MATEMATICKÁ TEORIE ROZHODOVÁNÍ
|
|
- Barbora Vacková
- před 9 lety
- Počet zobrazení:
Transkript
1 MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 2 Reprezentace a zpracování znalostí 1. dílčí téma: Reprezentace znalostí V polovině 70. let se začal v umělé inteligenci přesouvat důraz od hledání univerzálního algoritmu pro řešení široké třídy úloh k práci se specializovanými znalostmi z určité oblasti. Tento trend našel své vyjádření v expertních systémech. Expertní systém můžeme chápat jako inteligentní počítačový program, který užívá znalosti a inferenční procedury k řešení problémů, které jsou natolik obtížné, že pro své řešení vyžadují významnou lidskou expertízu. Znalosti nezbytné k činnosti plus použitá inferenční procedura mohou být chápány jako model expertízy nejlepších praktiků v oboru. 1.1 Základní pojmy Znalost je lidský odhad uložený v mysli, získaný pomocí zkušeností a interakcí s okolním prostředím. Znalost je fyzický, mentální nebo elektronický záznam o vztazích, o kterých věříme, že existují mezi skutečnými či imaginárními entitami, silami, jevy, Znalost je vnitřní náhled, porozumění a praktické know-how, které všichni ovládáme je to základní zdroj, který nám umožňuje chovat se inteligentně Znalosti: Explicitní: formalizované, artikulované a tedy sdílené. Implicitní: primárně skryté (v datech) ale potenciálně formalizovatelné a tedy i sdělitelné. Tacitní: nevědomé a nesdělitelné znalosti skryté v myslích jedinců expertů. Znalosti: Deklarativní: zachycující co platí (statické pravdy) Procedurální: zachycující jak postupovat při provádění nějakých akcí (usuzování) V klasickém pojetí je získávání znalostí (např. pro expertní systémy) založeno na získávání znalostí od expertů. Zpočátku mělo získávání znalostí podobu transferu znalostí: znalostní inženýr přebíral znalosti od experta a přímo je vkládal do expertního systému. Takto vytvářené báze znalostí jsou ale obtížně modifikovatelné a přenositelné. Nebývají v nich totiž rozlišeny statické znalosti, týkající se celé aplikační oblasti a znalosti vztahující se k řešení dané konkrétní úlohy. Proto dochází na přelomu 80. a 90. let ke změně pohledu na proces získávání znalostí. Tento proces začíná být chápan jako modelování znalostí, tedy jako tvorba přehledných a opakovaně použitelných modelů dané úlohy. Znalosti jsou tedy zachycovány nezávisle na odvozovacích mechanizmech a formalizmu reprezentace znalostí konkrétního expertního (znalostního) systému. Výhody tohoto přístupu jsou v zásadě dvojí: usnadnění vývoje aplikace: model vede tvůrce systému k lepšímu strukturování řešené úlohy, sdílení a opakované používání: pokud jsou modely založeny na standardizované terminologii, pak jsou srozumitelné nejen tvůrcům aplikace ale celé komunitě. 1
2 Nejnověji se ve znalostním modelování objevuje pojem ontologie. Tento pojem je (na rozdíl od filosofického pojetí, kde ontologie znamená nauku o bytí ) chápán jako označení domluvené terminologie pro určitou aplikační oblast, která umožňuje sdílení znalostí z této oblasti. Ontologie tedy umožňují formalizovat doménové znalosti: 1. Ontologie tvoří konceptuální popis znalostí hraje roli meta-úrovně definující, co a v jaké podobě může být ve znalostech obsaženo, 2. Ontologie by měla být sdílitelná neměla by být určena výhradně pro jedinou aplikaci. Předpokladem sdílitelnosti je přijetí daného způsobu konceptualizace v rámci širší komunity jako jistého standardu, 3. Ontologie je definovaná explicitně nejde o ústní dohodu, ale o informace zachycené v určitém dokumentu pomocí jistého jazyka. Existuje řada přístupů k reprezentování znalostí: pohled vzešlý z matematické logiky, vychází z toho, že inteligentní usuzování rovná se formální odvozování, typicky dedukce. Prostředky pro reprezentování znalostí zde vycházejí z výrokové resp. predikátové logiky. pohled opírající se o psychologický přístup, vidí usuzování jako typicky lidské chování. Prostředky reprezentování znalostí nabízené tímto přístupem jsou rámce a sémantické sítě. pohled vycházející z biologie vychází z toho, že klíčem k usuzování je architektura stroje založená na paralelním propojení velikého množství jednoduchých výpočetních jednotek. Nabízený formalismus jsou tedy neuronové sítě. pravděpodobnostní přístup propojuje logiku s neurčitostí. Na úrovni reprezentace znalostí našlo toto propojení svůj odraz v bayesovských sítích. pojetí vycházející z oblasti ekonomie se zaměřuje na otázku hodnot a preferencí. Je obvykle realizováno v systémech racionálních agentů. 