Algoritmus pro generování normálních magických čtverců
|
|
- Martin Horák
- před 6 lety
- Počet zobrazení:
Transkript
1 1.1 Úvod Algoritmus pro generování normálních magických čtverců Naprogramoval jsem v Matlabu funkci, která dokáže vypočítat magický čtverec libovolného přípustného rozměru. Za pomocí tří algoritmů, které jsem nastudoval zejména z [1] a [2] se mi povedlo sestavit fungující funkci (a několik pomocných v ní obsažených), které by měly magický čtverec spočítat. 1.2 Teorie Normální magický čtverec řádu n je matice s navzájem různými prvky z množiny {1, 2, n 2 } taková, že existuje jedno přirozené číslo K tak, že součet prvků každého řádku, sloupce nebo jedné z hlavních diagonál je roven K. Je dokázáno, že magický čtverec řádu n lze vytvořit pro všechna přirozená n kromě případu n = 2. V tomto případě nelze sestrojit matici 2x2 tak, aby vyhovovala definici magického čtverce. Při konstrukci magického čtverce jsem využil tři algoritmy, které zde postupně uvedu. Algoritmy se liší v závislosti na tom, jaký řád čtverce dostane funkce k výpočtu. Rozdělíme všechna možná n do tří disjunktních skupin lichá čísla, čísla dělitelná čtyřmi a sudá čísla nedělitelná čtyřmi. 1. pro n liché (př. n = 7) a) Umístíme číslo 1 doprostřed první řádky b) Vyplňujeme dalšími čísly diagonálu ve směru nahoru doprava tak, že pokud se dostaneme mimo matici na pozici (i,j), tak pokračujeme na odpovídajícím políčku v původní matici tak, že přejdeme přepočtem pokud je i,j<1 pak i,j:=n; pokud je j>n pak I,j:=1; 1
2 c) Pokud už je diagonála zaplněná celá, postoupíme o políčko níže a vracíme se na krok b). d) Algoritmus skončí, když umístíme do čtverce právě n 2 čísel. 2. pro n dělitelné čtyřmi beze zbytku (př. n = 8) a) umístíme čísla do čtverce A po řádcích postupně b) vytvoříme pomocnou matici X stejného rozměru, kterou vytvoříme ze čtverců rozměru 4x4, které mají na hlavní i vedlejší diagonále jedničku a na ostatních prvcích číslo 0. 2
3 c) Postupujeme po řádcích postupně, v případě, že je v matici X na dané pozici 0, tak prohodíme symetricky prvek v matici A na dané pozici s prvkem na poslední pozici v matici, na které je 0 a ještě pro něho nebylo prohazováno. d) Algoritmus skončí, pokud přeházíme všechna čísla v matici A na nulových pozicích v matici X mezi sebou. 3. pro n sudé a nedělitelné čtyřmi (př. n = 6) a) Nejprve vytvoříme magický čtverec řádu n/2 pomocí algoritmu 1. pro lichá n. b) Označme následující metody tvoření matice A rozměru 2x2 pro koeficient k podle následujícího schématu: metoda A: ( ) metoda B: ( ) metoda C: ( ) 3
4 c) Vytvoříme matici pomocí matice z bodu a) tak, že vždy nahradíme dané jedno číslo k celou maticí 2x2 tak, že použijeme jednu z metod popsaných v bodě b). Metodu A použijeme na první polovinu všech řádků, kromě prostředního prvku prostředního řádku, který nahradíme maticí za pomoci metody B. Na prvky v řadě po prostřední použijeme metodu B s výjimkou prostředního prvku, který upravíme metodou A. Všechny ostatní prvky nahradíme maticí za použití metody C. Vše shrnuje následující tabulka pro n=10: 1.3 Program Výše vypsaná teoretická pravidla mají stejné značení i postup činností jako v naprogramované funkci. Metody A,B a C v posledním případě jsou v programu očíslované pro jednoduchost jako metody 1,2,3. Funkce se volá s argumentem přirozeného čísla, které určuje řád magického čtverce. function [M] = MagickyCtverec(n) M = zeros(n,n); if ((n==2) (n<1)) %pro n = 2 nemá cenu hledat magický čtverec M = []; return if (mod(n,2)==1) %případ, kdy je n liché M(1,(n+1)/2)=1; x = 1; %posouvací index řádků y = (n+1)/2; %posouvací index sloupců umistenych = 1; %počet zatím umístěných čísel while umistenych<n*n while plnadiagonala(m,x,y)~=1 %pokud již není diagonála plná if M(x,y) == 0 M(x,y) = umistenych +1; umistenych = umistenych +1; x = normovani(n,x-1); y = normovani(n,y+1); x = normovani(n,x+1); if (mod(n,4)==0) pocet = 1; for i = 1:n for j = 1:n M(i,j) = pocet; pocet = pocet+1; X = [ ; ; ; ]; R = []; for i = 1:n/4 R = [R X]; %pokud je na pozici (x,y) volno %musíme hlídat, abychom "neskočili" mimo matici % pro n dělitelné čtyřmi %přiřadíme čísla do matice v přirozeném pořadí 4
5 X = []; for i = 1:n/4 X = [X ; R]; %vytváříme matici X pomocí maticových bloků 4x4 for i=1:n/2 for j=1:n if X(i,j) == 0 cache = M(i,j); M(i,j) = M(n-i+1,n-j+1); M(n-i+1,n-j+1) = cache; %pokud je v matici X nula, můžeme prohodit %zrcadlově prvky %pokud je n sudé nedělitelné čtyřmi A = MagickyCtverec(n/2); %vytvoříme magický čtverec polovičního řádu M = []; for i =1:n/2 X = []; for j = 1:n/2 if i<=(n/2+1)/2 if i<(n/2+1)/2 %metoda A (1) pro všechny řádky nad prostředním X = [X VytvorCtverecek(1,A(i,j))]; if i == j %metoda B (2) pro prostřední prvek prostředního řádku X = [X VytvorCtverecek(2,A(i,j))]; X = [X VytvorCtverecek(1,A(i,j))]; if i ==((n/2+1)/2)+1 if j~=(n/2+1)/2 %metoda B (2) pro následující řádek po prostředním X = [X VytvorCtverecek(2,A(i,j))]; %opět s výjimkou prostředního X = [X VytvorCtverecek(1,A(i,j))]; %na všechny ostatní metoda C (3) X = [X VytvorCtverecek(3,A(i,j))]; M =[M ; X]; function [a] = normovani(n,x) %přídatná funkce, která zajistí abychom "nevyskočili" z matice v první metodě if x < 1 a = n; if x > n a = 1; a = x; 5
6 function [a] = plnadiagonala(m,x,y) %přídatná funkce, která zjišťuje, jestli už není diagonála v případě 1 obsazena a = 1; for i = 1:size(M,1) if M(x,y)==0 a = 0; x = normovani(size(m,1),x-1); y = normovani(size(m,2),y+1); function[a] = VytvorCtverecek(metoda,koeficient); %přídatná funkce,vytvoří čtvereček podle zadané metody (A=1,B=2,C=3)a koeficientu k switch metoda case 1 A = [4*koeficient 4*koeficient-3; 4*koeficient-2 4*koeficient-1]; case 2 A = [4*koeficient-3 4*koeficient; 4*koeficient-2 4*koeficient-1]; case 3 A = [4*koeficient-3 4*koeficient; 4*koeficient-1 4*koeficient-2]; 1.4 Výstupy na obrazovku pro různé vstupy 6
7 1.5 Závěr Pomocí funkce tic-toc v Matlabu jsem zjistil, že výpočet magického čtverce pro velká n pomocí mé funkce trvá bohužel déle, než pomocí funkce magic(). Je to možná způsobeno tím, že Matlab používá ještě složitější algoritmus pro generování tohoto čtverce, založený nejspíše na metodě rozděl a panuj. Tato metoda spočívá v tom, že si čtverec postupně rozdělíme na menší čtverce, které vyřešíme zvlášť a dále budeme prohazovat celé jejich bloky za pomocí metody popsané pro n liché. Použití daného řešení by však překračovalo mnohonásobně délku funkce MagickyCtverec(), která je již v tomto případě už i tak dost komplikovaná. Níže uvádím zdroje, odkud jsem dané algoritmy nastudoval a pomocí nich napsal výslednou funkci. 1.6 Reference [1] [2] [3] [4] 7
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Magické čtverce. Tomáš Roskovec. Úvod
Magické čtverce Tomáš Roskovec Úvod Magické čtverce patří k dávným matematickým hrátkám, které i přes dvoutisíciletou historii dodnes nejsou zcela prozkoumány. Během přednášky se budeme zabývat nejprve
[1] LU rozklad A = L U
[1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer
Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi
2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí
Příklad elektrický obvod se stejnosměrným zdrojem napětí
Příklad elektrický obvod se stejnosměrným zdrojem napětí Určete proudy 18, 23, 4, 5, 67 v obvodu na obr., je-li dáno: 1 = 1 Ω, 2 = 2 Ω, 3 = 3 Ω, 4 = 5 Ω, 5 = 3 Ω, 6 = 2 Ω, 7 = 4 Ω, 8 = 4,5 Ω, U = 6 V.
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p Např: 2 2 + (-2) 4 + 0 0 + 1 1 = -3 INVERZNÍ MATICE Pro čtvercovou matici B může (ale nemusí) existovat
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy
1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném
2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
KTE / PPEL Počítačová podpora v elektrotechnice
KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov 3. 10. 2012 Základy práce s výpočetními systémy opakování a pokračování
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Číselné vektory, matice, determinanty
Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
4EK213 Lineární modely. 12. Dopravní problém výchozí řešení
4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování
Soustava m lineárních rovnic o n neznámých je systém
1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
Matice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
1 0 0 u 22 u 23 l 31. l u11
LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23
4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
D 11 D D n1. D 12 D D n2. D 1n D 2n... D nn
Inversní matice 1 Definice Nechť je čtvercová matice řádu n Čtvercovou matici B řádu n nazveme inversní maticí k matici, jestliže platí B=E n =B, kdee n jeodpovídajícíjednotkovámatice 2 Tvrzení Inversní
2. ZÁKLADY MATICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY
2. ZÁKLADY MAICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY V této kapitole se dozvíte: jak je definována reálná nebo komplexní matice a co rozumíme jejím typem; co jsou to prvky matice, co vyjadřují jejich indexy
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
Magické čtverce. Bára Kociánová
Magické čtverce Bára Kociánová Abstrakt. Příspěvek se zabývá magickými čtverci, které patří spíše do rekreační matematiky. Popisuje jejich základní vlastnosti, uvádí zajímavosti z historie a na závěr podává
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
9.3. Úplná lineární rovnice s konstantními koeficienty
Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je
Univerzitní licence MATLABu. Pište mail na: se žádostí o nejnovější licenci MATLABu.
Univerzitní licence MATLABu Pište mail na: operator@service.zcu.cz se žádostí o nejnovější licenci MATLABu. * násobení maticové K = L = 1 2 5 6 3 4 7 8 Příklad: M = K * L N = L * K (2,2) = (2,2) * (2,2)
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.
[] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
Programování I. Martin Pergel, perm@kam.mff.cuni.cz
30. září 2009 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem,
Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
while cyklus s podmínkou na začátku cyklus bez udání počtu opakování while podmínka příkazy; příkazy; příkazy; end; % další pokračování programu
while cyklus s podmínkou na začátku cyklus bez udání počtu opakování while podmínka příkazy; příkazy; příkazy; end; % další pokračování programu podmínka je libovolný logický výraz s logickou hodnotou
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A =
3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35
1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný
Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A
Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Úvod do Matlabu. Praha & EU: Investujeme do vaší budoucnosti. 1 / 24 Úvod do Matlabu
Vytěžování dat, cvičení 1: Úvod do Matlabu Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fakulta elektrotechnická, ČVUT 1 / 24 Úvod do Matlabu Proč proboha Matlab? Matlab je SW pro
matice([[1,1,0,0,0],[1,1,1,0,0],[0,1,1,0,0],[0,0,0,1,1],[0,0,0,1,1]],1). matice([[1,1,1],[1,1,0],[1,0,1]],2).
% Zápočtový program % souvislost grafu % popis algoritmu a postupu % Program využívá algoritmu na násobení matic sousednosti A. % Příslušná mocnina n matice A určuje z kterých do kterých % vrcholů se lze
Nápovědy k numerickému myšlení TSP MU
Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ107/2200/280141 Soustavy lineárních rovnic Michal Botur Přednáška 4 KAG/DLA1M: Lineární
2. Schurova věta. Petr Tichý. 3. října 2012
2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci
4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
M - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.
Polynomy Polynom je možno definovat dvěma způsoby: jako reálnou nebo komplexní funkci, jejichž hodnoty jsou dány jistým vzorcem, jako ten vzorec samotný. [1] První způsob zavedení polynomu BI-LIN, polynomy,
Základy algoritmizace a programování
Základy algoritmizace a programování Příklady v MATLABu Přednáška 10 30. listopadu 2009 Řídící instrukce if else C Matlab if ( podmínka ) { } else { } Podmíněný příkaz if podmínka elseif podmínka2... else
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle
Programovani v Maplu Procedura
Programovani v Maplu Procedura Priklad: procedura, ktera scita 2 cisla: a + 2*b soucet := proc (a, b) local c; # lokalni promenna - existuje a meni se jenom uvnitr procedury c:=a+b; # globalni promenna
3. podzimní série. ... {z }
3. podzimní série Téma: Kombinatorika Datumodeslání: º ÔÖÓ Ò ¾¼¼ ½º ÐÓ Ó Ýµ Monča potřebuje zatelefonovat Pepovi, avšak nemá u sebe svůj telefonní seznam PraSátek. Zná však předvolbu 723 a vzpomněla si,
cyklus s daným počtem opakování cyklus s podmínkou na začátku (cyklus bez udání počtu opakování)
Řídící příkazy: if podmíněný příkaz switch přepínač for while cyklus s daným počtem opakování cyklus s podmínkou na začátku (cyklus bez udání počtu opakování) if logický_výraz příkaz; příkaz; příkaz; Podmínka
Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...
Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................
Neuronové sítě Minimalizace disjunktivní normální formy
Neuronové sítě Minimalizace disjunktivní normální formy Zápis logické funkce Logická funkce f : {0, 1} n {0, 1} Zápis základní součtový tvar disjunktivní normální forma (DNF) základní součinový tvar konjunktivní
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Příklad: Součet náhodných čísel ve vektoru s počtem prvků, které zadá uživatel, pomocí sum() a pomocí cyklu for. Ověříme, že příliš výpisů na
Příklad: Součet náhodných čísel ve vektoru s počtem prvků, které zadá uživatel, pomocí sum() a pomocí cyklu for. Ověříme, že příliš výpisů na obrazovku zpomaluje tím, že zobrazíme okno (proužek) o stavu