpovídající tloušťka izolace d [mm] Součinitel prostupu tepla U N [W/(m 2.K)] Požadované normové hodnoty Tepelný odpor konstrukce R N *) [(m 2.K)/W] Odpovídající tloušťka izolace d [mm] 0,20 4, ,30 3, ,25 3, ,38 2,
4 Základní tepelně-technické posouzení konstrukčního systému ze skořepinových betonových tvárnic 500 x 200 x 200 mm a vnitřního zateplení Rigitherm Skladba posuzované stěnové konstrukce vybraných detailů (od interiéru): Systém zateplení Rigitherm 120, 150, 180 (sádrokarton Rigips RB tl. 12,5 mm + polystyren (EPS) Rigips tl. 120/150/180 mm) Betonová zdicí skořepinová tvárnice tl. 200 mm Omítka tloušťky 20 mm Pozn.: Systém Rigitherm pro běžné obytné budovy neobsahuje parozábranu, desky SDK a EPS jsou lepeny PUR lepidlem v pruzích. Zdivo ze skořepinových betonových tvárnic tepelná vodivost stěn tvárnice λ = 1,3 W.m -1.K -1 faktor difuzního odporu stěn tvárnice μ = 24,7 tepelná vodivost vzduchových dutin byla určena výpočtem podle ČSN EN ISO 6946, faktor difuzního odporu μ = 1. Ekvivalentní tepelná vodivost zdiva tl. 200 mm λ e = 0,66 W.m -1.K -1. Ekvivalentní faktor difuzního odporu zdiva tl. 200 mm μ e = 9,6. Pozn.: Ekvivalentní vlastnosti zdiva ze skořepinových tvárnic byly stanoveny výpočtem podle teplot a částečných tlaků vodní páry. Obr. 1: Oblast kondenzace vodní páry v konstrukci při venkovní teplotě -15 C Výsledky posouzení 1/ Skladba konstrukce Vnitřní povrchová teplota θ si = 18,3 C pro zateplení Rigitherm 120 θ si = 18,8 C pro zateplení Rigitherm 150 θ si = 19,1 C pro zateplení Rigitherm 180 Zateplení Rigitherm 120 Součinitel prostupu tepla U = 0,31 W.m -2.K -1 pro zateplení Rigitherm 120 U = 0,25 W.m -2.K -1 pro zateplení Rigitherm 150 U = 0,22 W.m -2.K -1 pro zateplení Rigitherm 180 V konstrukci dochází při venkovní teplotě nižší než +5 C (včetně) ke kondenzaci vodní páry v zóně zobrazené na obr. 1. Za rok v konstrukci zkondenzuje podle metodiky ČSN EN ISO celkem 0,522 kg.m -2 vodní páry pro zateplení Rigitherm 120 0,414 kg.m -2 vodní páry pro zateplení Rigitherm 150 0,337 kg.m -2 vodní páry pro zateplení Rigitherm 180 Zateplení Rigitherm 150 Všechny hodnocené konstrukce splní ve své ploše (tj. mimo napojení na jiné konstrukce a výplně otvorů) požadavky ČSN na vnitřní povrchovou teplotu. Požadavky ČSN na součinitele prostupu tepla splní pouze varianty se silnějším zateplením Rigitherm 150 a 180. Požadavky ČSN na difuzi vodní páry splní opět pouze varianty se silnějším zateplením Rigitherm 150 a a to za předpokladu, že použité betonové tvárnice a polystyren odolávají působení zvýšené vlhkosti a že v zóně kondenzace nebudou umístěny žádné materiály či rozvody, které by zvýšená vlhkost mohla ohrozit. Zateplení Rigitherm 180 4
5 2/ Posouzení 2D detailu styku stěny a stropní konstrukce Výpočtem metodou konečných prvků s pomocí programu Area 2005 byla stanovena nejnižší vnitřní povrchová teplota na tomto detailu ve výši: 15,2 C pro zateplení Rigitherm ,6 C pro zateplení Rigitherm ,0 C pro zateplení Rigitherm 180 Vypočtená teplota je ve všech případech vyšší než požadovaná nejnižší vnitřní povrchová teplota podle ČSN při nepřerušovaném vytápění (14,1 C). Hodnocený detail splní požadavek ČSN na vnitřní povrchovou teplotu. Obr. 2: Detail napojení stěny a stropu Obr. 3: Průběh izotermy 14,1 C (požadavek ČSN ) a rozložení teplotních polí v detailu PVC Cementový potěr PE folie Žb deska 300 mm Vzduch. vrstva 50 mm SDK 15 mm PVC Cementový potěr PE folie Žba deska 300 mm Vzduch. vrstva 50 mm SDK 15 mm PVC Cementový potěr PE folie Žb deska 300 mm Vzduch. vrstva 50 mm SDK 15 mm 15,2 C 15,6 C 16,2 C Prostý beton ve věncovce Prostý beton ve věncovce Prostý beton ve věncovce Zateplení Rigitherm 120 Zateplení Rigitherm 150 Zateplení Rigitherm 180 Obr. 4: Oblast kondenzace vodní páry v detailu Zateplení Rigitherm 120 Zateplení Rigitherm 150 Zateplení Rigitherm 180 V detailu dochází při venkovní návrhové teplotě -15 C k dosti rozsáhlé kondenzaci vodní páry v zóně zobrazené na obrázku 4. Z grafického výstupu je zřejmé, že ke kondenzaci dochází prakticky v celém rozsahu zdiva a částečně i v tepelné izolaci. Výrazná kondenzační zóna je také v ukončení stropní desky. V zóně kondenzace nesmí být opět umístěny žádné materiály či rozvody, které by zvýšená vlhkost mohla ohrozit (např. dřevěná zhlaví stropních trámů). 5
6 3/ Posouzení 3D detailu styku stěny, vnitřní stěny a stropu Obr. 7: Průběhy izotermy 14,1 C (požadavek ČSN ) u vnitřního zateplení Rigitherm Obr. 5: Detail napojení nosné stěny Nejnižší vnitřní povrchová teplota na tomto detailu: 14,5 C pro zateplení Rigitherm ,8 C pro zateplení Rigitherm ,0 C pro zateplení Rigitherm 180. Vypočtená teplota je ve všech případech vyšší než požadovaná nejnižší vnitřní povrchová teplota podle ČSN při nepřerušovaném vytápění (14,1 C). Hodnocený detail splní požadavek ČSN na vnitřní povrchovou teplotu.. Podmínkou splnění požadavku je použití oboustranného ztraceného bednění z desek Lignospur tl. 45 mm (EPS 40 mm + cementovláknitá deska 5 mm) v horním a spodním rohu ve styku vnitřní a vnější stěny podle obrázku 6. Pohledová plocha ztraceného bednění musí být alespoň 500 x 400 mm (v pořadí šířka / výška). 14,5 C Zateplení Rigitherm 120 Ztracené bednění Lignospur 45 mm v pohledové ploše 500/400 mm Obr. 6: Umístění ztraceného bednění Závěr: Uvedené výsledky konkrétního řešení vnitřního zateplení potvrzují dlouholeté francouzské zkušenosti. Z výsledků je patrné, že při odborném návrhu a provedení konstrukce vyhovuje současným požadavkům platné ČSN Pro nejmenší tloušťku zateplení Rigitherm 120 konstrukce nesplní požadavky ČSN na difuzi vodní páry. Pro větší tloušťky zateplení Rigitherm 150 a Rigitherm 180 konstrukce požadavky ČSN na difuzi vodní páry splní. Použité zdivo a tepelná izolace musí odolávat zvýšené (a periodicky kolísající) vlhkosti včetně jejího zamrzání. 14,8 C Zateplení Rigitherm 150 Posouzení vzorové stěnové konstrukce provedl Dr. Ing. Zbyněk Svoboda z hlediska požadavků ČSN (2002) s pomocí programů Area 2005, Teplo 2004 a Cube3D Parametry vzduchu v interiéru byly ve výpočtu uvažovány podle ČSN a ČSN pro nejčastější bytové a občanské stavby, tj. návrhová teplota vnitřního vzduchu 21 C a relativní vlhkost 50% (podle ČSN z roku 2002). Návrhová teplota vnějšího vzduchu v zimním období: -15 C (tato teplota se podle ČSN používá pro většinu území ČR). Pro výpočet bilance vodní páry podle ČSN EN ISO byly uvažovány průměrné měsíční parametry vzduchu pro Prahu podle údajů ČHMÚ. Tepelné odpory při přestupu tepla byly uvažovány v souladu s ČSN podle typu výpočtu. Pro hodnocení součinitele prostupu tepla a lineárního činitele prostupu tepla byl použit tepelný odpor při přestupu na vnitřní straně 0,13 m 2.K.W -1 a na vnější straně 0,04 m 2.K.W -1. Pro hodnocení vnitřní povrchové teploty a kondenzace vodní páry byl použit tepelný odpor při přestupu na vnitřní straně 0,25 m 2.K.W -1 a na vnější straně 0,04 m 2.K.W -1. 6
7 Postup montáže vnitřního zateplení Rigitherm 1) Pro úspěšné lepení desek Rigitherm musí být splněno několik předpokladů: stabilita podkladu (nesmějí se vyskytovat živé praskliny) soudržnost povrchu zamezení vnikání vlhkosti (podklad musí být suchý a nezmrzlý) omezená sprašnost a savost podkladu (podklady s vyšší savostí nebo sprašné podklady je nutno ošetřit použitím přípravku Rikombi-Grund) sklovitě hladké povrchy lze pro lepení přizpůsobit aplikací speciálního nátěru Rikombi-Kontakt teplota podkladu i prostředí: min. +5 C Vybrané fáze montáže vnitřního zateplení Rigitherm 2) Lepicí tmel Rifix se po nasypání do vody míchá, nejlépe pomocí silné pomaloběžné vrtačky s míchací metlou. Je nutno dbát na správnou konzistenci tmelu. Doba zpracovatelnosti je minimálně 45 minut od rozmíchání. Pozor: Pro přípravu tmelu je nutno použít zcela čisté nářadí i nádobu. Vnitřní kout Přiložit natěsno Obr. 9: Detail provedení nároží Odříznout sádrokartonovou desku Odříznout izolační vrstvu Vnější roh Přiložit natěsno Formátování desky 3) Tmel se nanáší na rub desek opláštění ve formě terčů. Tyto terče jsou uspořádány do třech řad při podélných hranách desky a v podélné ose desky. Vzdálenost jednotlivých terčů v řadě je cca cm. Tloušťka terčů je v rozmezí mm. Alternativně lze nanést lepicí tmel na podkladní povrch. Tento postup je výhodný při lepení na starou nesoudržnou omítku, kdy polohu jednotlivých terčů je nutno předem rozměřit na Obr. 8: Nanesení lepicího tmelu 4) Pro opláštění se použijí desky, jejichž délka je o cca mm kratší než světlá výška místnosti. Takto upravené desky jsou po nanesení terčů lepicího tmelu Rifix osazovány ke stěně na podkladky o tl. cca 10 mm, takže u podlahy i stropu zůstane mezera cca 10 mm vhodná pro optimální rovnání desek a odvětrání vlhkosti z lepicího tmelu. Konečné vyrovnání desek se provede pomocí srovnávacích latí a poklepáváním gumovou palicí. Doba tvrdnutí lepidla je závislá na teplotě a vlhkosti. Doporučená technologická přestávka pro vyzrání lepicího tmelu je dle konkrétních podmínek 12 až 24 hodin. Na rozdíl od šroubovaných sádrokartonových konstrukcí se nemusí vystřídat podélná hrana desky se svislou hranou otvoru. Dilataci je nutno provést jen v místě dilatace podkladní konstrukce. Při aplikaci desek Rigitherm se doporučuje použít k jejich dělení jemnozubou pilku. 5) Tmelení spár se provede stejně jako u běžných sádrokartonových konstrukcí (viz Tmely a tmelení v suché vnitřní výstavbě). Po vyschnutí lepicího tmelu je rovněž nutno provést zapěnění odvětrávacích mezer u podlahy a stropu PUR pěnou. Tím dojde k dokonalému utěsnění detailu bez vzniku výrazného tepelného mostu. S ohledem na tepelně-izolační vlastnosti a zamezení kondenzace je doporučeno těsnit i spáry mezi jednotlivými deskami Rigitherm např. nanesením akrylátového tmelu na hranu polystyrenové vrstvy desky Rigitherm, nebo v případě nespojitosti rovněž dopěněním PUR pěnou. Nanesení lepicího tmelu Nalepení desky Vyrovnání desky podklad a poté pouze tato místa před lepením oklepat, očistit a ošetřit penetračním nátěrem Rikombi-Grund. Spotřeba lepicího tmelu Rifix závisí na rovinnosti povrchu. Pohybuje se v rozmezí 4 8 kg/m 2. Při nebezpečí kondenzace vlhkosti a promrzání v úrovni lepicích terčů je nutné místo lepidla Rifix použít lepidlo na cementové bázi Webertherm (v sortimentu Rigips). Obr. 10: Dopěnění PUR pěnou Zatmelení spár 7
8 Přehled další technické literatury izolačních materiálů EPS Rigips Kontakty Tyto katalogy si můžete objednat na Rigips, s.r.o. Počernická 272/ Praha 10 - Malešice tel.: info@rigips.cz Centrum technické podpory telefon: mobil: ctp@rigips.cz Po-Čt: 8-16:30; Pá 8-15 červenec 2007
Rigips. Rigitherm. Systém vnitřního zateplení stěn. Vnitřní zateplení Rigitherm
Vnitřní zateplení Rigitherm Rigips Rigitherm Systém vnitřního zateplení stěn 2 O firmě Rigips, s.r.o. je dceřinnou společností nadnárodního koncernu BPB - největšího světového výrobce sádrokartonu a sádrových
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
13. ZATEPLENÍ OBVODOVÝCH STĚN Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
HELUZ Family 2in1 důležitá součást obálky budovy
25.10.2013 Ing. Pavel Heinrich 1 HELUZ Family 2in1 důležitá součást obálky budovy Ing. Pavel Heinrich Technický rozvoj heinrich@heluz.cz 25.10.2013 Ing. Pavel Heinrich 2 HELUZ Family 2in1 Výroba cihel
Tepelnětechnický výpočet kondenzace vodní páry v konstrukci
Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově
Montážní příručka sádrokartonáře
Montážní příručka sádrokartonáře Milí sádrokartonáři, SLOVO ÚVODEM právě držíte v rukou MONTÁŽNÍ PŘÍRUČKU SÁDROKARTONÁŘE soubor technologických postupů, metod a úkonů vedoucích ke správné montáži konstrukcí
2.1.3. www.velox.cz TECHNICKÉ VLASTNOSTI VÝROBKŮ
Podrobné technické vlastnosti jednotlivých výrobků jsou uvedeny v následujících přehledných tabulkách, řazených podle jejich použití ve stavebním systému VELOX: desky (VELOX WS, VELOX WSD, VELOX WS-EPS)
ZÁKLADNÍ PĚTIDENNÍ ŠKOLENÍ
ZÁKLADNÍ PĚTIDENNÍ ŠKOLENÍ Učební plán: 1. Den: 6 hodin 1) Zahájení Představení firmy Rigips, dceřinné společnosti největšího světového výrobce sádrokartonu nadnárodního koncernu Saint-Gobain. Historie
SVISLÉ NOSNÉ KONSTRUKCE TEPELNĚ IZOLAČNÍ VLASTNOSTI STĚN
2.2.2.1 TEPELNĚ IZOLAČNÍ VLASTNOSTI STĚN Základní vlastností stavební konstrukce z hlediska šíření tepla je její tepelný odpor R, na základě něhož se výpočtem stanoví součinitel prostupu tepla U. Čím nižší
SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům
Klasický rodinný dům pro tři až čtyři obyvatele se sedlovou střechou a obytným podkrovím. Obvodové stěny vystavěny ze škvárobetonových tvárnic tl. 300 mm, šikmá střecha zateplena mezi krokvemi. V rámci
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z keramických tvarovek CDm tl. 375 mm, střecha je sedlová s obytným podkrovím. Střecha je sedlová a zateplena
Termografická diagnostika pláště objektu
Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: BD Ulice: Družstevní 279 PSČ: 26101 Město: Příbram Stručný popis budovy
Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům. Obvodové stěny jsou vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis. Střecha je pultová bez. Je provedeno
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam
Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav
Obsah: Úvod... 1 Identifikační údaje... 1 Seznam podkladů... 2 Tepelné technické posouzení... 3 Energetické vlastnosti objektu... 10 Závěr... 11 Příloha č.1: Tepelně technické posouzení konstrukcí obálky
Obr. 3: Řez rodinným domem
Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis.
SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU
Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z pórobetonových tvárnic tl. 250 mm, konstrukce stropů provedena z železobetonových dutinových
Icynene chytrá tepelná izolace
Icynene chytrá tepelná izolace Šetří Vaše peníze, chrání Vaše zdraví Icynene šetří Vaše peníze Využití pro průmyslové objekty zateplení průmyslových a administrativních objektů zateplení novostaveb i rekonstrukcí
SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z pórobetonových tvárnic tl. 250mm. Střecha je sedlová se m nad krokvemi. Je provedeno fasády kontaktním zateplovacím
Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Základní škola Slatina nad Zdobnicí Ulice: Slatina nad zdobnicí 45 PSČ:
OBVODOVÉ KONSTRUKCE Petr Hájek 2015
OBVODOVÉ KONSTRUKCE OBVODOVÉ STĚNY jednovrstvé obvodové zdivo zdivo z vrstvených tvárnic vrstvené obvodové konstrukce - kontaktní plášť - skládaný plášť bez vzduchové mezery - skládaný plášť s provětrávanou
Technologie rychlé výstavby
Technologie rychlé výstavby Velkoformátové produkty Ytong Jumbo Ytong příčkový panel Silka Tempo Ytong Jumbo Statické vlastnosti Štíhlostní poměr velkoformátového zdiva hef / tef < 27 3500 / 250 =
Termografická diagnostika pláště objektu
Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO
Minerální izolační deska Pura. Přirozená dokonalost vnitřní zateplení přírodním materiálem
Minerální izolační deska Pura Přirozená dokonalost vnitřní zateplení přírodním materiálem Vnitřní zateplení Šetří kapsu a životní prostředí Aby šlo vytápění a úspora ruku v ruce Energie citelně zdražuje,
TEPELNĚIZOLAČNÍ DESKY MULTIPOR
TEPELNĚIZOLAČNÍ DESKY MULTIPOR Kalcium silikátová minerální deska Tvarová stálost Vynikající paropropustnost Nehořlavost Jednoduchá aplikace Venkovní i vnitřní izolace Specifikace Minerální, bezvláknitá
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com
Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa jan.kurc@knaufinsula;on.com Zateplená dřevostavba Prvky které zásadně ovlivňují tepelně technické vlastnos; stěn - Elementy nosných rámových konstrukcí
Školení DEKSOFT Tepelná technika 1D
Školení DEKSOFT Tepelná technika 1D Program školení 1. Blok Požadavky na stavební konstrukce Okrajové podmínky Nové funkce Úvodní obrazovka Zásobník materiálů Uživatelské skupiny Vlastní katalogy Zásady
Detail nadpraží okna
Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé
Tepelně technické vlastnosti zdiva
Obsah 1. Úvod 2 2. Tepelná ochrana budov 3-4 2.1 Závaznost požadavků 3 2.2 Budovy které musí splňovat normové požadavky 4 ČSN 73 0540-2(2007) 5 2.3 Ověřování požadavků 4 5 3. Vlastnosti použitých materiálů
SF2 Podklady pro cvičení
SF Podklady pro cvičení Úloha 7 D přenos tepla riziko růstu plísní a kondenzace na vnitřním povrchu konstrukce Ing. Kamil Staněk 11/010 kamil.stanek@fsv.cvut.cz 1 D přenos tepla 1.1 Úvodem Dosud jsme se
POSOUZENÍ KCÍ A OBJEKTU
PROTOKOL TEPELNĚ TECHNICKÉ POSOUZENÍ KCÍ A OBJEKTU dle ČSN 73 0540 Studentská cena ENVIROS Nízkoenergetická výstavba 2006 Kateřina BAŽANTOVÁ studentka 5.ročníku VUT Brno - fakulta stavební obor NAVRHOVÁNÍ
PS01 POZEMNÍ STAVBY 1
PS01 POZEMNÍ STAVBY 1 SVISLÉ NOSNÉ KONSTRUKCE 1 Funkce a požadavky Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb)
Návrh skladby a koncepce sanace teras
Návrh skladby a koncepce sanace teras Bytový dům Kamýcká 247/4d 160 00 Praha - Sedlec Zpracováno v období: Březen 2016 Návrh skladby a koncepce sanace střešního pláště Strana 1/8 OBSAH 1. VŠEOBECNĚ...
P01 ZKRÁCENÝ DOKUMENT NÁRODNÍ KVALITY ADMD ZJEDNODUŠENÁ VERZE DNK PRO SOUTĚŢ DŘEVĚNÝ DŮM 2009
P01 ZKRÁCENÝ DOKUMENT NÁRODNÍ KVALITY ADMD ZJEDNODUŠENÁ VERZE DNK PRO SOUTĚŢ DŘEVĚNÝ DŮM 2009 Asociace dodavatelů montovaných domů CENTRUM VZOROVÝCH DOMŮ EDEN 3000 BRNO - VÝSTAVIŠTĚ 603 00 BRNO 1 Výzkumný
s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8
s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y
POKYNY PRO MONTÁŽ vnějších tepelně izolačních kontaktních systémů stomixtherm alfa a stomixtherm beta
Stránka 1 z 7 Tento dokument slouží jako předpis k provádění (montáži) (dále jen ETICS nebo systémy) stomixtherm alfa s tepelnou izolací z pěnového polystyrenu (EPS) a stomixtherm beta s tepelnou izolací
WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika
WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních
Podklad musí být hladký, čistý a bez nerovností. Izolaci nelze aplikovat, pokud jsou na ploše výstupky, otřepy, hřebíky, šrouby, kamínky atd.
λ Izolace vakuová má využití v místech, kde není dostatek prostoru pro vložení klasické tepelné izolace. Je vhodná i do skladeb podlah s podlahovým vytápěním. Používá se ve stavebnictví (v nezatížených
PŘEKLADY OTVORY V NOSNÝCH STĚNÁCH
PS01 POZEMNÍ STAVBY 1 PŘEKLADY OTVORY V NOSNÝCH STĚNÁCH Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz OTVORY V NOSNÝCH STĚNÁCH kamenné překlady - kamenné (monolitické) nosníky - zděné klenuté překlady
Kontrolní a zkušební plán
Kontrolní a zkušební plán Montáže kontaktního zateplovacího systému weber therm v souladu s ČSN 73 29 01 Provádění vnějších tepelně izolačních kompozitních systémů (ETICS) Stavba : Prováděcí firma : Datum
Icynene. chytrá tepelná izolace. Šetří Vaše peníze, chrání Vaše zdraví
Icynene chytrá tepelná izolace Šetří Vaše peníze, chrání Vaše zdraví Icynene chytrá izolační pěna z Kanady, která chrání teplo Vašeho domova Co je to Icynene Icynene [:ajsinýn:] je stříkaná izolační pěna
Lineární činitel prostupu tepla
Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel
NOVINKA. Nejúčinnější způsob jak ušetřit energii. Podkrovní prvky FERMACELL P+D. Profi-tip FERMACELL:
Profi-tip FERMACELL: Podkrovní prvky FERMACELL P+D Nejúčinnější způsob jak ušetřit energii Nový podkrovní prvek FERMACELL P+D splňuje požadavky na součinitel prostupu tepla stropu pod nevytápěnou půdou
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2015 obvodová stěna - Porotherm Název úlohy : Zpracovatel
Zlepšení tepelněizolační funkce ETICS. Ing. Vladimír Vymětalík
Zlepšení tepelněizolační funkce ETICS Ing. Vladimír Vymětalík Způsoby řešení Provedení nového ETICS na původní podkladní konstrukci po předchozí demontáži kompletního stávajícího ETICS Provedení nového
Příloha 2 - Tepelně t echnické vlast nost i st avební konst rukce. s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y
s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Příloha 2 - Tepelně t echnické vlast nost i st avební konst rukce l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. DLE VYHL.Č. 78/2013 Sb. RODINNÝ DŮM. čp. 24 na stavební parcele st.č. 96, k.ú. Kostelík, obec Slabce,
Miloslav Lev autorizovaný stavitel, soudní znalec a energetický specialista, Čelakovského 861, Rakovník, PSČ 269 01 mobil: 603769743, e-mail: mlev@centrum.cz, www.reality-lev.cz PRŮKAZ ENERGETICKÉ NÁROČNOSTI
POPIS HODNOTA JEDNOTKA PRÁVNÍ PŘEDPIS 3x Ekopanel E60 rozměry: tloušťka šířka délka. 58 (tolerance +2 mm) 1200,
Popis OBVODOVÁ STĚNA EKO3 - obklad obvodové nosné dřevěné rámové konstrukce Skladba tl. 380 - dřevovláknitá deska tl. 20 - KVH hranoly + tepelná izolace tl. 140 - dřevěný rošt tl. 40 Doporučené použití
EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY ECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu Parametry pasivní výstavby Investice do Vaší
TECHNICKÝ LIST. na výrobek: vnější tepelně izolační kompozitní systém s omítkou. weber therm TWINNER. s izolantem z desek Isover TWINNER
TECHNICKÝ LIST na výrobek: vnější tepelně izolační kompozitní systém s omítkou weber therm TWINNER s izolantem z desek Isover TWINNER Divize Weber, Saint-Gobain Construction Products CZ a.s. Divize WEBER
Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie
Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie Téma vývoje energetiky budov je v současné době velmi aktuální a stává se společenskou záležitostí, neboť šetřit
FERMACELL Vapor Bezpečné řešení difúzně otevřených konstrukcí
FERMACELL Vapor Bezpečné řešení difúzně otevřených konstrukcí Úspora času a nákladů: Parobrzdná deska FERMACELL Vapor bezpečné řešení difúzně otevřených konstrukcí Neprůvzdušnost (vzduchotěsnost) pláště
TEPELNĚ TECHNICKÉ POSOUZENÍ
TEPELNĚ TECHNICKÉ POSOUZENÍ BD Obsah: 1. Zadání... 2 2. Seznam podkladů... 2 2.1. Normy a předpisy... 2 2.2. Odborný software... 2 3. Charakteristika situace... 2 4. Místní šetření... 2 5. Obecné podmínky
Pozemní stavitelství. Nenosné stěny PŘÍČKY. Ing. Jana Pexová 01/2009
Pozemní stavitelství Nenosné stěny PŘÍČKY Ing. Jana Pexová 01/2009 Doporučená a použitá literatura Normy ČSN: ČSN EN 1991-1 (73 00 35) Zatížení stavebních konstrukcí ČSN 73 05 40-2 Tepelná ochrana budov
Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Bytový dům čp. 357359 Ulice: V Lázních 358 PSČ: 252 42 Město: Jesenice Stručný
Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie
Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie Téma vývoje energetiky budov je v současné době velmi aktuální a stává se společenskou záležitostí, neboť šetřit
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2014 EDU stěna obvodová Název úlohy : Zpracovatel : Jan
SVISLÉ NOSNÉ KONSTRUKCE
KPG SVISLÉ NOSNÉ KONSTRUKCE Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb) Požadavky a principy konstrukčního řešení Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz
Řešení pro cihelné zdivo. Navrhujeme nízkoenergetický a pasivní dům
Řešení pro cihelné zdivo Navrhujeme nízkoenergetický a pasivní dům Řešení pro cihelné zdivo Úvod Nízkoenergetický a pasivní cihlový dům Porotherm Moderní dům s ověřenými vlastnostmi Při navrhování i realizaci
Zamezení vzniku tepelných mostů. Zateplení bez kompromisu Zateplení na 100 %
Zamezení vzniku tepelných mostů Zateplení bez kompromisu Zateplení na 100 % Řešení chladu, vlhkosti, plísně okolo oken, dveří a kotvení v zateplení fasády Správně provedné detaily v okolí oken a dveří
Popis Hodnota Jednotka Právní předpis. mm mm mm
TECHNICKÝ LIST - APLIKACE Příčka E1 samonosná jednoduchá příčka bez povrchové úpravy pro nenosné účely k trvalému zabudování do staveb Příčka E1 samonosná jednoduchá příčka bez povrchové úpravy pro nenosné
Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb
Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ZÁSADY NÁVRHU principy pro skladbu
Nosný roletový překlad HELUZ pro zajištění Vašeho soukromí WWW.HELUZ.CZ. Komplexní cihelný systém. 1 Technické změny vyhrazeny
E L U Z Nosný roletový překlad HELUZ pro zajištění Vašeho soukromí Komplexní cihelný systém 1 Technické změny vyhrazeny 6) 1) 2) 5) 4) 2 Technické změny vyhrazeny VÝHODY ROLETOVÉHO PŘEKLADU HELUZ 1) Překlad
Nejnižší vnitřní povrchová teplota a teplotní faktor
Nejnižší vnitřní povrchová teplota a teplotní faktor Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
Stavební stěnové díly
Stavební stěnové díly 3 Představení společnosti MFC - MORFICO s.r.o. byla založena v roce 1991, jako stavební firma se specializací na povrchové úpravy průmyslových betonových podlah a ploch. Po dobu svého
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE podle ČSN EN ISO 13788, ČSN EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2009 SO1 Název úlohy : Zpracovatel : Josef Fatura Zakázka : VVuB
Systém pro předsazenou montáž oken a dveří
Systém pro předsazenou montáž oken a dveří Spolehlivé upevnění oken na vnějším líci zdiva v zateplení bez tepelných mostů EJOT Kvalita spojuje Impressum Vydavatel: EJOT CZ, s.r.o. Zděbradská 65 251 01
1. Všeobecné informace: 2. Předpisy: 3. Výroba: 4. Zemní práce. 5. Základy a základová deska. Provedení: Standard Hrubá stavba plus
Provedení: Standard Hrubá stavba plus Platnost: 1.1.2010-31.12.2010 - technické změny vyhrazeny 1. Všeobecné informace: Standardní vybavení rodinných domů je jeho základní provedení v dodávce Stavba na
Návrhy zateplení střechy
Návrhy zateplení střechy Vstupní údaje pro výpočet: Návrhová venkovní teplota Tae: -15 C Návrhová relativní vlhkost vnějšího vzduchu Fie: 84% 21 C Návrhová relativní vlhkost vnitřního vzduchu Fii: 50%
Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost
Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.
Tepelná izolace soklu
Tepelná izolace soklu univerzální řešení pro jednovrstvé i vícevrstvé stěny Při návrhu i vlastním provádění detailu soklu dochází často k závažným chybám a to jak u jednovrstvých, tak u vícevrstvých zateplených
Posudek k určení vzniku kondenzátu na izolačním zasklení oken
Posudek k určení vzniku kondenzátu na izolačním zasklení oken Firma StaniOn s.r.o. Kamenec 1685 Bystřice pod Hostýnem Zkušební technik: Stanislav Ondroušek Telefon: 773690977 EMail: stanion@stanion.cz
Pracovní postup Cemix: Omítky se stěnovým vytápěním
Pracovní postup Cemix: Omítky se stěnovým vytápěním Pracovní postup Cemix: Omítky se stěnovým vytápěním Obsah 1 Použití... 3 2 Varianty vytápění stěn... 3 3 Tepelně technické podmínky... 3 4 Skladba systému...
Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 2. Ing. Michal Kraus, Ph.D. Katedra stavebnictví
Vysoká škola technická a ekonomická V Českých Budějovicích Energetický audit budov Seminář č. 2 Ing. Michal Kraus, Ph.D. Katedra stavebnictví Tepelná ochrana budov Přehled základních požadavků na stavební
STUDIE ENERGETICKÉHO HODNOCENÍ
CENTRUM STAVEBNÍHO INŽENÝRSTVÍ a.s. Autorizovaná osoba 212; Oznámený subjekt 1390; 102 00 Praha 10 Hostivař, Pražská 810/16 Certifikační orgán 3048 STUDIE ENERGETICKÉHO HODNOCENÍ Bytový dům: Sportovní
NG nová generace stavebního systému
NG nová generace stavebního systému pasivní domy A HELUZ nízkoenergetické domy B energeticky úsporné domy C D E F G cihelné pasivní domy heluz Víte, že společnost HELUZ nabízí Řešení pro stavbu pasivních
Zateplené šikmé střechy - funkční vrstvy a výsledné vlastnos= jan.kurc@knaufinsula=on.com
Zateplené šikmé střechy - funkční vrstvy a výsledné vlastnos= jan.kurc@knaufinsula=on.com Funkční vrstvy Nadpis druhé úrovně Ochrana před vnějšími vlivy Střešní kry=na Řádně odvodněná pojistná hydroizolace
EJOT upevnění pro zvláštní použití. Upevnění pro zvláštní případy
EJOT upevnění pro zvláštní použití Energetická sanace budov vyžaduje stále více pro zpracování tepelně izolačních systémů nestandartní řešení. Zvláště u starých fasád nebo podkladů se zásadními vadami
ZATEPLUJTE - EFEKTIVNĚ - CHYTŘE - MODERNĚ!
ZATEPLUJTE - EFEKTIVNĚ - CHYTŘE - MODERNĚ! Přednosti! Z jedné dózy lze přilepit až 14 ks polystyrenových desek Broušení a kotvení desek již po 2 hodinách od nalepení Vysoká úspora času viz. Časový harmonogram
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2011, ročník XI, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2011, ročník XI, řada stavební článek č. 23 Barbora SOUČKOVÁ 1 TEPELNĚ-TECHNICKÉ POSOUZENÍ SUTERÉNNÍ ČÁSTI PANELOVÉHO
Bytová výstavba cihelnou zděnou technologií vs. KS-QUADRO
Bytová výstavba cihelnou zděnou technologií vs. KS-QUADRO Systém KS-QUADRO = každý 10. byt navíc zdarma! 3.5.2008 Bytový dům stavěný klasickou zděnou technologií Bytový dům stavěný z vápenopískových bloků
TZB Městské stavitelsví
Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního
1. Všeobecné informace: 2. Předpisy: 3. Výroba: 4. Zemní práce. 5. Základy a základová deska. Provedení: Standard Hrubá stavba plus
Provedení: Standard Hrubá stavba plus Platnost: 1.1.2010-31.12.2010 - technické změny vyhrazeny 1. Všeobecné informace: Standardní vybavení rodinných domů je jeho základní provedení v dodávce Hrubá stavba.
Technologie staveb Tomáš Coufal, 3.S
Technologie staveb Tomáš Coufal, 3.S Co je to Pasivní dům? Aby bylo možno navrhnout nebo certifikovat dům jako pasivní, je třeba splnit následující podmínky: měrná roční potřeba tepla na vytápění je maximálně
SVISLÉ NOSNÉ KONSTRUKCE
SVISLÉ NOSNÉ KONSTRUKCE FUNKCE A POŽADAVKY Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb) SVISLÉ KONSTRUKCE Technologické a materiálové rozdělení zděné konstrukce
F.1.1 Technická zpráva
Zakázka číslo: 2010-10888-ZU F.1.1 Technická zpráva PROJEKT SNÍŽENÍ ENERGETICKÉ NÁROČNOSTI OBJEKTU Bytový dům Breitcetlova 880/9, Praha 10 Zpracováno v období: září 2010 Zpracoval: Ing. Marie Navrátilová
THERMANO TEPELNĚIZOLAČNÍ PANELY PIR
THERMANO TEPELNĚIZOLAČNÍ PANELY PIR VÍC NEŽ ALTERNARIVA PRO MINERÁLNÍ VLNU A POLYSTYREN Thermano je revolucí na trhu s tepelnou izolací. Jeden panel izoluje téměř dvakrát lépe než stejně tlustý polystyren
Nejčastěji realizujeme stavby, které se nazývají difúzně uzavřené.
Postup výstavby ZÁKLADOVÁ DESKA Dřevostavby od firmy Profi-Gips s.r.o. jsou stavěny zejména na konstrukci, která je kombinací základových pasů a železobetonové desky. Do podkladu je použito zhutněné kamenivo
TECHNICKÝ LIST ZDÍCÍ TVAROVKY
TECHNICKÝ LIST ZDÍCÍ TVAROVKY Specifikace Betonové zdící tvarovky jsou průmyslově vyráběny z vibrolisovaného betonu. Základem použitého betonu je cementová matrice, plnivo (kamenivo) a voda. Dále jsou
NPS. Nízkoenergetické a pasivní stavby. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích NPS Nízkoenergetické a pasivní stavby Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví
TECHNOLOGICKÝ LIST. Přehled konstrukcí. Technologie montáže. 1. Kovová konstrukce: 600 (625) 400 (417) 300 (313)
Konstrukce: Sádrokartonové stěny na CW 150 - Požární odolnost EI 60 - konstrukční výška v závislosti na roztečích CW profilů a druhu opláštění až 15,5 metru Přehled konstrukcí Kód Konstr. Opláštění Tloušťka
šíření hluku mezi jednotlivýmí prostory uvnitř budovy, např mezi sousedními byty, mezi jednotlivými hotelovými pokoji apod.
1 Akustika 1.1 Úvod VÝBORNÉ AKUSTICKÉ VLASTNOSTI Vnitřní pohoda při bydlení a při práci, bez vnějšího hluku, nebo bez hluku ze sousedních domů nebo místností se dnes již stává standardem. Proto je však
Technický list ETICS weber therm standard
Technický list ETICS weber therm standard 1. Popis výrobku a vymezení způsobu jeho použití ve stavbě: weber therm standard je vnější tepelně izolační kompozitní systém s omítkou s izolantem pěnového polystyrenu
ŽALUZIOVÝ KASTLÍK. Norma/předpis. Popis výrobku a použití. Důležitá upozornění
Systémové řešení Ytong pro bezproblémovou dodatečnou montáž venkovních žaluzií Vhodný pro většinu venkovních žaluzií na trhu, vyvíjeno s výrobci žaluzií Voděodolný, trvanlivý, neobsahuje žádné škodlivé
rozšířené uplatnění konstrukcí
rozšířené uplatnění konstrukcí Suché podlahy RigiStabil Nosné konstrukce dřevostaveb Suché podlahy RigiStabil s použitím sádrokartonových konstrukčních desek RigiStabil Skladby na trámovém stropě Skladby
ZATEPLUJTE RYCHLE + LEVNĚ = MODERNĚ!
ZATEPLUJTE RYCHLE + LEVNĚ = MODERNĚ! Přednosti! Z jedné dózy lze přilepit až 14 ks polystyrenových desek Broušení a kotvení desek již po 2 hodinách od nalepení Vysoká úspora času viz. Časový harmonogram
Ceresit CL 69 Ultra-Dicht. Systémové řešení hydroizolace pro konstrukce zatížené vlhkostí.
Ceresit CL 69 Ultra-Dicht Systémové řešení hydroizolace pro konstrukce zatížené vlhkostí. Rychlé a snadné zpracování, dokonale utěsněný podklad to je Ceresit CL 69 Ul Nikdy nebyly hydroizolační práce tak
VÝSTUP Z ENERGETICKÉHO AUDITU
CENTRUM STAVEBNÍHO INŽENÝRSTVÍ a.s. Autorizovaná osoba 212; Notifikovaná osoba 1390; 102 21 Praha 10 Hostivař, Pražská 16 / 810 Certifikační orgán 3048 VÝSTUP Z ENERGETICKÉHO AUDITU Auditovaný objekt: