Konceptualizace, komunikace a reprezentace znalostí
|
|
- Vlasta Havlová
- před 6 lety
- Počet zobrazení:
Transkript
1 Konceptualizace, komunikace a reprezentace znalostí Lékařská informatika Zimní semestr 2018/2019 Michal Huptych
2 Proč? Při technickém implementačním popisu se často ztrácí určitá část podstaty věcí. Snaha uchopit celou problematiku od základu, tak jak dává smysl. Vymezení/vyjasnění pojmů pro další diskuzi. Vše, co se v posledních 25 letech děje kolem sémantické interoperability v elektronizaci zdravotnictví vychází z následujícího. Tento přehled by tedy měl být základem pro další části.
3 Rozdělení pojmů Data Signál měřený v čase a v milivoltech Informace Měřený signál zaznamenává elektrickou činnost srdce Znalosti Měřený signál nevykazuje žádnou abnormalitu, tj. po stránce elektrické aktivity se srdce jeví zdravé
4 Data Základní reprezentace výsledku pozorování (měření) Data jsou nosičem informace Obecně (bez znalosti významu) popsatelná pomocí charakterizace nebo parametrizace Statistický popis (četnost, rozložení, střední hodnota, rozptyl) Frekvenční popis Stanovení definičního oboru a oboru hodnot Způsoby hledání informace bez znalosti významu dat Častokrát zatížena šumem Komplikace pro následující zpracování
5 Informace Několik možných definicí Významový obsah sdělení, zprávy Z pohledu informatiky míra změny neurčitosti vlivem dat dá se dát v protiklad k šumu šum nepřináší informaci, resp. nezvyšuje míru informace Několik možných pohledů Sémantická informace Význam slov ve větě (slova = data, význam = informace) Z pohledu informatiky Míra entropie dat N H S = P(s i )log 2 P(s i ) i=1
6 Znalost Poznatky a zkušenosti v určité oblasti Dle možnosti zachycení Explicitní - lze formalizovat a tedy jednoduše sdílet Implicitní - není přímo viditelná, lze ji nalézt v datech a případně formalizovat, či aproximovat Tacitní - skrytá znalost (expertní), častokrát v podstatě nevědomé Dle způsobu užití Deklarativní - popis platného stavu Procedurální - Popis, jak postupovat Dle způsob u získání Znalosti získané od experta Znalosti získané z dat (modelování znalosti)
7 Data Informace - Znalost Tobin, 1996 relevance účel aplikace intuice zkušenosti Data Informace Znalosti Moudrost Beckman, 1997 význam struktura uvažování abstrakce aplikace výběr zkušenosti principy ohraničení učení integrace distribuce navigace Data Informace Znalosti Expertíza Kompetence český překlad převzat z
8 Začátek při řešení úlohy Pro každou úlohu máme v sobě nějaký způsob reprezentace světa v daném kontextu. Tvoříme kognitivní model, který nám pak umožňuje danou úlohu řešit. v logice se hovoří o problému rámce (axiomů) Chceme-li data a informace z reálného světa ukládat a reprezentovat co možná nejvíce plnohodnotně musíme být schopni rozeznat více podstatné a méně podstatné kvůli kooperaci a předávání výsledků řešení dané úlohy musíme být schopni dorozumět se nad takto vytvořeným modelem chceme-li zpracovávat data strojově, musíme být schopni kognitivní model v potřebném rozsahu definovat na formální úrovni
9 Konceptualizace Potřeba popsat reálný stav (problém) Proces uvažování, kdy hledáme dostatečně přesný, ale zároveň v rámci úlohy řešitelný popis reality Hlavní krok při řešení úloh Většina úloh není dostatečně definována, tj. chybí dostatečný popis počáteční nebo koncového stavu, kritérium pro splnění řešení, efektivní algoritmus řešení Konceptualizace určuje, co bude v rámci řešení úlohy bráno v potaz které objety reálného světa jaké vlastnosti budou uvažovány a které budou zanedbány hledání vhodného (formálního?) způsobu řešení
10 Konceptualizace Těžké na procesu konceptualizace je hledání míry abstrakce (jistá míra abstrakce je nutná) Recept na dort: Cukrář 1: 00 extra mouka, 4 křepelčí vejce, třtinový cukr, bio mléko, Couverture Cukrář 2: hladká mouka, 2 slepičí vejce, řepkový cukr, plnotučné mléko, hořká čokoláda Nelze stanovit koncept recept na dort bez abstrakce surovin na vyšší úroveň (supertřídu) surovin Ale neřešíme množství (kromě vajec) Co když je znalost o množství surovin tacitní nunost provést měření Ale je to dost na definici pojmu dort prostřednictvím jeho složení?
11 Komunikace/sdílení Schopnost předávat (sdílet) data, informace a znalosti Sdílení dat Schopnost fyzicky (digitálně) předat výsledek pozorování Sdílení informací Schopnost předat data v kontextu jejich využití Sdílení dat i jejich význam Sdílení znalostí Učení, závislá na druhu znalosti z hlediska možnosti zachycení Otázka úplnosti, přesnosti a důvěryhodnosti znalosti
12 Interoperabilita Interoperabilita (funkční) "interoperability" - "styková provozuschopnost" (Anglicko-český výkladový slovník výpočetní techniky, SNTL Praha, 1990) schopnost vzájemně si rozumět, vzájemně spolupracovat, dosáhnout vzájemné součinnosti Sémantická interoperabilita schopnost správně pracovat i s významem přenášené informace, rozumět jí na úrovni formálně definovaných doménových konceptů (ISO TR 20514) Je nezbytná pro možnost automatického zpracování dat
13 Slovníky Ve smyslu terminologický slovník tedy slovník pojmů z dané oblasti Glosář seznam nových nebo nejednoznačných pojmů s jejich definicí většinou v přirozeném jazyce nejčastěji součástí odborných a výukových materiálů cílem je informovat čtenáře, aby neutratil kontext textu Tezaurus řízený slovník (strukturovaný popis) pojmů z dané oblasti použití např. k anotování a indexování dokumentů pojem definován v přirozeném jazyce definuje nad množinou pojmů některé relace existují standardy pro tezaurus, např. ISO
14 Pojem a termín Pojem je zobecnění objektů našeho zájmu a to: Konkrétních předmětů (pacient, orgánů, histolog. struktury) Vlastností (cyanóza, nauzea), Dějů (biochemické vyšetření, progrese vyšetření) Název a definice Pojem je dán současně abstrakcí a generalizací, kde pak: Klasifikace - řeší vztahy mezi příbuznými pojmy Definice - přesná formulace významu pojmu Název (termín) - pojem pojmenovává Terminologie-souhrn všech názvů pro danou oblast (lékařský jazyk, synonyma) snaha používat jediný výraz: synonyma
15 Ontologie Ve filozofii nauka o bytí V informatice stanovení terminologie a jejího uspořádání v určité oblasti formální reprezentace umožňuje sdílení znalostí - umožňuje i mapování znalostí ze dvou různých terminologií hierarchie založena na subsumpci (vztah is-a) taxonomie Může obsahovat speciální vztahy (vlastnosti) Popisují obecné znalosti rozdělení do tříd a jejich atributů a axiomů jedinečné znalosti instance jednotlivých tříd s nabytím hodnot u jednotlivých atributů jsou zahrnuty do báze znalostí k jedné ontologii může existovat více bází znalostí
16 Formalizace problému Deklarativní popis Otázkou je Co? Matematika (vzorec) a statistika Klasifikace Logická notace Grafy, množiny Procedurální popis Otázkou se Jak? Algoritmizace Znalostní pravidla Terapeutická, dávkování, diagnostická Nezbytný symptom, postačující symptom, přispívající symptom
17 Klasifikace Přiřazení objektů k třídě na základě jejich charakterizace a parametrizace Na základě stanovení hierarchie Vztahy souřadnost, nad/podřazenost, zjemnění, ortogonalita hierarchie generická (rod, druh) hierarchie partitivní (celek, část) Na základě podobnosti měřených parametrů klasická klasifikace v strojovém učení rozdělení na základě podobnosti objektů model klasifikace se nazývá klasifikátor Vzniklá struktura nemusí být (a většinou není) hierarchií, ale složením pozorovaných parametrů v N rozměrném prostoru (kde N je počet parametrů)
18 Reprezentace znalostí Pravidla Deklarativní pravidla stav, předpoklad závěr klasifikační pravidla Procedurální pravidla událost, situace akce procedurální schémata (sada produkčních pravidel) Hierarchicky uspořádaná pravidla Acyklický graf Reprezentace znalosti o uspořádání pravidel (pořadí jejich aplikace) Možnost výskytu jednoho parametru ve více úrovních Ve strojovém učení reprezentování rozhodovacím stromem, resp. klasifikačně-regresním stromem
19 Reprezentace znalostí Predikátová logika 1. řádu predikát je obdoba funkce, která může nabýt hodnot pravda a nepravda predikát P říká, že objekt (proměnná) x je vzděláním biomedicínský inženýr predikát S říká, že objekt (proměnná) x je technicky vzdělaný Jestliže x přiřadíme Michal Huptych, pak P(x) je pravda P(x) S(x) predikátová logika definuje proměnné, funkce a konstant formule pred. logiky vznikají z atomických formulí pomocí logických spojek a kvantifikátorů konjunkce ( ), disjunkce ( ), implikace ( ) a negace ( )
20 Reprezentace znalostí Deskripční logika Nejedná se o jeden formalismus, ale řadu příbuzných formalismů o různé schopnosti vyjádření (rozsahem výrazů) Zachycení struktury třídy a relací mezi třídami podobně jako u ontologií, resp. rámců Terminologická část (množina axiomů) (tzn. TBox) definování nových konceptů a relací obsahuje všechny inkluze (C 1 C 2 ) a ekvivalence (C 1 C 2 ) zobecněná terminologická znalost Přiřazovací část (množina axiomů) (tzn. ABox) přiřazování hodnot proměnným obsahuje všechny axiomy C(i) a R(i 1,i 2 ) konkrétní relační struktura mezi objekty dané oblasti
21 Reprezentace znalostí Sémantické sítě Navrženy v 60. letech Reprezentace znalostí na základě grafu Propojení uzlů (popisovaných objektů) hranami (vztahy mezi objekty) Základní relace is-a (subsumpce), a_kind-of (hierarchie), part-of (kompozice) orgán is_a is_a is_a mozek potřebuje vlevo od potřebuje srdce plíce spojený s
22 Reprezentace znalostí Rámce Navrženy Marvinem Minskym v 70. letech Rámce lze propojovat podobně jako sémantické sítě (kind_of, part-of) Základ pro objektový popis (reprezentaci v objektovém programování) Organismus DNA Vir attribute 1 attribute 2 attribute 3 Bakterie attribute 1 attribute 2 attribute 3 attribute 1 attribute 2 attribute 3 A H1N1 Dictioglomi attribute 1 attribute 2 attribute 3
23 Shrnutí Je nutné uvědomit si, zda chceme pracovat s daty, informacemi nebo znalostmi. Každé řešení problému je zasazeno do určitého rámce/kontextu. Bez možnosti komunikace je sebelepší reprezentace neúčinná. Záleží jaká úroveň konceptualizace a formalizace je zvolena (nechodit s kanónem na komára). Reprezentace znalostí je otázka optimalizace vzhledem ke způsobu řešení.
24 Reference V. Mařík, O. Štěpánková, J. Lažanský a kol.: Umělá inteligence (1), Academia Praha, 1993 (použita kapitola 4, Z. Zdráhal: Reprezentace znalostí) V. Mařík, O. Štěpánková, J. Lažanský a kol.: Umělá inteligence (6), Academia Praha, 1993 (použita kapitola 4, Z. Zdráhal: Reprezentace znalostí) P. Berka: podklady k přednáškám a cvičením z předmětu Principy inteligentních systémů, Dostupné na [ Kapitola Reprezentace znalostí na [
Ontologie. Otakar Trunda
Ontologie Otakar Trunda Definice Mnoho různých definic: Formální specifikace sdílené konceptualizace Hierarchicky strukturovaná množina termínů popisujících určitou věcnou oblast Strukturovaná slovní zásoba
Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka
Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do
Logika pro sémantický web
ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Logika pro sémantický web Martin Žáček PROČ BALÍČEK? 1. balíček Formální logické systémy
Reprezentace znalostí. Katedra kybernetiky, ČVUT v Praze.
Reprezentace znalostí Vladimír Mařík Katedra kybernetiky, ČVUT v Praze http://cyber.felk.cvut.cz/ preprezentace znalostí V paměti počítače požadavky na modularitu (M) asociativnost (A) Čtyři základní formalizmy:
Umělá inteligence a rozpoznávání
Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních
Deskripční logika. Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157
Deskripční logika Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157 Co nás čeká 1 Základy deskripční logiky 2 Jazyk ALC Syntax a sémantika 3 Cyklické a acyklické TBOXy Petr Křemen
1. Predikátová logika jako prostedek reprezentace znalostí
1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém
Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.
Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model
Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
1. Matematická logika
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 1. Matematická logika Základem každé vědy (tedy i matematiky i fyziky) je soubor jistých znalostí. To, co z těchto izolovaných poznatků
(#%ist #%LargeCorpInternalsMt #%ForAll x (#%HumanResourcesDepartment #%allinstances (#%actsincapacity x #%mediatorinprocesses #%EmployeeHiring
Znalostní modelování Podobor znalostního inženýrství, který se zabývá tvorbou znalostních modelů spíše než finální implementací znalostních systémů Model: účelová abstrakce, která umožňuje snížit složitost
+ 1. doc. Ing. Jan Skrbek, Dr. - KIN. Konzultace: pondělí nebo dle dohody. Spojení:
Informatika I - 5 Sémiotický model informací Sémantická a pragmatická pravidla zpracování informací, znalosti, kompetence, hodnota informace, rozhodování. Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Konzultace:
Václav Matoušek KIV. Umělá inteligence a rozpoznávání. Václav Matoušek / KIV
Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 16. 2. (3h) 2. 3. (4h) 17. 3. (5h) 14. 4. (3h) Úvod, historie a vývoj UI, základní
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
GISON: ontologická integrace urbanistických datových sad IPR
GISON: ontologická integrace urbanistických datových sad IPR Jiří Čtyroký 1, Petr Křemen 2 1 IPR Praha, 2 FEL ČVUT Slovníky a ontologie Měli bychom co nejvíce používat třídy a vlastnosti definované existujícími
Téma 48 (dříve 47) Martin Staviař, staviarm@centrum.cz. 16. srpna 2006
Téma 48 (dříve 47) Martin Staviař, staviarm@centrum.cz 16. srpna 2006 Rozpoznávání a vnímání. Statistický (příznakový) a strukturní přístup. Klasifikátory a jejich učení. Cíle umělé inteligence. Reprezentace
Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky
Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická
4.9.70. Logika a studijní předpoklady
4.9.70. Logika a studijní předpoklady Seminář je jednoletý, je určen pro studenty posledního ročníku čtyřletého studia, osmiletého studia a sportovní přípravy. Cílem přípravy je orientace ve formální logice,
Logika a logické programování
Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Logika pro každodenní přežití Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Znalostní modelování
Znalostní modelování Podobor znalostního inženýrství, který se zabývá tvorbou znalostních modelů spíše než finální implementací znalostních systémů Model: účelová abstrakce, která umožňuje snížit složitost
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
Inteligentní systémy (TIL) Marie Duží
Inteligentní systémy (TIL) Marie Duží http://www.cs.vsb.cz/duzi/ /d Přednáška 3 Sémantické schéma Výraz vyjadřuje označuje Význam (konstrukce konstrukce) k ) konstruuje denotát Ontologie TIL: rozvětvená
Teorie systémů TES 5. Znalostní systémy KMS
Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 5. Znalostní systémy KMS ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní
platné nejsou Sokrates je smrtelný. (r) 1/??
Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice
LOGIKA VÝROKOVÁ LOGIKA
LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,
Vybrané přístupy řešení neurčitosti
Vybrané přístupy řešení neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 8-1 Faktory jistoty Jedná se o přístup založený na ad hoc modelech Hlavním důvodem vzniku tohoto přístupu je omezení slabin
Predikátová logika. Teoretická informatika Tomáš Foltýnek
Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte
EXTRAKT z mezinárodní normy
EXTRAKT z mezinárodní normy Extrakt nenahrazuje samotnou technickou normu, je pouze informativním ICS 03.220.01; 35.240.60 materiálem o normě. Inteligentní dopravní systémy Požadavky na ITS centrální datové
Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
Domény. Petr Štěpánek. S využitím materialu Krysztofa R. Apta
Domény Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 10 1 Typy programů v čistém Prologu je možné uspořádat podle různých pohledů. Zajímavá je charakteristika podle domén,
REPREZENTACE ZNALOSTÍ
REPREZENTACE ZNALOSTÍ URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH MARTIN ŽÁČEK ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:
4. Moudrost. Znalosti
Znalosti a jejich reprezentace Znalost je lidský odhad uložený v mysli, získaný pomocí zkušeností a interakcí s okolním prostředím. Znalost je fyzický, mentální nebo elektronický záznam o vztazích, o kterých
Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:
Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní
Informační a znalostní systémy jako podpora rozhodování
Informační systémy a technologie Informační a znalostní systémy jako podpora rozhodování Petr Moos - ČVUT VŠL Přerov listopad 2015 Analýza a syntéza systému Definici systému můžeme zapsat ve tvaru: S =
1. Matematická logika
MATEMATICKÝ JAZYK Jazyk slouží člověku k vyjádření soudů a myšlenek. Jeho psaná forma má tvar vět. Každá vědní disciplína si vytváří svůj specifický jazyk v úzké návaznosti na jazyk živý. I matematika
Petr Křemen. Katedra kybernetiky, FEL ČVUT. Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112
Sémantické sítě a rámce Petr Křemen Katedra kybernetiky, FEL ČVUT Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112 Co nás čeká 1 Úvod do reprezentace znalostí 2 Sémantické sítě
Získávání a reprezentace znalostí
Získávání a reprezentace znalostí 11.11.2014 6-1 Reprezentace znalostí Produkční pravidla Sémantické sítě Získávání znalostí 6-2 a) Česká 6. Reprezentace znalostí v ZS Literatura Berka P.: Tvorba znalostních
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
Inference v deskripčních logikách
Inference v deskripčních logikách Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Inference v deskripčních logikách 53 / 157 Co nás čeká 1 Základy deskripční logiky 2 Jazyk ALC Syntax a sémantika 3 Cyklické
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová
1. Znalostní systémy a znalostní inženýrství - úvod. Znalostní systémy. úvodní úvahy a předpoklady. 26. září 2017
Znalostní systémy úvodní úvahy a předpoklady 26. září 2017 1-1 Znalostní systém Definice ZS (Feigenbaum): Znalostní (původně expertní) systémy jsou počítačové programy simulující rozhodovací činnost experta
1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
Částečná korektnost. Petr Štěpánek. S využitím materialu Krysztofa R. Apta
Částečná korektnost Petr Štěpánek S využitím materialu Krysztofa R. Apta 2007 Logické programování 14 1 Částečná korektnost je vlastností programu a znamená, že program vydává korektní výsledky pro dané
Spojení OntoUML a GLIKREM ve znalostním rozhodování
1 Formalizace biomedicínských znalostí Spojení OntoUML a GLIKREM ve znalostním rozhodování Ing. David Buchtela, Ph.D. 16. června 2014, Faustův dům, Praha Skupina mezioborových dovedností Fakulta informačních
Základy umělé inteligence
Základy umělé inteligence Úvod Základy umělé inteligence - úvod. Vlasta Radová, ZČU, katedra kybernetiky 1 Zavedení pojmu umělá inteligence Inteligence je schopnost získávat a aplikovat vědomosti a tedy
Výroková logika syntaxe a sémantika
syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být
Znalosti a jejich reprezentace
Znalosti a jejich reprezentace Znalost je lidský odhad uložený v mysli, získaný pomocí zkušeností a interakcí s okolním prostředím. Znalost je fyzický, mentální nebo elektronický záznam o vztazích, o kterých
Okruh č.3: Sémantický výklad predikátové logiky
Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat
Predikátová logika Individua a termy Predikáty
Predikátová logika Predikátová logika je rozšířením logiky výrokové o kvantifikační výrazy jako každý, všichni, někteří či žádný. Nejmenší jazykovou jednotkou, kterou byla výroková logika schopna identifikovat,
Umělá inteligence I. Roman Barták, KTIML.
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Už umíme používat výrokovou logiku pro reprezentaci znalostí a odvozování důsledků. Dnes Dnes zopakujeme
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 2 Reprezentace a zpracování znalostí 1. dílčí téma: Reprezentace znalostí V polovině 70. let se začal v umělé inteligenci přesouvat důraz od hledání
Základní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
Informační systémy 2008/2009. Radim Farana. Obsah. Nástroje business modelování. Business modelling, základní nástroje a metody business modelování.
3 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Business modelling, základní nástroje a metody business modelování.
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky
Logické programy Deklarativní interpretace
Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou
Elektronický zdravotní záznam, sběr klinických údajů a klinické lékařské doporučení
Elektronický zdravotní záznam, sběr klinických údajů a klinické lékařské doporučení Mgr. Miroslav Nagy, Ph.D. Centrum Biomedicínské Informatiky Oddělení Medicínské Informatiky, UI AV ČR v.v.i. Seminář:
Programování II. Modularita 2017/18
Programování II Modularita 2017/18 Modul? Osnova přednášky Vývoj programování Modularita Příklad Vývoj programování Paradigmata programování Jak a proč se jazyky vyvíjejí? V čem se OOP liší od předchozích
VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17
Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní
Znalostní technologie proč a jak?
Znalostní technologie proč a jak? Peter Mikulecký Kamila Olševičová Daniela Ponce Univerzita Hradec Králové Motivace 1993 vznik Fakulty řízení a informační technologie na Vysoké škole pedagogické v Hradci
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
Modelování a odvozování v RDFS
Modelování a odvozování v RDFS Doc. Ing. Vojtěch Svátek, Dr. Zimní semestr 2012 http://nb.vse.cz/~svatek/rzzw.html Modelování v RDFS Základní konstrukce slovníku jsou Třídy Individua (jen význačná doménová
Sémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ
MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ 1) PROGRAM, ZDROJOVÝ KÓD, PŘEKLAD PROGRAMU 3 2) HISTORIE TVORBY PROGRAMŮ 3 3) SYNTAXE A SÉMANTIKA 3 4) SPECIFIKACE
Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část
Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů Otázka č. 1 Datový model 1. Správně navržený ERD model dle zadání max. 40 bodů teoretické znalosti konceptuálního modelování správné
TEORIE ZPRACOVÁNÍ DAT
Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta
Matematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
Dokumentační služba projektu MediGrid
Dokumentační služba projektu MediGrid Dokumentování sémantiky lékařských dat Adéla Jarolímková, Petr Lesný, Jan Vejvalka, Kryštof Slabý, Tomáš Holeček Projekt MediGrid Účastníci Cíl FN Motol CESNET z.s.p.o.
MODELOVÁNÍ DAT V INFORMAČNÍCH SYSTÉMECH. Jindřich Kaluža Ludmila Kalužová
MODELOVÁNÍ DAT V INFORMAČNÍCH SYSTÉMECH Jindřich Kaluža Ludmila Kalužová Recenzenti: prof. Ing. Milan Turčáni, CSc. prof. Ing. Ivan Vrana, DrSc. Tato kniha vznikla za finanční podpory Studentské grantové
výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Bakalářská matematika I
do předmětu Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Podmínky absolvování předmětu Zápočet Zkouška 1 účast na přednáškách alespoň v minimálním rozsahu,
Dolování asociačních pravidel
Dolování asociačních pravidel Miloš Trávníček UIFS FIT VUT v Brně Obsah přednášky 1. Proces získávání znalostí 2. Asociační pravidla 3. Dolování asociačních pravidel 4. Algoritmy pro dolování asociačních
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL
Převyprávění Gödelova důkazu nutné existence Boha
Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie),
Výroková a predikátová logika - VI
Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá
10. Techniky formální verifikace a validace
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není
ZÁKLADY LOGIKY A METODOLOGIE
ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie
Vyhněte se katastrofám pomocí výpočetní matematiky
Vyhněte se katastrofám pomocí výpočetní matematiky Stefan Ratschan Ústav informatiky Akademie věd ČR Stefan Ratschan Vyhněte se katastrofám 1 / 29 x. x 2 = 2 Kvíz x. x 2 = 2 x. x 2 7 p q x. x 2 + px +
Predikátová logika. prvního řádu
Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
Výroková a predikátová logika - XIII
Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které