1.2 Výroková logika Jazyk výrokové logiky je tvořen: výrokovými proměnnými.. a,b,c,..,p,q,r logickými konstantami..t, F (někdy se píše 1, 0 což je označení, které budeme používat) logickými spojkami (v pořadí dle priorit)..,,,, závorkami jakožto pomocnými symboly.. ( ) Jazyk umožňuje vytvářet formule: výrokové proměnné a logické konstanty jsou formule (tzv. atomické) jsou-li a formule, pak jsou formule i,,,, příkladem formule je tedy ( ) Pravdivostní hodnoty logických spojek ukazuje následující tabulka Tab. 1 Pravdivostní hodnoty základních logických spojek 2
3 1.3 Predikátová logika Na rozdíl od predikátové logiky, kde jednotlivé výroky byly chápány jako dále nestrukturované, nyní nás bude zajímat vnitřní struktura tvrzení, se kterými budeme pracovat. Tomu odpovídá i použitý jazyk, tvořený: proměnnými a konstantami (pro pojmenování objektů světa, o kterém chceme vypovídat), predikátovými symboly (pro označení relací mezi objekty), funkčními symboly (pro označení funkcí), logickými spojkami..,,,, kvantifikátory., Jazyk predikátové logiky opět umožňuje vytvářet formule, ale s vnitřní strukturou jednotlivých tvrzení. Základním výrazovým prostředkem predikátové logiky jsou termy. Termy jsou buď jednoduché (konstanty nebo proměnné), nebo složené (vzniklé aplikací funkce na termy, tedy např. věk(x)). Formule pak vytváříme podobným způsobem jako ve výrokové logice: atomická formule má tvar P(t 1,t 2,..,t n ), kde P je predikátový symbol a t i jsou termy jsou-li a formule, pak jsou formulemi i,,,,, x (x), x (x) Příkladem formulí jsou pak x opice(x) savec(x) ( >0)( >0) ( x) x - a < f(x) f(a) < 1.4 Pravidla Nejběžnější způsob reprezentování znalostí v expertních systémech je pomocí IF-THEN pravidel. Jde vlastně opět o reprezentaci znalostí založenou na matematické logice. Pravidla mohou být chápána dvojím způsobem; procedurálně: nebo deklarativně: JESTLIŽE situace PAK akce JESTLIŽE předpoklad PAK závěr kde situace, předpoklad a závěr jsou kombinace tvrzení o stavu světa. První (procedurální) interpretace je běžná v generativních expertních systémech; nastala-li příslušná situace, systém provede danou akci. Druhá interpretace odpovídá diagnostickým expertním systémům; je-li splněn příslušný předpoklad, systém odvodí daný závěr. Příkladem první interpretace je pravidlo z generativního systému R1/XCON (Obr. 1), příkladem druhé interpretace je pravidlo z diagnostického systému MYCIN (Obr. 2). IF The current context is assigning devices to Unibus models AND There is an unassigned dual-port disk drive AND The type of controller it requires is known AND There are two such controllers, neither of which has any devices assigned to it, and The number of devices that these controllers can support is known THEN Assign the disk drive to each of the controllers, AND Note that the two controllers have been associated and that each supports one drive Obr. 1 Pravidlo ze systému R1/XCON 3
4 IF The site of the culture is blood, and The identity of the organism is not known with certainty, and The stain of the organism is gramneg, and The morfology of the organism is rod, and The patient has been seriously burned THEN There is a weakly suggestive evidence (.4) that the identity of the organism is pseudomonas 1.5 Sémantické sítě Obr. 2 Pravidlo ze systému MYCIN Sémantické sítě byly navrženy R. Quillianem v druhé pol. 60. let v rámci prací na porozumění přirozenému jazyku jako model asociativní paměti člověka. Později byly zobecněny jako nástroj reprezentování znalostí v libovolné oblasti. Obr. 3 Sémantická síť pro reprezentování významu slov přirozeného jazyka Sémantická síť umožňuje popisovat realitu jako objekty, které jsou navzájem v nějakých vztazích (relacích). Sémantická síť má přirozenou grafovou reprezentaci; objekty jsou uzly a relace mezi nimi jsou hrany v grafu. Relace v sémantických sítích představují základní prostředek pro vyjadřování znalostí. Obr. 4 ukazuje příklad sémantické sítě, která definuje bránu složenou ze tří kostek. Obr. 4 Příklad sémantické sítě 4
5 1.6 Rámce Rámce byly navrženy v polovině 70. let Marvinem Minskym z MIT jako prostředek pro reprezentaci znalostí. Rámce v původní představě měly umožňovat reprezentovat stereotypní situace. Práce s rámci měla být založena na postupném vyplňování stránek, do kterých se zapisují hodnoty položek (vlastnosti). Přitom se hojně využívá předdefinovaných hodnot. Rámce dobře umožňují vyjádřit statické znalosti, tedy nějakou hierarchii pojmů (s použitím položky a_kind_of, zkráceně ako) nebo dekompozici (s použitím položky part_of). Vazba mezi rámci se dá (podobně jako u sémantických sítí) znázornit grafem. Na rozdíl od sémantických sítí ale mají uzly v grafu (rámce) vnitřní strukturu. V současné době rámce pronikly do programovacích jazyků. Zde se pro ně používá název objekty; příslušný styl programování využívající objekty se pak nazývá objektově orientované programování. Obr. 5 Příklad hierarchie rámců Formalizmus rámců umožňuje zachycovat znalosti v podobě tzv. případů, tedy typických úloh z dané aplikační oblasti, úspěšně řešených v minulosti. 5
6 2. dílčí téma: Zpracování znalostí Používané metody zpracování znalostí jsou úzce spjaty s příslušným způsobem reprezentace. 2.1 Výroková logika Pravdivost formulí Pravdivost formulí se vyhodnocuje na základě přiřazení pravdivostních hodnot (konstant 1 a 0) proměnným (tzv. interpretace). Z hlediska jejich pravdivosti můžeme formule dělit na: tautologie formule, které jsou pravdivé pro libovolné přiřazení (např. ) kontradikce (nesplnitelné formule) formule, které nejsou pravdivé pro žádné přiřazení (např. ) splnitelné formule formule, pro které existuje interpretace taková, že formule je pravdivá Pro zjišťování pravdivosti (splnitelnosti) formulí lze použít několik postupů. Tabulka pravdivostních hodnot Vyčíslíme pravdivostní hodnotu formule pro všechny možné interpretace (viz příklad tabulky pravdivostních hodnot pro formuli ( ) ). Nevýhodou tohoto přístupu je, že pro n proměnných obsažených ve formulí existuje 2 n interpretací. ( ) Tab. 2 Tabulka pravdivostních hodnot Tablová metoda Binární strom, v kořenu je formule A u které mě zajímá splnitelnost, v listech ohodnocené seznamy literálů (výroků a negací výroků) vyskytujících se ve formuli A. Strom je vytvářen tak, že aktuální uzel má jednoho následníka, pokud jednu formuli převádíme na konjunkci dvou formulí (tzv. pravidla), nebo aktuální uzel má dva následníky, pokud jednu formuli převádíme na disjunkci dvou formulí (tzv. pravidla). Ohodnocení listu je buď, neobsahuje-li seznam výrok i jeho negaci (tzv. otevřená větev), nebo, obsahuje-li seznam výrok i jeho negaci (tzv. uzavřená větev). Formule je kontradikce, pokud její tablo obsahuje pouze uzavřené větve ( ) ( ) ( ) ( ) ( ) ( ) Tab. 3 Alfa a beta pravidla pro tablo 6
7 Tedy, pro náš příklad ( ) / \ ( ), Def: Model formule proměnným), že formule je taková interpretace (přiřazení pravdivostních hodnot výrokovým je pravdivá Odvozování formulí Při odvozování nás zajímají logické důsledky formulí. Def: Formule je logickým důsledkem množiny formulí U, platí-li pro všechny modely množiny formulí U, že formule je interpretována pravdivostní hodnotou T. Logický důsledek zapisujeme dvěma možnými způsoby U nebo U Věta 1: Nechť U ={ 1, 2,, n}. Formule je logickým důsledkem množiny U právě když je tautologie. 1 2 n Věta 2: Nechť U ={ 1, 2,, n}. Formule je logickým důsledkem množiny U právě když je nesplnitelná formule. 1 2 n Pro odvozování ve výrokové logice se používá řada pravidel. Patří k nim: dedukční pravidlo (modus ponens), modus tollens, rezoluční pravidlo, ρ ρ sylogismus, ρ ρ disjunktivní inference, 7
8 konjunktivní inference zjednodušení disjunktivní součet, Příklad: Dokažte, že {, ρ, ρ} Podle Věty 2 budeme dokazovat, že {, ρ, ρ, } je nesplnitelná množina formulí (tzv. důkaz sporem). Pro odvozování použijeme rezoluční pravidlo ρ ρ ρ ρ spor Odvození s využitím tabla by mělo podobu:, ρ, ρ, / \, ρ, ρ,, ρ, ρ, / \,, ρ,, ρ, ρ,,, ρ,, ρ, ρ, / \,,,,, ρ,, ρ,,,,,, ρ,, ρ,, ρ,, ρ,, ρ,, ρ, Pro aplikaci rezolučního odvozovacího pravidla musíme formule převést do klauzulárního tvaru: literál (výrok nebo negace výroku) je klauzule disjunkce klauzulí je klauzule 8
9 Otázku logické dokazatelnosti lze tedy převést na otázku logické splnitelnosti. Je ale třeba mít na paměti skutečnost, že splnitelnost nějaké množiny formulí (tedy existence modelu) neznamená, že tyto formule ze sebe logicky vyplývají. Příklad: Podezřelý může být vinen jen tehdy, byl-li v době činu v Praze. Podezřelý byl v době činu v Ostravě. Je nevinen? (převzato z Lukasová) Označme v výrok podezřelý je vinen, p výrok podezřelý byl v Praze a o výrok podezřelý byl v Ostravě. Zadání úlohy pak můžeme formalizovat do podoby formulí v p, o, v. Z tabulky pravdivostních hodnot pro tyto formule ( ) vidíme, že uvedené tři formule jsou splnitelné (existují dokonce dva modely uvedené v řádcích 2 a 8), ale že z pravdivosti v p, o se nedá odvodit jednoznačná pravdivostní hodnota výroku v. To co pro danou úlohu intuitivně víme (sice pokud byl podezřelý v Ostravě, nemohl spáchat trestný čin v Praze) je potřeba přidat jako další formuli o p. Pak už bude mít množina formulí v p, o, v, o p jediný model a formule v bude odvoditelná z formulí v p, o a o p. # v p o v p v p o p Tab. 4 Pravdivostní hodnoty příkladu 2.2 Predikátová logika Pravdivost formulí Podobně jako ve výrokové logice i zde můžeme jednotlivé formule interpretovat, neboli přiřazovat výrazům jazyka objekty z prvků nějaké struktury. Při tzv. substituci můžeme nahradit proměnnou termem (a nikoliv pouze konstantou). Tedy nejen opice(judy) místo opice(x) ale i Q(f(a)) místo Q(x). Def: Unifikace je taková substituce, kdy navzájem si odpovídající termy v predikátu jsou nahrazeny stejně. Z hlediska pravdivosti můžeme opět dělit formule na tautologie, kontradikce a splnitelné formule. Pro zjišťování splnitelnosti tentokrát již nemůžeme použít tabulku pravdivostních hodnot (konstant, např. jmen zvířat v ZOO může být veliké množství), používá se tedy tablová metoda. K transformačním pravidlům pro konjunkci ( pravidla) a disjunkci ( pravidla) viz se přidávají pravidla pro obecný kvantifikátor a pravidla pro existenční kvantifikátor (Tab. 5). (x) (t) (x) (t) x φ(x) φ(t) x φ(x) φ(t) x φ(x) φ(t) x φ(x) φ(t) Tab. 5 Gama a delta pravidla pro tablo 9
10 2.1.2 Odvozování formulí Opět nás budou zajímat logické důsledky množiny formulí a opět se dá použít řada odvozovacích pravidel. Ukažme si jen jedno z nich Rezoluční pravidlo má v predikátové logice podobu kde x, y, z jsou proměnné a t je term. (x) (t), (y) ρ(z) (t) ρ(t) Použití tohoto pravidla opět předpokládá, že všechny formule jsou v klauzulární formě. Libovolnou formuli můžeme převést na klauzulární tvar následujícím postupem: 1. přejmenování proměnných 2. odstranění implikace (převedení na ) 3. zmenšení oboru platnosti negace (přesunutí negace co nejblíže k atomické formuli, např. podle demorganova pravidla) 4. vyloučení existenčního kvantifikátoru (tzv. skolemizace) 5. převod na prenexní normální tvar (přenesení všech obecných kvantifikátorů před formuli) 6. převod na konjunktivní normální tvar (konjunkce disjunkcí) 7. odstranění obecných kvantifikátorů Příklad (Lukasová): Každý, kdo má rád zvířata, nenosí kožichy. Každý, kdo jde s módou nosí kožichy. Brigitt Bardotová (BB) má ráda zvířata. Lze odvodit, že BB nejde s módou? Nejprve vyjádříme předcházející tvrzení jako formule predikátového počtu: P1: x (má_rád(x,zvířata) nosí(x,kožichy)) P2: ( x) móda(x) nosí(x,kožichy) P3: má_rád(bb,zvířata) Závěr: móda(bb) Pak převedeme všechny formule na klauzule: má_rád(x,zvířata) móda(x) má_rád(bb,zvířata) móda(bb) nosí(x,kožichy) nosí(x,kožichy) Odvození pak provedeme (s využitím rezolučního principu) jako důkaz sporem. Budeme tedy zjišťovat splnitelnost formulí 10
11 má_rád(x,zvířata) nosí(x,kožichy), móda(x) nosí(x,kožichy), má_rád(bb,zvířata), móda(bb) / / / má_rád(x,zvířata) móda(x) / / / / móda(bb) / spor Z odvození vyplývá, že za předpokladů P1, P2 a P3 Brigitt Bardotová skutečně nejde s módou. 2.3 Pravidla Hledání aplikovatelného pravidla se v expertních systémech může provádět dvojím způsobem: Zpětné řetězení (backward chaining) je typický způsob práce inferenčního mechanismu v diagnostických expertních systémech. Při odvozování metodou zpětného řetězení vycházíme cílů, které chceme odvodit a pokoušíme se nalézt pravidla umožňující tyto cíle potvrdit nebo vyvrátit. V bázi znalostí existují pravidla, která mají tento cíl ve svém závěru Tato pravidla se tedy pokoušíme aplikovat (za použití dedukce). Abychom zjistili, zda je pravidlo aplikovatelné, musíme vědět, zda platí jeho předpoklad. Pokud je v předpokladu dotaz (např. zvýšená_teplota), lze se na jeho pravdivost zeptat uživatele, Pokud je v předpokladu mezilehlý výrok (např. horní_cesty_ dýchací), musíme ho odvodit (podobně jako cíl) z pravidel, která k němu vedou. Celý proces se tak opakuje (viz Obr. 6 ). Obr. 6 Zpětné řetězení Při přímém řetězení (forward chaining) vycházíme z faktů, které jsou splněny a pokoušíme se nalézt aplikovatelná pravidla. Z aplikovatelných pravidel lze odvodit nějaký závěr, to umožní nalézt další aplikovatelná pravidla a v odvozování lze pokračovat. Podobně jako u zpětného řetězení, i zde lze 11
12 využívat priority pravidel. Přímé řetězení v čisté podobě znamená, že systém už se uživatele na nic neptá; všechny odpovědi musí být zadány před začátkem konzultace (Obr. 7). Obr. 7 Přímé řetězení Způsob použití vybraného pravidla pak vychází z dedukce známé z výrokové logiky - pokud platí předpoklad pravidla, platí i jeho závěr: 2.4 Rámce, Vzhledem k tomu, že rámce obvykle vytvářejí hierarchickou strukturu, základní odvozovací mechanismus je dědění v rámci této hierarchie. V zásadě lze dědit položky i hodnoty položek. Standardní je přitom dědění směrem shora dolů, neboli od obecnějšího konceptu (např. auto) ke speciálnějšímu konceptu (osobní auto); dědit lze ale i zdola nahoru. Pokud je možné násobné dědění (pro nějaký rámec je více možností, jak dědit), dědění hodnot může vést k inkonsistencím (Obr. 8). Obr. 8 Je nebo není Nixon pacifista? 12
13 Rámce můžeme použít i pro reprezentaci typických případů z dané aplikační oblasti. Pak mluvíme o případovém usuzování, které je založeno na podobnosti mezi případy. Pro vyjádření podobnosti resp. vzdálenosti se používá nějaká metrika, neboli funkce d splňující následující vlastnosti: 1. x 1,x 2 X; d(x 1,x 2 ) 0 2. d(x 1,x 2 ) = 0 x 1 = x 2 3. d(x 1, x 2 ) = d(x 2,x 1 ) 4. x 1,x 2,x 3 X; d(x 1,x 2 ) + d(x 2,x 3 ) d(x 1,x 3 ) V nejjednodušší situaci (jsou-li případy reprezentovány hodnotami numerických veličin) může být funkce d definována jako d E (x 1,x 2 ) = m j=1 E(x 1j,x 2j ), kde E(x 1j,x 2j ) = (x 1j - x 2j ) 2 neboli jako eukleidovská vzdálenost. Odvozování je pak založeno na nalezení toho případu v bázi případů, který má nejmenší vzdálenost k uvažované rozhodovací situaci. Inferenční cyklus případového usuzování dle [Watson, Marir, 1994] vidíme na Obr. 9. V kroku retrieve se k danému problému hledá nejpodobnější případ v bázi případů. V kroku reuse se použije navržené řešení, které je možno případně revidovat v kroku revise. V kroku retain se uchovává nové řešení v bázi případů. Obr. 9 Odvozování v systémech případového usuzování 13
5 Inteligentní usuzování
5 Inteligentní usuzování Jak již bylo řečeno v předcházející kapitole, způsob reprezentování znalostí a způsob jejich využívaní pro usuzování spolu úzce souvisejí. Připomeňme zde tedy ještě jednou používaná
4. Moudrost. Znalosti
Znalosti a jejich reprezentace Znalost je lidský odhad uložený v mysli, získaný pomocí zkušeností a interakcí s okolním prostředím. Znalost je fyzický, mentální nebo elektronický záznam o vztazích, o kterých
Znalosti a jejich reprezentace
Znalosti a jejich reprezentace Znalost je lidský odhad uložený v mysli, získaný pomocí zkušeností a interakcí s okolním prostředím. Znalost je fyzický, mentální nebo elektronický záznam o vztazích, o kterých
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do
Výroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
Logika a logické programování
Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho
Predikátová logika. prvního řádu
Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)
teorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
Logika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D.
Logika 5. Rezoluční princip RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Metody odvozování. matematická východiska: logika, Prolog
Metody odvozování matematická východiska: logika, Prolog psychologická východiska: rámce biologická východiska: konekcionismus, neuronové sítě statistická východiska: kauzální (bayesovské) sítě ekonomická
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky
Logika pro sémantický web
ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Logika pro sémantický web Martin Žáček PROČ BALÍČEK? 1. balíček Formální logické systémy
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy
Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Výroková a predikátová logika - V
Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský
Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží
Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce,
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií
Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
Výroková logika. Sémantika výrokové logiky
Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový
Rezoluční kalkulus pro logiku prvního řádu
AD4M33AU Automatické uvažování Rezoluční kalkulus pro logiku prvního řádu Petr Pudlák Logika prvního řádu (Někdy nepřesně nazývaná predikátová logika.) Výhody Vyšší vyjadřovací schopnost jazyka, V podstatě
4.1 Základní pojmy Znalost je lidský odhad uložený v mysli, získaný pomocí zkušeností a interakcí s okolním prostředím.
4 Reprezentace znalostí V polovině 70. let se začal v umělé inteligenci přesouvat důraz od hledání univerzálního algoritmu pro řešení široké třídy úloh k práci se specializovanými znalostmi z určité oblasti.
Výroková a predikátová logika - X
Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2018/2019 1 / 16 Rozšiřování teorií Extenze o definice Rozšiřování
Predikátová logika [Predicate logic]
Predikátová logika [Predicate logic] Přesněji predikátová logika prvého řádu. Formalizuje výroky o vlastnostech předmětů (entit) a vztazích mezi předměty, které patří do dané předmětné oblasti univerza.
Expertní Systémy. Data a znalosti. lze je získat automaticky nebo od úředníka;
Data a znalosti Vzdělání Zkušenost Data Znalosti Informace Rozhodování Data lze je získat automaticky nebo od úředníka; správnost dat vzhledem k reálnému světu může být objektivně verifikována Znalosti
Predikátová logika. Teoretická informatika Tomáš Foltýnek
Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte
Základní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
Okruh č.3: Sémantický výklad predikátové logiky
Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat
Sémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
Reprezentace znalostí. Katedra kybernetiky, ČVUT v Praze.
Reprezentace znalostí Vladimír Mařík Katedra kybernetiky, ČVUT v Praze http://cyber.felk.cvut.cz/ preprezentace znalostí V paměti počítače požadavky na modularitu (M) asociativnost (A) Čtyři základní formalizmy:
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS
Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,
vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí
Rezoluce: další formální systém vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí pracujeme s formulemi v nkf (též klauzulárním tvaru), ale používáme
platné nejsou Sokrates je smrtelný. (r) 1/??
Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice
Marie Duží
Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce, zobrazení {p, q, r } {0, 1} (pravdivostní tabulka). Naopak však
Logika. 6. Axiomatický systém výrokové logiky
Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Umělá inteligence I. Roman Barták, KTIML.
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Už umíme používat výrokovou logiku pro reprezentaci znalostí a odvozování důsledků. Dnes Dnes zopakujeme
Logické programy Deklarativní interpretace
Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou
Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17
Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní
4.2 Syntaxe predikátové logiky
36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a
Rezoluční kalkulus pro výrokovou logiku
AD4M33AU Automatické uvažování Rezoluční kalkulus pro výrokovou logiku Petr Pudlák Výroková logika Výhody Jednoduchý jazyk. Rozhodnutelnost dokazatelnosti i nedokazatelnosti. Rychlejší algoritmy. Nevýhody
Matematická logika. Miroslav Kolařík
Matematická logika přednáška desátá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. Obsah 1 Úvod do modální logiky 2 Logické programování a Prolog 3
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 1 / 16 Tablo metoda v PL Důsledky úplnosti Vlastnosti
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková
Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1
Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit
Logika Libor Barto. Výroková logika
Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....
Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka
Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce
Hilbertovský axiomatický systém
Hilbertovský axiomatický systém Predikátová logika H 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 24. října 2008 Specifikace H 1 Jazyk L H1 přejímáme jazyk predikátové logiky
2.5 Rezoluční metoda v predikátové logice
2.5. Rezoluční metoda v predikátové logice [101104-1520] 19 2.5 Rezoluční metoda v predikátové logice Rezoluční metoda v predikátové logice je obdobná stejnojmenné metodě ve výrokové logice. Ovšem vzhledem
Pravidlové znalostní systémy
Pravidlové znalostní systémy 31. října 2017 2-1 Tvary pravidel Pravidla (rules) mohou mít například takovéto tvary: IF předpoklad THEN závěr IF situace THEN akce IF podmínka THEN závěr AND akce IF podmínka
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
Reprezentace znalostí - úvod
Reprezentace znalostí - úvod Úvod do znalostního inženýrství, ZS 2015/16 6-1 Co je to znalost? Pojem znalost zahrnuje nejen teoretické vědomosti člověka z dané domény, ale také jeho dlouhodobé zkušenosti
1 Pravdivost formulí v interpretaci a daném ohodnocení
1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Nepravidlové a hybridní znalostní systémy
Nepravidlové a hybridní znalostní systémy 7. 14. listopadu 2017 _ 3-1 Nepravidlové reprezentace znalostí K nepravidlovým reprezentačním technikám patří: rozhodovací stromy rámce sémantické sítě Petriho
Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot formule tabulkovou metodou
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot
Logika. Dana Nejedlová Katedra informatiky Ekonomická fakulta Technická univerzita v Liberci
Logika Dana Nejedlová Katedra informatiky Ekonomická fakulta Technická univerzita v Liberci 1 Úloha logiky v umělé inteligenci převést fakta na formalizované výroky, se kterými se dá automatizovaně operovat
LOGIKA VÝROKOVÁ LOGIKA
LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,
1. Predikátová logika jako prostedek reprezentace znalostí
1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn
1. Znalostní systémy a znalostní inženýrství - úvod. Znalostní systémy. úvodní úvahy a předpoklady. 26. září 2017
Znalostní systémy úvodní úvahy a předpoklady 26. září 2017 1-1 Znalostní systém Definice ZS (Feigenbaum): Znalostní (původně expertní) systémy jsou počítačové programy simulující rozhodovací činnost experta
Formálnílogickésystémy pro aplikaci v informatice Martin Žáček
ZVYŠOVÁNÍODBORNÝCH KOMPETENCÍAKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉUNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Formálnílogickésystémy pro aplikaci v informatice Martin Žáček PŘEDMĚTY NA OU Logické základy
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková
1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David
Úvod do Prologu Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David Warren (Warren Abstract Machine) implementace
Systém přirozené dedukce výrokové logiky
Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému
popel, glum & nepil 16/28
Lineární rezoluce další způsob zjemnění rezoluce; místo stromu směřujeme k lineární struktuře důkazu Lineární rezoluční odvození (důkaz) z Ë je posloupnost dvojic ¼ ¼ Ò Ò taková, že Ò ½ a 1. ¼ a všechna
Základy logiky Logika a logické systémy. Umělá inteligence a rozpoznávání, LS
Základy logiky 22. 4. 2015 Umělá inteligence a rozpoznávání, LS 2015 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování,
Skolemizace. x(x + f(x) = 0). Interpretace f unární funkce, která pro daný
Skolemizace převod formulí na formule bez existenčních kvantifikátorů v jazyce, který je rozšířen o tzv. Skolemovy funkce; zachovává splnitelnost idea převodu: formuli x 1... x n yp (x 1,..., x n, y) transformujeme
Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20
Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:
Cvičení 4. negace konjunkce disjunkce implikace ekvivalence. a) Najděte UDNF, UKNF a stanovte log. důsledky. 1) [p (p q)] [( p q) (q p)]
Cvičení 4 negace konjunkce disjunkce implikace ekvivalence a) Najděte UDNF, UKNF a stanovte log. důsledky 1) [p (p q)] [( p q) (q p)] p q p q p q q p p A B C D E UEK UED A B C D E F 0 0 1 1 0 0 0 1 p q
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL
IA008 Computational logic Version: 6. května Formule je v konjunktivní normální formě (CNF), pokud má tvar α 1... α n,
1 Převody do normálních forem Příklad 1.1: Vyjádřete následující formule v DNF pomocí pravdivostní tabulky a pomocí převodu logických spojek. a) (A B) C b) (A B) C c) (A B) (C D) Formule je v disjunktivní
Výroková logika. p, q, r...
Výroková logika Výroková logika je logika, která zkoumá pravdivostní podmínky tvrzení a vztah vyplývání v úsudcích na základě vztahů mezi celými větami. Můžeme též říci, že se jedná o logiku spojek, protože
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
3.10 Rezoluční metoda ve výrokové logice
3.10. Rezoluční metoda ve výrokové logice [070405-1102 ] 27 3.10 Rezoluční metoda ve výrokové logice Rezoluční metoda rozhoduje, zda daná množina klausulí je splnitelná nebo je nesplnitelná. Tím je také
2.2 Sémantika predikátové logiky
14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky
Matematická indukce, sumy a produkty, matematická logika
Matematická indukce, sumy a produkty, matematická logika 8.9. -.0.009 Matematická indukce Jde o následující vlastnost přirozených čísel: Předpokládejme:. Nějaké tvrzení platí pro.. Platí-li tvrzení pro
Výroková a predikátová logika - XII
Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné
Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model
Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření
Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
Tableaux metody. Jiří Vyskočil 2011
Tableaux metody Jiří Vyskočil 2011 Tableau [tabló] metoda Tableau metoda je další oblíbená metoda užívaná pro automatické dokazování vět v predikátové logice, ale i v dalších (modálních, temporálních,
Konceptualizace, komunikace a reprezentace znalostí
Konceptualizace, komunikace a reprezentace znalostí Lékařská informatika Zimní semestr 2018/2019 Michal Huptych Proč? Při technickém implementačním popisu se často ztrácí určitá část podstaty věcí. Snaha
ZÁKLADY LOGIKY A METODOLOGIE
ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie
Petr Křemen. Katedra kybernetiky, FEL ČVUT. Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112
Sémantické sítě a rámce Petr Křemen Katedra kybernetiky, FEL ČVUT Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112 Co nás čeká 1 Úvod do reprezentace znalostí 2 Sémantické sítě
Převyprávění Gödelova důkazu nutné existence Boha
Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie),
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie
1 REZOLUČNÍ FORMÁLNÍ DŮKAZY
Vážená kolegyně / vážený kolego, součástí Vašeho rozšiřujícího studia informatiky je absolvování předmětu Logika pro učitele 2, jehož cílem je v návaznosti na předmět Logika pro učitele 1 seznámení se
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní