ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 6. Vysoká škola technická a ekonomická V Českých Budějovicích

Rozměr: px
Začít zobrazení ze stránky:

Download "ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 6. Vysoká škola technická a ekonomická V Českých Budějovicích"

Transkript

1 Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Přednáška č. 6 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví

2 Obvodové konstrukce V našich klimatických podmínkách platí skutečnost, že po dobu většího počtu dní během roku jsou teploty vnitřního vzduchu v interiérech budov vyšší, než teploty venkovního vzduchu. Z této skutečnosti se pak vychází při návrhu obvodových konstrukcí. Střechy a svislé obvodové konstrukce se navrhují a posuzují z hlediska: 1. Návrhových teplot a relativních vlhkostí venkovního vzduchu (θ e, φ e ). 2. Návrhových teplot a relativních vlhkostí vnitřního vzduchu (θ i, φ i ). K difúzi vodní páry skrze střechu a svislé obvodové konstrukce dochází po dobu většího počtu dní v roce směrem z interiéru do exteriéru. 2

3 Obvodové konstrukce Veškeré střechy a svislé obvodové konstrukce se tedy v našich klimatických podmínkách navrhují na základě dvou předpokladů: 1. Teploty vnitřního vzduchu v interiérech budov jsou vyšší než teploty venkovního vzduchu (θ i > θ e ). 2. Parciální tlaky vodní páry obsažené ve vzduchu v interiérech budov jsou vyšší než parciální tlaky vodní páry obsažené ve vzduchu v exteriéru (p di > p de ). Pro konstrukční návrh obvodových konstrukcí z toho vyplývají následující dvě konstrukční zásady: 1. Tepelný odpor R střechy či svislé obvodové konstrukce se musí směrem od interiéru k exteriéru zvyšovat. 2. Difúzní odpor R d, resp. ekvivalentní difúzní tloušťka r d, střechy či svislé obvodové konstrukce se musí směrem od interiéru k exteriéru snižovat. 3

4 Obvodové konstrukce Testovaný vzorek zahrnuje 150 energeticky pasivních objektů, u kterých jsou známy sledované parametry tepelné izolace obvodového pláště. Realizace v letech 2004 až

5 Obvodové konstrukce Testovaný vzorek zahrnuje 150 energeticky pasivních objektů, u kterých jsou známy sledované parametry tepelné izolace obvodového pláště. Realizace v letech 2004 až Stavební materiál Absolutní četnost Relativní četnosti Stěna Lehký dřevěný skelet % Konstrukce SWP % Dřevěné sendvičové panely % Vápenopískové tvárnice % Železobeton ve ztraceném 10 7 % bednění Pórobetonové tvárnice 9 6 % Keramické tvárnice 1 1 % Jiné, nespecifikováno 6 4 % 5

6 Lehký konstrukční systém Lehké konstrukce dřevostavby Dostatečné tepelně-izolační vlastnosti při menších tloušťkách stěn Výhodou rychlost výstavby, menší pracnost a obvykle i nižší cena Použití dřeva je ohleduplné k ŽP a také k následné likvidaci Nevýhodou nižší akumulační schopnost (rychlé ohřátí a vychladnutí) Dřevostavby nevyžadují většinou příliš staticky únosné základy (patky) možnost umístěné konstrukce nad terénem odvětrávaný montážní prostor pod objektem odpadá nutnost hydroizolace, snížení radonového rizika 6

7 Dřevostavby - Fošnové konstrukce Nebo také lehký dřevěný skelet (sloupkový systém) Tradiční systém, používaný v celém světě (Sev. Amerika) Svislé dřevěné prvky staticky spolupůsobí s velkoformátovými deskami (OSB) Systém Two by Four původní rozměry cca 50 x 100 mm Nejčastěji využívají sloupky o rozměru: 160/60, 180/60, 200/60 Sloupky osově umístění s roztečí 625 mm. Svislé prvky jsou nejčastěji fošny z masivního dřeva (TM) Kombinované I nosníky (Steico), pásnice ze dřeva, stojina např. OSB Žebříkové nosníky (stojina z desky přerušená) Rám z nosných prvků se opláští konstrukční nosnou deskou, která zajistí tuhost celé konstrukce 7

8 Dřevostavby Fošnové konstrukce 8

9 Dřevostavby Fošnové konstrukce 9

10 Dřevostavby - Fošnové konstrukce Původní standardní řešení řešení: Z vnější strany rošt a obklad či tvrdé tepelně izolační desky a omítka OSB desky z vnější strany Prostor mezi sloupky se vyplní izolací (minerální vlna, foukaná TI) Překrytí parozábranou Instalace roštu s tepelnou izolací a doplnění vnitřní obkladem Problematické díky citlivosti na kvalitnímu provedení parozábrany v ploše i ve spojích. 10

11 Dřevostavby - Fošnové konstrukce Nyní se preferuje systém s OSB deskami z interiéru Zde je za splnění podmínek možné vynechat parozábranu Použití kvalitních OSB desek (nejlépe na P+D), spoje přelepit vhodnou páskou!!! Z venkovní strany může být základní konstrukce doplněná deskami s nižším difuzním odporem (minerální vláknité desky) 11

12 Dřevostavby Panelový systém Systém prefabrikace montovaných dřevostaveb představuje úsporu času a přesnější výrobu stavebních dílců Výhodou krátký čas výstavby, nezávislost na počasí Nutnost použití těžké techniky při montáži Panely bývají na celou výšku nebo délky obvodové stěny 12

13 Masivní dřevěné panely Velkoformátové masivní panely z křížem vrstveného masivního dřeva (CLT cross laminated timber) např. NOVATOP SOLID Panely se vyrábí z vysušených smrkových lamel skládaných do vrstev, orientace vláken jednotlivých vrstev je vždy kolmá k sousedním vrstvám. Počet vrstev různý (konečnou tloušťku panelu) Pro stěny: 62, 84 (42/42), 124 (62/62) mm Pro stropy: 81 (27/27/27), 84 (42/42), 116 (27/62/27) mm 13

14 Dřevostavby Masivní panely 14

15 Dřevostavby Masivní panely 15

16 Masivní zděné konstrukce Masivní (těžké) konstrukce zděné stavby V současnosti převažují stavby z keramických pálených materiálů Tradice keramických pálených bloků je velmi silná Možnost použití cihel a bloků nejrůznějších materiálů: Keramické Vápenopískové Betonové Lehčené silikátové Z hlediska akumulace tepla a akustického útlumu volíme materiály s větší objemovou hmotností a pevností (i při mále tloušťce statická únosnost) Z vnější strany zateplujeme materiály s velkou tepelně izolační schopností 16

17 Masivní zděné konstrukce Tloušťka cca 240 mm u keramiky, tvarovek z lehčeného betonu Tloušťka cca 120 mm u ŽB monolitu nebo betonových prefabrikátů Vnější část nosné stěny doplněna tepelně-izolační vrstvou: Kontaktní zateplovací systémy Větraným vnějším pláštěm, roštem a tepelnou izolací Méně často sendvičová konstrukce s režného zdiva 17

18 Masivní zděné konstrukce Možnost využití keramických tvarovek s dutinami vyplněných izolačními hmotami Vhodné využít zejména v kombinaci s dodatečnou tepelnou izolací U jednovrstvé konstrukce je nutno velmi dobře posoudit případné detaily problematických míst u napojení s jinými konstrukcemi 18

19 Tepelné izolace Tloušťka izolace při vnějším zateplení masivní stavby na úroveň běžnou u pasivních domů U = 0,12 W/(m².K). Nosnou vrstvu tvoří vápenopískové cihly tloušťky 175 mm 19

20 Tepelné izolace Expandovaný pěnový polystyren (EPS) Stále nejrozšířenějším a nejpoužívanějším izolantem Vzniká vypěňováním do forem jako produkt polymerace styrenu Přidáním retardérů hoření se zajišťuje samozhášivost Výhodou nízká cena a dostupnost Ve stavitelství se používají 4 základní typy: Z (základní) nízká přesnost desek, použití u podlah S (stabilizovaný) použití ve střechách F (fasádní) vysoká přesnost desek, tolerance 2 mm na 0,5 m, zateplovací systémy Perimeter desky minimálně nasákavé a mrazuvzdorné, uzavřená struktura, vhodné v místech při možném kontaktu s vodou (sokl) Typ polystyrenu se označuje např. EPS 70 S. Číslo udává pevnost v tlaku v kpa. Běžně jsou k dostání polystyreny tříd 50, 70, 100, 150, 200 a

21 Tepelné izolace Expandovaný pěnový polystyren (EPS) Materiál běžně dosahuje hodnot deklarovaného součinitele tepelné vodivosti λ D = 0,036 W/(m.K) pro EPS 100. Dnes se už častěji používá polystyren s příměsí grafitu, který dosahuje hodnot λ D až 0,031 W/(m.K). cca o 20 % menší tloušťka TI Expandovaný polystyren nelze dlouhodobě vystavit vlhku ani účinkům UV záření a je omezená i jeho pevnost. 21

22 Tepelné izolace Expandovaný pěnový polystyren (EPS) U novostaveb se EPS upevňuje při dostatečně soudržném podkladním materiálu, rovinatosti a výšce objektu do 8 m nejčastěji celoplošným lepením bez mechanického kotvení V ostatních případech a u rekonstrukcí je nutné desky mechanicky kotvit hmoždinkami Běžné talířové hmoždinky procházející izolantem jsou dražší a kvůli nutnosti zapouštět je do izolantu a následně překrýt izolační zátkou i pracnější 22

23 Tepelné izolace U nerovných a nesoudržných podkladů je možno využít tzv. lepící kotvy Kotva se zakotví hluboko do nosné konstrukce, na talíř kotvy se následně lepí izolační vrstva kotva neprochází vrstvou tepelné izolace 23

24 Tepelné izolace Minerální vlna (MW) Po EPS druhou nejrozšířenější variantou tepelní izolace Vyrábí se průmyslovým tavením hornin (čedič, křemen, ) Podle suroviny kamenná nebo skelná minerální vlna Pojivem nejčasněji formaldehydové pryskyřice nahrazovány!!! Desky jsou hydrofobizované, ale nelze je trvale vystavit vlhku Běžně dosahují tepelné vodivosti λ D mezi 0,035 0,040 W/(m.K) Výhodou nehořlavost a odolnost vůči vysokým teplotám Nízký difuzní odpor a tím vysoká paropropustnost (větrané fasády) Aplikace klasickým kontaktním způsobem (lepení a kotvení) nebo vkládání desek či foukání do roštů Násákavost nutno chránit zhoršení hodnot tepelné vodivosti 24

25 Tepelné izolace Celulóza Tepelná izolace z celulózových vláken vyrobená recyklací papíru Papír se rozmělní a rozvlákní, následně se přimíchají přísady proti hnilobě, požáru a hlodavcům Aplikace pomocí strojního foukání za sucha (půdy) nebo objemovým plněním do připravených dutin nutno počítat se zhutněním Při aplikaci nevzniká žádný odpad U volného foukání cca 30 kg/m 3, u foukání do dutin od 70 kg/m 3 Celulóza dosahuje podle způsobu aplikace a objemové hmotnosti hodnot λ D = 0,035 0,042 W/(m.K), Navíc má nízký difuzní odpor 25

26 Tepelné izolace Izolace s dřevitých vláken, konopí a lnu Desky z dřevitých vláken jsou ekologické a šetrné k ŽP Při výrobě se používá jen minimální množství lepidla Díky vysoké měrné tepelné kapacitě (2100 J/(kg.K) zabraňují přehřívání interiéru v letních měsících Desky jsou paropropustné Hodnota λ D se pohybuje v rozmezí 0,038 0,050 W/(m.K) 26

27 Tepelné izolace Extrudovaný pěnový polystyren (XPS) Od expandovaného polystyrenu se liší jak způsobem výroby, tak vlastnostmi Na rozdíl od EPS má uzavřenou strukturu bez mezer XPS se vyrábí protlačením pěny (extruzí) XPS vyniká dobrými parametry pevnosti v tlaku (únosnost) a minimální nasákavostí Součinitel tepelné vodivosti, která se pohybuje v intervalu 0,029 0,038 W/(m.K). U pasivních domů se díky svým vlastnostem XPS nejčastěji používá při založení betonové desky na izolaci, v inverzní neboli obrácené skladbě ploché střechy (tedy i zelené střechy), dále při izolování základů, suterénu, soklu, podlahy a eliminaci tepelných mostů. 27

28 Tepelné izolace Pěnový polyuretan (PUR) Ve stavebnictví se používá tvrdá polyuretanová pěna Velmi nízkým součinitel tepelné vodivosti λ D až pod hodnoty 0,025 W/(m.K) Aplikuje se buď přímo na místě stříkáním nebo litím, nebo je dodáván ve formě desek či tvarovek Nesnášenlivý na UV záření (stejně jako EPS a XPS) Vysoká energetická náročnost a produkce škodlivin při výrobě Diskutabilní obsah izokyanátů jakožto alergenů 28

29 Tepelné izolace Pěnové sklo Vzniká ztavením směsi skleněného a uhlíkového prášku Úplné nehořlavý, nenasákavý a parotěsnosný Vysoká cena Ve formě desek se využívá především pro přerušení tepelného mostu, například u paty nosných stěn Větší využití má pěnosklo v průmyslu, kde se aplikuje na podlahy či střechy s extrémním tlakovým namáháním Součinitel tepelné vodivosti se pohybuje v závislosti na únosnosti mezi 0,040 0,050 W/(m.K) Dalším produktem je štěrk z pěnového skla, který se využívá zejména při zakládání domu na izolaci, což umožňuje dosáhnout celistvé izolační obálky bez tepelných mostů Při aplikaci je potřeba počítat s koeficientem zhutnění 1,2 1,4, při kterém dosahuje štěrk pěnového skla hodnotu λ D = 0,075 0,085 W/(m.K) Pro pasivní domy tak potřebujeme vrstvu přibližně 500 mm zhutněného skleněného štěrku. 29

30 Tepelné izolace Sláma Obliba slámy jako tepelné izolace v poslední době stoupá Běžně se používá v kombinaci s jinými přírodními materiály (hliněné omítky, nepálené cihly) Fyzikální vlastnosti závisí z velké části na kvalitě a objemové hmotnosti slaměných balíků Vzhledem k nerovnosti a rozměrové nepravidelnosti balíků nutno počítat s vyšší pracností Kvalitně slisované slaměné balíky o objemové hmotnosti kg/m³ dosahují hodnotu λ D = 0,052 W/(m.K) při použití kolmo na stébla. Možnost použití jako izolace u nosné stěny nebo nosná konstrukce tvořena přímo balíky slámy 30

31 Tepelné izolace Vakuové izolace V současné době high-tech izolační materiály Vzhledem k vysoké ceně použití velmi zřídka Dodávané ve formě panelů obalených v metalizované fólii Po započítání vlivu okraje desek a vlivu stárnutí se ve výpočtu počítá s hodnotou λ D = 0,008 W/(m.K). Při těchto hodnotách stačí použít k izolování stěny na úroveň pasivního domu pouze 6 cm tlustý panel. 31

32 Tepelné izolace Aerogelové izolace Aerogelové izolace tvoří nanoporézní materiál se základem v silicagelu. Používá aerogel nanesený na tkaninu tloušťky 10 mm Udávaná tepelná vodivost je λ D = 0,014 W/(m.K). Aerogelové izolace slouží pro řešení problematických detailů, kde není možné použít větší tloušťky izolací, například v místě parapetu nebo žaluziového boxu 32

33 Tepelné izolace Testovaný vzorek zahrnuje 150 energeticky pasivních objektů, u kterých jsou známy sledované parametry tepelné izolace obvodového pláště. Realizace v letech 2004 až

34 Obvodové konstrukce 34

35 Střešní konstrukce Střešní konstrukce může být řešena jako: Jednoplášťová Dvouplášťová s větranou vzduchovou dutinou U masivní plochých střech není zpravidla obtížné zvýšit tloušťku tepelné izolace na cca mm Nosná konstrukce dvouplášťové větrané střechy: Úsporný dřevěný sbíjený vazník, seshora s celoplošným bedněním (OSB, dřevovláknité desky) Na spodní pásy vazníku je možné připevnit podbití, na kterou lze umístit tepelnou izolaci Vzduchový prostor pod střešní krytinou musí být napojen pomocí větracích kanálů na venkovní prostředí I horní plášť větrané střechy musí mít určitý tepelný odpor (0,2-0,5 W/(m 2 K)), který zabrání kondenzaci vodní páry v dutině Pokud není možné splnit požadavek na tepelný odpor, je nutné vrstvu tepelné izolace chránit proti stékající a odkapávající vodě (difuzní fólie) 35

36 Střešní konstrukce U šikmých střech je provedení tepelné izolace o vhodné tloušťce značně problematičtější než u plochých střech, podobá se řešením stěnových konstrukcí dřevostaveb. Využívají se dvojité nosné rošty z hranolů a fošen, I nosníky místo klasických krokví Střešní rovina je ztužena celoplošným podbitím z desek (OSB) Tvar krokví ovlivňuje hodnotu součinitele prostupu tepla 36

37 Střešní konstrukce Ploché střechy 37

38 Střešní konstrukce Šikmé střechy 38

39 Střešní konstrukce Oblíbené jsou také zelené (vegetační) střechy Doporučuje se volit střecha s extenzivní zelení. Taková střecha značně přispívá k lepší tepelné setrvačnosti budovy. Navíc může také akumulovat nezanedbatelné množství srážkové vody. 39

40 Okna a dveře Nejslabší článek obvodového pláště (až 40 % ztrát z výplní otvorů) Zásadní význam pro estetické, funkční a energetické vlastnosti Výsledný prostup tepla oknem je ovlivněn: Vlastnostmi zasklívací jednotky a vlastnostmi rámu Poměrem plochy zasklívací jednotky a celého okna Vlastnostmi distančního rámečků a jeho délkou Vazbou mezi oknem a obvodovou stěnou Skutečným provedením Všechny vlastnosti musí být vyvážené: Zasklení o špičkové kvalitě nemá smysl osazovat do rámů průměrné kvality Celé okno o špičkové kvalitě nemá smysl osazovat do nesprávné polohy obvodové stěny Nabídka řešení je bohatá a neustále se rozšiřuje o nové technologie 40

41 Okna a dveře Plnění dutin mezi skly plynem (Argonem, Kryptonem) z důvodu nižší tepelné vodivosti Izolační dvojsklo s úpravou povrchu pokovením (snížení sálavé výměny tepla v dutině mezi skly) Izolační trojskla jsou těžší a vyžadují masivnější konstrukci rámů Využití speciálních průhledných fólií HEAT MIRROR Rámy mají v současné době horší vlastnosti než zasklení Plastové rámy s ocelovým výztužným profilem a 5 až 8 komorami Počet komor nevypovídá o tepelně izolačních vlastnostech, důležitou roli hraje konstrukční řešení komor. Dřevěné rámy v mnoha odlišných provedeních: Kombinace s izolační vrstvou z korku nebo polyuretanu, s vyfrézovanými dutinami vzduchovými dutinami, vytvořené z lamel z tvrdého dřeva s vypěněním polyuretanovou hmotou, v kombinaci s eloxovaným hliníkem na vnější straně 41

42 Okna a dveře Trojsklo, rám dřevo polyuretan - hliník Trojsklo, rám celodřevěný Trojsklo, dřevěný rám s nahrazením středové lamely tepelnou izolací 42

43 Okna a dveře Výsledný součinitel prostupu tepla oken se shodným zasklením i rámem se liší podle jejich celkové velikosti (mění se poměr rámu okna, délka dilatačního rámečku a plocha zasklení) I při stejném typu oken mohou mít různá okna u objektu jiné tepelně technické vlastnosti Správně by se měl být součinitel prostupu tepla pro každé okno vypočítán zvlášť. Zpravidla je výhodnější použít menší počet oken o větší ploše, případně okna sdružovat do větších celků 43

44 Okna a dveře Plocha stěny (bez okenních otvorů) A (m 2 ) Součinitel prostupu tepla stěny U (m 2 /(W.K)) 0,15 0,15 Plocha okenních otvorů A w (m 2 ) 3 3 Součinitel prostupu tepla okna U w (m 2 /(W.K)) 0,71 0,87 Plocha rámu A f (m 2 ) 0,67 0,84 Součinitel prostupu tepla rámu U f (m 2 /(W.K)) 0,8 0,8 Plocha zasklení A g (m 2 ) 1,33 1,16 Součinitel prostupu tepla zasklení U g (m 2 /(W.K)) 0,6 0,6 Celkový obvod okna (oken) l (m) 8 12 Lineární činitel prostupu tepla Ψ (W/(m 2 K) 0,05 0,05 Tepelná propustnost fasády L (W/K) 4,78 5,46 Rozdíl tepelné ztráty 100 % 114 % 44

45 Okna a dveře Rovina okna by měla být co nejblíže středu roviny tepelné izolace (pokud je to technologicky proveditelné) Velmi častým požadavkem je předsazení okna na vnější líc nosné stěny: Pomocí osazovacího boxu z OSB Dřevěných hranolů Kovové úhelníky Ocelové kotevní pásky 45

46 Podlahy a základy Převážná většina nízkoenergetických a pasivních domů je nepodsklepená (podlaha vstupního podlaží na terénu) Řešení umožňující provedení potřebné tloušťky TI celá řada: Na hydroizolace osazení tuhých tepelně izolačních desek a na ně vrstvu betonové mazaniny Potřebnou tloušťku tepelné izolace z lehkých minerálních vláken je možno umístit do dvojitého dřevěného podlahového roštu a následně uzavřít cementotřískovými deskami nebo OSB deskami Využití sypkých izolací (např. keramzit, pěnové sklo, liapor) Pozornost třeba věnovat konstrukčnímu uspořádání při obvodu budovy (vedení tepla při rozhraní betonové desky, základů a soklu) Desky z extrudovaného polystyrenu vkládané do bednění nebo lepené dodatečně) vhodné umístit na čelo betonové desky i základy z vnější strany 46

47 Podlahy a základy Možné řešení základové desky: Na připravenou zeminu se naskládají desky z extrudovaného polystyrenu s potřebnou únosností Po obvodu se použijí speciální tvarovky zajišťující plynulý přechod na svislou tepelnou izolace Položí se potřebná výztuž a celá forma se zalije betonovou směsí 47

48 Podlahy a základy Možné řešení základové desky s využitím sypké izolace: Granulát z pěnového skla (Technopor) umělé kamenivo frakce mm s malou nasákavostí, 48

49 Podlahy a základy U sypaných izolací se používají dva způsoby provedení základové desky - s ohraničením v místě soklu (vlevo) nebo s vodorovným přesahem sypaného materiálu (vpravo) 49

50 Podlahy a základy Napojení betonové desky a obvodových stěn Nutné přerušit nebo omezit vliv tepelného mostu Vložení pruhu extrudovaného polystyrenu nebo pěnového skla Nahrazení první vrstvy cihel tvarovou z lehčeného betonu (popř. pěnovým sklem) Tepelná propustnost detailu [%) 100 % cca 91 % cca 83 % cca 78 % Bez přídavné izolace Čelo pásu s XPS Bloky pěnového skla o tl. 100 mm Kombinace 50

51 Vnitřní konstrukce Na vnitřní konstrukce kladeny menší nároky Konstrukce oddělující vytápěné prostory s odlišnou teplotou musí splňovat požadavky součinitele prostupu tepla dle ČSN Vnitřní konstrukce ovlivňují tepelnou setrvačnost a akumulaci tepla Na krátkodobé akumulaci a uvolňování tepla (cyklus 24 hod) se podílí jen malá, několikaticentimetrová vrstva od povrchu konstrukce Vhodné věnovat pozornost průvzdušnosti vnitřních konstrukcí mohou rušit správnou funkci větracích systémů 51

52 Tepelné mosty Omezením tepelných mostů je nezbytné u výstavby nízkoenergetických a pasivních budov Obecně je vhodné preferovat málo členité povrchy obálky budovy s důsledně zajištěnou souvislou tepelnou izolací bez zmenšení její tloušťky Řešení balónů, lodžií a předsazených prvků na vnější fasádě: Posouzení jejich nezbytnost, případné vyloučení z projektu Změna statického schématu (zrušení původního vykonzolování desky) Samostatné podepření konstrukce Využití speciálních nosníků pro přesušení tepelného mostu Lokální zavěšení balkónu nebo stříšky (vyhnout se bodovým TM) 52

53 Tepelné mosty 53

54 Dotazy či připomínky: ENS Děkuji za pozornost Ing. Michal Kraus, Ph.D. 54

PTV. Progresivní technologie budov. Seminář č. 3 a 4. Vysoká škola technická a ekonomická V Českých Budějovicích

PTV. Progresivní technologie budov. Seminář č. 3 a 4. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích PTV Progresivní technologie budov Seminář č. 3 a 4 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus,

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 13. ZATEPLENÍ OBVODOVÝCH STĚN Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

KAPITOLA 13: TEPELNÉ IZOLACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

KAPITOLA 13: TEPELNÉ IZOLACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KAPITOLA 13: TEPELNÉ IZOLACE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

03 TEPELNÉ IZOLACE. www.pasivnidomy.cz. Radíme a vzděláváme

03 TEPELNÉ IZOLACE. www.pasivnidomy.cz. Radíme a vzděláváme 03 TEPELNÉ IZOLACE Radíme a vzděláváme Centrum pasivního domu je neziskovým sdružením právnických i fyzických osob, které vzniklo za účelem podpory a propagace standardu pasivního domu a za účelem zajištění

Více

Podklad musí být hladký, čistý a bez nerovností. Izolaci nelze aplikovat, pokud jsou na ploše výstupky, otřepy, hřebíky, šrouby, kamínky atd.

Podklad musí být hladký, čistý a bez nerovností. Izolaci nelze aplikovat, pokud jsou na ploše výstupky, otřepy, hřebíky, šrouby, kamínky atd. λ Izolace vakuová má využití v místech, kde není dostatek prostoru pro vložení klasické tepelné izolace. Je vhodná i do skladeb podlah s podlahovým vytápěním. Používá se ve stavebnictví (v nezatížených

Více

OBVODOVÉ KONSTRUKCE Petr Hájek 2015

OBVODOVÉ KONSTRUKCE Petr Hájek 2015 OBVODOVÉ KONSTRUKCE OBVODOVÉ STĚNY jednovrstvé obvodové zdivo zdivo z vrstvených tvárnic vrstvené obvodové konstrukce - kontaktní plášť - skládaný plášť bez vzduchové mezery - skládaný plášť s provětrávanou

Více

FASÁDNÍ PLÁŠTĚ KONTAKTNÍ A NEKONTAKTNÍ SKLÁDANÉ PLÁŠTĚ

FASÁDNÍ PLÁŠTĚ KONTAKTNÍ A NEKONTAKTNÍ SKLÁDANÉ PLÁŠTĚ FASÁDNÍ PLÁŠTĚ KONTAKTNÍ A NEKONTAKTNÍ SKLÁDANÉ PLÁŠTĚ POZEMNÍ STAVITELSTVÍ III. Doc. Ing. Miloslav Pavlík, CSc. Fakulta architektury ČVUT v Praze ČLENĚNÍ FASÁDNÍCH PLÁŠŤŮ JEDNOVRSTVÉ FUNKCE NOSNÁ FUNKCE

Více

NPS. Nízkoenergetické a pasivní stavby. Vysoká škola technická a ekonomická V Českých Budějovicích

NPS. Nízkoenergetické a pasivní stavby. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích NPS Nízkoenergetické a pasivní stavby Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra

Více

PROGRESIVNÍ TECHNOLOGIE PRO IZOLAČNÍ SYSTÉMY

PROGRESIVNÍ TECHNOLOGIE PRO IZOLAČNÍ SYSTÉMY PROGRESIVNÍ TECHNOLOGIE PRO IZOLAČNÍ SYSTÉMY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu

Více

Technologie staveb Tomáš Coufal, 3.S

Technologie staveb Tomáš Coufal, 3.S Technologie staveb Tomáš Coufal, 3.S Co je to Pasivní dům? Aby bylo možno navrhnout nebo certifikovat dům jako pasivní, je třeba splnit následující podmínky: měrná roční potřeba tepla na vytápění je maximálně

Více

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům Klasický rodinný dům pro tři až čtyři obyvatele se sedlovou střechou a obytným podkrovím. Obvodové stěny vystavěny ze škvárobetonových tvárnic tl. 300 mm, šikmá střecha zateplena mezi krokvemi. V rámci

Více

PILÍŘE STAVITELSTVÍ I.

PILÍŘE STAVITELSTVÍ I. NOSNÉ STĚNY SLOUPY A PILÍŘE STAVITELSTVÍ I. KAMENNÉ STĚNY, SLOUPY A PILÍŘE Kamenné stěny lomové zdivo kyklopské zdivo kvádrové zdivo řádkové zdivo haklíkové zdivo haklíkov kové zdivo lomové zdivo lomové

Více

PROGRESIVNÍ MATERIÁLY PRO NÍZKOENERGETICKÉ A PASIVNÍ BUDOVY

PROGRESIVNÍ MATERIÁLY PRO NÍZKOENERGETICKÉ A PASIVNÍ BUDOVY PROGRESIVNÍ MATERIÁLY PRO NÍZKOENERGETICKÉ A PASIVNÍ BUDOVY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl

Více

SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům

SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z pórobetonových tvárnic tl. 250mm. Střecha je sedlová se m nad krokvemi. Je provedeno fasády kontaktním zateplovacím

Více

Obr. 3: Pohled na rodinný dům

Obr. 3: Pohled na rodinný dům Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z keramických tvarovek CDm tl. 375 mm, střecha je sedlová s obytným podkrovím. Střecha je sedlová a zateplena

Více

Projektová dokumentace adaptace domu

Projektová dokumentace adaptace domu Projektová dokumentace adaptace domu Fotografie: Obec Pitín Starší domy obvykle nemají řešenu žádnou tepelnou izolaci nebo je nedostatečná. Při celkové rekonstrukci domu je jednou z důležitých věcí snížení

Více

Konstrukce K O N S T R U K C E V R S T E V 4/2012

Konstrukce K O N S T R U K C E V R S T E V 4/2012 K O N S T R U K C E V R S T E V 4/2012 Obsah 1 OBVODOVÁ STĚNA 1.1 Izolace minerální vlnou 1.2 Izolace měkkým dřevěným vláknem 1.3 Izolace celulózou 1.4 Izolace EPS 2 VNITŘNÍ STĚNA 2.1 CLT v pohledové jakosti

Více

PŘEKLADY OTVORY V NOSNÝCH STĚNÁCH

PŘEKLADY OTVORY V NOSNÝCH STĚNÁCH PS01 POZEMNÍ STAVBY 1 PŘEKLADY OTVORY V NOSNÝCH STĚNÁCH Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz OTVORY V NOSNÝCH STĚNÁCH kamenné překlady - kamenné (monolitické) nosníky - zděné klenuté překlady

Více

Pasivní domy Tepelná izolace

Pasivní domy Tepelná izolace Pasivní domy Tepelná izolace Dům v kožichu Pasivní dům má extrémně nízkou spotřebu tepla. Aby se do něj mohlo dodávat tak málo energie, a přesto v něm zůstala příjemná tepelná pohoda, je třeba teplo úzkostlivě

Více

Pozemní stavitelství. Nenosné stěny PŘÍČKY. Ing. Jana Pexová 01/2009

Pozemní stavitelství. Nenosné stěny PŘÍČKY. Ing. Jana Pexová 01/2009 Pozemní stavitelství Nenosné stěny PŘÍČKY Ing. Jana Pexová 01/2009 Doporučená a použitá literatura Normy ČSN: ČSN EN 1991-1 (73 00 35) Zatížení stavebních konstrukcí ČSN 73 05 40-2 Tepelná ochrana budov

Více

Technologické aspekty výstavby ze dřeva a materiálů na bázi dřeva v České republice

Technologické aspekty výstavby ze dřeva a materiálů na bázi dřeva v České republice Mendelova zemědělská a lesnická univerzita v Brně Lesnická a dřevařská fakulta Zdeňka Havířová Technologické aspekty výstavby ze dřeva a materiálů na bázi dřeva v České republice Zlín 14.10.2009 Téma semináře

Více

Pozemní stavitelství I. Zpracoval: Filip Čmiel, Ing.

Pozemní stavitelství I. Zpracoval: Filip Čmiel, Ing. Pozemní stavitelství I. Svislé nosné konstrukce Zpracoval: Filip Čmiel, Ing. NOSNÉ STĚNY Kamenné stěny Mechanicko - fyzikálnívlastnosti: -pevnost v tlaku až 110MPa, -odolnost proti vlhku, -inertní vůči

Více

Icynene chytrá tepelná izolace

Icynene chytrá tepelná izolace Icynene chytrá tepelná izolace Šetří Vaše peníze, chrání Vaše zdraví Icynene šetří Vaše peníze Využití pro průmyslové objekty zateplení průmyslových a administrativních objektů zateplení novostaveb i rekonstrukcí

Více

Termografická diagnostika pláště objektu

Termografická diagnostika pláště objektu Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.23 Zateplování budov pěnovým polystyrenem

Více

Termografická diagnostika pláště objektu

Termografická diagnostika pláště objektu Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO

Více

Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb

Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ZÁSADY NÁVRHU principy pro skladbu

Více

Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA

Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA o Anotace a cíl předmětu: návrh stavebních konstrukcí - kromě statické funkce důležité zohlednit nároky na vnitřní pohodu uživatelů

Více

Počet držáků izolace DH na 1 desku Airrock LD (Airrock SL)

Počet držáků izolace DH na 1 desku Airrock LD (Airrock SL) IZOLACE Běžné izolační materiály doporučené pro odvětrávané fasády s požadovanou tepelnou vodivostí a tloušťkou. (doplnit) Provětravané zateplovací systémy Provětrávané zateplovací systémy patří k jedné

Více

Seznam výrobků a materiálů společnosti DEK a.s. registrovaných v programu Nová zelená úsporám verze z

Seznam výrobků a materiálů společnosti DEK a.s. registrovaných v programu Nová zelená úsporám verze z TEPELNÉ IZOLACE EPS, PIR, PF Název DEKPERIMETER 200 DEKPERIMETER SD 150 DEKPERIMETER PV- NR75 TOPDEK 022 PIR DEKPIR FLOOR 022 Kingspan Kooltherm K5 Charakteristika Tepelněizolační desky z EPS s uzavřenou

Více

PODLAHY NA TERÉNU CB 01.11 CB 01.21 CB 01.31 * 1.) * 1.) * 1.)

PODLAHY NA TERÉNU CB 01.11 CB 01.21 CB 01.31 * 1.) * 1.) * 1.) PODLAHY NA TERÉNU CB 01.11 CB 01.11 podlaha přízemí - dřevěná: 1 - podlahové palubky / řemeny P+D kotvené do pera nebo lepené 2 - desky OSB 4PD TOP, (přelepené spáry) - polštáře 2x křížem + izolace CANABEST

Více

Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem

Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Bytový dům čp. 357359 Ulice: V Lázních 358 PSČ: 252 42 Město: Jesenice Stručný

Více

Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie

Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie Téma vývoje energetiky budov je v současné době velmi aktuální a stává se společenskou záležitostí, neboť šetřit

Více

NOSNÉ STĚNY, SLOUPY A PILÍŘE

NOSNÉ STĚNY, SLOUPY A PILÍŘE NOSNÉ STĚNY, SLOUPY A PILÍŘE KAMENNÉ STĚNY, SLOUPY A PILÍŘE Kamenné zdivo lomové zdivo haklíkové zdivo KAMENNÉ STĚNY Kamenné zdivo řádkové zdivo kyklopské zdivo kvádrové zdivo KAMENNÉ STĚNY vazba rohu

Více

Obr. 3: Pohled na rodinný dům

Obr. 3: Pohled na rodinný dům Samostatně stojící dvoupodlažní rodinný dům. Obvodové stěny jsou vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis. Střecha je pultová bez. Je provedeno

Více

TEPELNĚIZOLAČNÍ DESKY MULTIPOR

TEPELNĚIZOLAČNÍ DESKY MULTIPOR Kalcium silikátová minerální deska Tvarová stálost Vynikající paropropustnost Nehořlavost Jednoduchá aplikace Venkovní i vnitřní izolace Specifikace Minerální, bezvláknitá tepelně- izolační deska. Norma/předpis

Více

1. ZATEPLOVÁNÍ BUDOV 1.1 ROZDĚLENÍ. kontaktní zateplení fasád odvětrávané zateplení fasád. ostatní zateplení

1. ZATEPLOVÁNÍ BUDOV 1.1 ROZDĚLENÍ. kontaktní zateplení fasád odvětrávané zateplení fasád. ostatní zateplení Strana 1 (celkem 11) 1. ZATEPLOVÁNÍ BUDOV 1.1 ROZDĚLENÍ kontaktní zateplení fasád odvětrávané zateplení fasád ostatní zateplení 1.1.1 KONTAKTNÍ ZATEPLOVACÍ SYSTÉMY (ETICS) Požární bezpečnost Pro návrh

Více

Seznam výrobků a materiálů společnosti DEK a.s. registrovaných v programu Nová zelená úsporám verze z

Seznam výrobků a materiálů společnosti DEK a.s. registrovaných v programu Nová zelená úsporám verze z TEPELNÉ IZOLACE EPS (expandovaný polystyren), PIR (polyisokyanurát), PF (fenolitická pěna) Název Charakteristika Používá se pro vytvoření tepelněizolační vrstvy Kód SVT DEKPERIMETER 200 DEKPERIMETER SD

Více

Co to jsou stavební materiály (staviva)? materiály anorganického nebo organického původu používané k výstavbě budov

Co to jsou stavební materiály (staviva)? materiály anorganického nebo organického původu používané k výstavbě budov Co to jsou stavební materiály (staviva)? materiály anorganického nebo organického původu používané k výstavbě budov Co patří mezi stavební materiály? pojiva, malty betonové a železobetonové výrobky cihlářské

Více

SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU

SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z pórobetonových tvárnic tl. 250 mm, konstrukce stropů provedena z železobetonových dutinových

Více

10. Energeticky úsporné stavby

10. Energeticky úsporné stavby 10. Energeticky úsporné stavby Klíčová slova: Nízkoenergetický dům, pasivní dům, nulový dům, aktivní dům, solární panely, fotovoltaické články, tepelné ztráty objektu, součinitel prostupu tepla. Anotace

Více

Skladby konstrukcí. PVC: - barevnost viz.projekt interiéru kladené do disperzního lepidla provedení včetně soklu se zaoblením rádius 50 mm

Skladby konstrukcí. PVC: - barevnost viz.projekt interiéru kladené do disperzního lepidla provedení včetně soklu se zaoblením rádius 50 mm Skladby konstrukcí PVC: - barevnost viz.projekt interiéru kladené do disperzního lepidla provedení včetně soklu se zaoblením rádius 50 mm Dlažby: - keramická dlažba formátu velikost dle výběru architekta

Více

Sdružení EPS ČR ENERGETICKÉ VYHODNOCENÍ OBJEKTU NERD 1 V PRAZE-VÝCHOD

Sdružení EPS ČR ENERGETICKÉ VYHODNOCENÍ OBJEKTU NERD 1 V PRAZE-VÝCHOD ENERGETICKÉ VYHODNOCENÍ OBJEKTU NERD 1 V PRAZE-VÝCHOD CHARAKTERISTIKA OBJEKTU Rodinný dům pro čtyřčlennou rodinu vznikl za podpory Sdružení EPS ČR Nepodsklepený přízemní objekt s obytným podkrovím Takřka

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) Jan Tywoniak A428

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) Jan Tywoniak A428 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) 4 Jan Tywoniak A428 tywoniak@fsv.cvut.cz volba modelu pro výpočet vícerozměrného vedení tepla Lineární a bodový tepelný most Lineární

Více

TECHNICKÁ ZPRÁVA NÁVRH KOTVENÍ ETICS

TECHNICKÁ ZPRÁVA NÁVRH KOTVENÍ ETICS Zlepšení tepelně technických vlastností ZŠ a školní družiny V Bytovkách 803, Uhříněves, okres Praha D.1.2.b TECHNICKÁ ZPRÁVA NÁVRH KOTVENÍ ETICS V Praze 09.2014 Ing. Miroslav Zimmer Obsah A PODKLADY...

Více

SKLADBY KONSTRUKCÍ PODLAHY

SKLADBY KONSTRUKCÍ PODLAHY SKLADBY KONSTRUKCÍ PODLAHY P1 PODLAHA V 1.NP STĚRKA POLYURETANOVÁ PODLAHOVÁ STĚRKA DLE VÝBĚRU ARCHITEKTA 5mm VYROVNÁVACÍ SAMONIVELAČNÍ STĚRKA BETONOVÁ MAZANINA CEMFLOW CT-30-F6, VYZTUŽENÁ KARI SÍTÍ 4/150/150

Více

ZATEPLENÍ ŠIKMÉ STŘECHY DVOUPLÁŠŤOVÉ S IZOLACÍ MEZI A POD KROKVEMI, NAPOJENÍ NA OBVODOVÝ PLÁŠŤ

ZATEPLENÍ ŠIKMÉ STŘECHY DVOUPLÁŠŤOVÉ S IZOLACÍ MEZI A POD KROKVEMI, NAPOJENÍ NA OBVODOVÝ PLÁŠŤ min. 50mm min.100 ZATEPLENÍ ŠIKMÉ STŘECHY DVOUPLÁŠŤOVÉ S IZOLACÍ MEZI A POD MI, NAPOJENÍ NA OBVODOVÝ PLÁŠŤ KONTRA 1. VRSTVA IZOLACE ROCKWOOL MEZI MI : 160 mm 40mm 160 50 POZEDNICE 180140mm OKAPNIČKA HYDROIZOLACE

Více

Icynene. chytrá tepelná izolace. Šetří Vaše peníze, chrání Vaše zdraví

Icynene. chytrá tepelná izolace. Šetří Vaše peníze, chrání Vaše zdraví Icynene chytrá tepelná izolace Šetří Vaše peníze, chrání Vaše zdraví Icynene chytrá izolační pěna z Kanady, která chrání teplo Vašeho domova Co je to Icynene Icynene [:ajsinýn:] je stříkaná izolační pěna

Více

Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com

Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa jan.kurc@knaufinsula;on.com Zateplená dřevostavba Prvky které zásadně ovlivňují tepelně technické vlastnos; stěn - Elementy nosných rámových konstrukcí

Více

Obr. 2 Provětrávaná fasáda u novostavby před namontováním fasádního obkladu. Svislé laťování před pojistnou hydroizolací tvoří vzduchovou mezeru.

Obr. 2 Provětrávaná fasáda u novostavby před namontováním fasádního obkladu. Svislé laťování před pojistnou hydroizolací tvoří vzduchovou mezeru. TEPELNÉ IZOLACE Dům v kožichu Pasivní dům má extrémně nízkou spotřebu tepla. Aby v domě zůstala příjemná teplota i přesto, že se do něj dodává tak málo energie, je třeba teplo úzkostlivě chránit. Jedna

Více

Obr. 3: Řez rodinným domem

Obr. 3: Řez rodinným domem Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis.

Více

POPIS HODNOTA JEDNOTKA PRÁVNÍ PŘEDPIS 3x Ekopanel E60 rozměry: tloušťka šířka délka. 58 (tolerance +2 mm) 1200,

POPIS HODNOTA JEDNOTKA PRÁVNÍ PŘEDPIS 3x Ekopanel E60 rozměry: tloušťka šířka délka. 58 (tolerance +2 mm) 1200, Popis OBVODOVÁ STĚNA EKO3 - obklad obvodové nosné dřevěné rámové konstrukce Skladba tl. 380 - dřevovláknitá deska tl. 20 - KVH hranoly + tepelná izolace tl. 140 - dřevěný rošt tl. 40 Doporučené použití

Více

ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 4. Vysoká škola technická a ekonomická V Českých Budějovicích

ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 4. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Přednáška č. 4 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal

Více

DEK TAHÁK ZELENÁ ÚSPORÁM. SEZNAM VÝROBKŮ A MATERIÁLŮ SPOLEČNOSTI DEK a.s. REGISTROVANÝCH V PROGRAMU. www.dektrade.cz www.atelier-dek.

DEK TAHÁK ZELENÁ ÚSPORÁM. SEZNAM VÝROBKŮ A MATERIÁLŮ SPOLEČNOSTI DEK a.s. REGISTROVANÝCH V PROGRAMU. www.dektrade.cz www.atelier-dek. DEK TAHÁK SEZNAM VÝROBKŮ A MATERIÁLŮ SPOLEČNOSTI DEK a.s. REGISTROVANÝCH V PROGRAMU ZELENÁ ÚSPORÁM TEPELNÉ IZOLACE DEKTRADE Název Charakteristika Používá se pro vytvoření tepelněizolační vrstvy DEKWOOL

Více

Spodní stavba. Hranice mezi v tabulce uvedenými typy hydrofyzikálního namáhání se doporučuje provést přetažením hydroizolace v rozsahu 0,3 m.

Spodní stavba. Hranice mezi v tabulce uvedenými typy hydrofyzikálního namáhání se doporučuje provést přetažením hydroizolace v rozsahu 0,3 m. Spodní stavba Ochrana před pronikání podpovrchové vody (zemní vlhkosti, prosakující vodě a podzemní vodě) do konstrukcí je prováděna převážně povlakovou tj. vodotěsnou hydroizolací a to převážně asfaltovými

Více

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav Obsah: Úvod... 1 Identifikační údaje... 1 Seznam podkladů... 2 Tepelné technické posouzení... 3 Energetické vlastnosti objektu... 10 Závěr... 11 Příloha č.1: Tepelně technické posouzení konstrukcí obálky

Více

ETICS technické specifikace požadavky obecná charakteristika systém nebo výrobek všeobecné podmínky pro výběrové řízení

ETICS technické specifikace požadavky obecná charakteristika systém nebo výrobek všeobecné podmínky pro výběrové řízení ETICS technické specifikace požadavky obecná charakteristika systém nebo výrobek všeobecné podmínky pro výběrové řízení Veškeré y a výrobky uvedené v této dokumentaci jsou specifikovány s ohledem na požadované

Více

1. Všeobecné informace: 2. Předpisy: 3. Výroba: 4. Zemní práce. 5. Základy a základová deska. Provedení: Standard Hrubá stavba plus

1. Všeobecné informace: 2. Předpisy: 3. Výroba: 4. Zemní práce. 5. Základy a základová deska. Provedení: Standard Hrubá stavba plus Provedení: Standard Hrubá stavba plus Platnost: 1.1.2010-31.12.2010 - technické změny vyhrazeny 1. Všeobecné informace: Standardní vybavení rodinných domů je jeho základní provedení v dodávce Stavba na

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 9. JEDNOPLÁŠŤOVÉ A DVOUPLÁŠŤOVÉ PLOCHÉ STŘEŠNÍ KONSTRUKCE MATERIÁLY A TECHNOLOGIE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento

Více

Izolační materiály Konstrukční trendy Energetická efektivita - úspory. Ing. Libor Urbášek

Izolační materiály Konstrukční trendy Energetická efektivita - úspory. Ing. Libor Urbášek Izolační materiály Konstrukční trendy Energetická efektivita - úspory Ing. Libor Urbášek Obsah prezentace: 1. Sortiment izolací (MW, EPS, XPS, PUR, PIR, FP, VIP) 2. Vlastnosti izolací tepelné / akustické

Více

Plošné základy a soklová oblast budov

Plošné základy a soklová oblast budov ČVUT v Praze Fakulta stavební PSA2 - POZEMNÍ STAVBY A2 (do roku 2015 název KP2) Plošné základy a soklová oblast budov doc. Ing. Jiří Pazderka, Ph.D. Katedra konstrukcí pozemních staveb Zpracováno v návaznosti

Více

Maloobchodní ceník platný od 1.7.2013

Maloobchodní ceník platný od 1.7.2013 Flex * elastická tepelná izolace z dřevovlákna * meziprostorová izolace střech, stropů a stěn * vyšší akumulace tepla * objemová hmotnost cca 50 kg/m3 Tloušťka Formát Balík Paleta Cena Rozměr palety: 1150

Více

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK)

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) Ing. Jan Závitkovský e-mail: jan.zavitkovsky@centrum.cz

Více

Asting CZ, Pasivní domy s.r.o.

Asting CZ, Pasivní domy s.r.o. Asting CZ, Pasivní domy s.r.o. Prezentace firmy ASTING CZ Ekonomické hodnocení EPS ztracených bednění pro výstavbu pasivních domů Přednáší: Ing. Vladimír Nepivoda O SPOLEČNOSTI Představení společnosti

Více

Interiér. Exteriér PO stěny: REI 30 STAVEBNÍ ŘEŠENÍ D ,5 12,

Interiér. Exteriér PO stěny: REI 30 STAVEBNÍ ŘEŠENÍ D ,5 12, HST-M/ 379, 1 27 12, Nášlapná vrstva* Knauf F164 2x12,mm EPS 0/ 0mm Hydroizolace z modif. asfaltových pásů Penetrace ŽB deska Hutněné štěrkové lože Rostlý terén Kotvení zakládací lišty Podlahová lišta*

Více

DEKPANEL SPRÁVNÁ VOLBA PRO VAŠI DŘEVOSTAVBU MASIVNÍ DŘEVĚNÉ PANELY

DEKPANEL SPRÁVNÁ VOLBA PRO VAŠI DŘEVOSTAVBU MASIVNÍ DŘEVĚNÉ PANELY DEKPANEL SPRÁVNÁ VOLBA PRO VAŠI DŘEVOSTAVBU MASIVNÍ DŘEVĚNÉ PANELY 1 PRINCIP SYSTÉMU DEKPANEL D Vnější tepelněizolační vrstva brání prostupu tepla stěnou a zajišťuje příjemné vnitřní prostředí v interiéru.

Více

Fasádní pěnový polystyren

Fasádní pěnový polystyren Příprava před zateplením fasády 2. výběr tepelné izolace Na trhu máme široký výběr tepelných izolací vhodných k použití do kontaktních zateplovacích systémů. Níže uvedu všechny dostupné varianty tepelných

Více

Standard energetickyúsporné domy

Standard energetickyúsporné domy 1) PROJEKTOVÁ DOKUMENTACE Vlastní projektovou dokumentaci pro stavební povolení včetně umístění domu na pozemku a inženýrské sítě řeší za příplatek externí projekční kanceláře spolupracující s firmou Flexibuild,

Více

fermacell Katalog detailů

fermacell Katalog detailů fermacell Katalog detailů konstrukcí v dřevostavbách Stav květen 2014 2 Obsah Půdorys domu vodorovný řez 0.00.00.0.01... 3 Svislý řez domem 0.00.00.0.02... 4 Napojení stěna základová deska...5 Kontaktní

Více

D.1.1_ARCHITEKTONICKO STAVEBNÍ ŘEŠENÍ

D.1.1_ARCHITEKTONICKO STAVEBNÍ ŘEŠENÍ 15 Stavba : RODINNÝ DŮM_novostavba,Habrůvka č.par.287/1 Objekty stavební : SO 01 _RODINNÝ DŮM -novostavba zast.plocha 134,00 m2 SO 02 _HOSPODÁŘSKÝ PŘÍSTŘEŠEK zast.plocha 24,00 m2 SO 03 _SJEZD připojení

Více

D1_1_2_01_Technická zpráva 1

D1_1_2_01_Technická zpráva 1 D1_1_2_01_Technická zpráva 1 D1_1_2_01_Technická zpráva 2 1.Stručný popis konstrukčního systému Objekt výrobní haly je navržen jako jednopodlažní, nepodsklepený, halový objekt s pultovou střechou a s vestavbou

Více

PO stěny: REI 30. Interiér. Exteriér STAVEBNÍ ŘEŠENÍ D ,5 12,5. Šroub Aquapanel Maxi SB 39

PO stěny: REI 30. Interiér. Exteriér STAVEBNÍ ŘEŠENÍ D ,5 12,5. Šroub Aquapanel Maxi SB 39 HST-M/ 1 2 Nášlapná vrstva* Knauf F164 2xmm EPS 0/ 0mm Hydroizolace z modif. asfaltových pásů Penetrace ŽB deska Hutněné štěrkové lože Rostlý terén Kotvení ukončovací lišty SDK deska Knauf Diamant 1mm

Více

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

NOVÁ ZELENÁ ÚSPORÁM (NZU) REALIZACE NA DOTACI Bc. Aleš Makový

NOVÁ ZELENÁ ÚSPORÁM (NZU) REALIZACE NA DOTACI Bc. Aleš Makový NOVÁ ZELENÁ ÚSPORÁM (NZU) REALIZACE NA DOTACI Bc. Aleš Makový Tvorba vzdělávacího programu Dřevěné konstrukce a dřevostavby CZ.1.07/3.2.07/04.0082 1 OBSAH: 1. ŮVOD 2. POPIS RODINNÉHO DOMU 3. OTOPNÝ SYSTÉM,

Více

BH 52 Pozemní stavitelství I

BH 52 Pozemní stavitelství I BH 52 Pozemní stavitelství I Dřevěné stropní konstrukce Kombinované (polomontované) stropní konstrukce Ocelové a ocelobetonové stropní konstrukce Ing. Lukáš Daněk, Ph.D. Dřevěné stropní konstrukce Dřevěné

Více

Stropy z ocelových nos

Stropy z ocelových nos Promat Stropy z ocelových nos Masivní stropy a lehké zavěšené podhledy níků Ocelobetonové a železobetonové konstrukce Vodorovné ochranné membrány a přímé obklady z požárně ochranných desek PROMATECT. Vodorovné

Více

Rodinný dům Sobotka, Housko INVESTOR: Eva Sobotka STUPEŇ PD: Vrchlického 1031/35, Ostrava - Radvanice

Rodinný dům Sobotka, Housko INVESTOR: Eva Sobotka STUPEŇ PD: Vrchlického 1031/35, Ostrava - Radvanice STAVBA: Rodinný dům Sobotka, Housko INVESTOR: Eva Sobotka STUPEŇ PD: Vrchlického 1031/35, 716 00 Ostrava - Radvanice DSP MÍSTO STAVBY: obec Vysočany, část obce Housko, parc. č. 9/15 STAV. OBJEKTY: SO.01,

Více

YTONG ŘEŠENÍ PRO STĚNY A STŘECHY ING. LUCIE ŠNAJDROVÁ ING. RADEK SAZAMA ING. ARCH. ZDENĚK PODLAHA

YTONG ŘEŠENÍ PRO STĚNY A STŘECHY ING. LUCIE ŠNAJDROVÁ ING. RADEK SAZAMA ING. ARCH. ZDENĚK PODLAHA YTONG ŘEŠENÍ PRO STĚNY A STŘECHY ING. LUCIE ŠNAJDROVÁ ING. RADEK SAZAMA ING. ARCH. ZDENĚK PODLAHA PASIVNÍ vs. NÍZKOENERGETICKÝ TEPELNÁ TECHNIKA STAVEB Co musí splňovat kvalitní stavba 1. Zajistit celoroční

Více

Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie

Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie Téma vývoje energetiky budov je v současné době velmi aktuální a stává se společenskou záležitostí, neboť šetřit

Více

Vápenná jímka opláštění budovy a střecha

Vápenná jímka opláštění budovy a střecha Vápenná jímka opláštění budovy a střecha Jirkov, Jindřiššká - Šerchov POPIS Projekt Rekonstrukce úpravny vody Jirkov řeší novostavbu budovy vápenného hospodářství a objekt vápenné jímky. Společnost HIPOS

Více

Seznam výrobků a materiálů společnosti DEK a.s. registrovaných v programu Nová zelená úsporám verze z 2013-08-28 TEPELNÉ IZOLACE DEKTRADE

Seznam výrobků a materiálů společnosti DEK a.s. registrovaných v programu Nová zelená úsporám verze z 2013-08-28 TEPELNÉ IZOLACE DEKTRADE TEPELNÉ IZOLACE DEKTRADE Název DEKPERIMETER Charakteristika DEKPERIMETER 200 DEKPERIMETER SD DEKPERIMETER SD 150 Používá se pro vytvoření tepelněizolační vrstvy Kód SVT Deklarovaná hodnota součinitele

Více

SVISLÉ NOSNÉ KONSTRUKCE

SVISLÉ NOSNÉ KONSTRUKCE KPG SVISLÉ NOSNÉ KONSTRUKCE Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb) Požadavky a principy konstrukčního řešení Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz

Více

PROJEKT : INVESTOR : DATUM :

PROJEKT : INVESTOR : DATUM : PROJEKT : STAVEBNÍ ÚPRAVA ZÁHRADNÍHO DOMKU, HOSTIVICE INVESTOR : PROJEKTANT ČÁSTI : DATUM : NÁZEV VÝKRES : MĚŘÍTKO : STUPEŇ PROJEKTU : FORMÁT : ČÍSLO VÝKRESU : Technická zpráva Předložená projektová dokumentace

Více

NOBASIL SPK SPK. www.knaufinsulation.cz. Deska z minerální vlny

NOBASIL SPK SPK. www.knaufinsulation.cz. Deska z minerální vlny Deska z minerální vlny NOBASIL SPK MW-EN 13162-T5-DS(TH)-WS-WL(P)-AF25 MW-EN 13162-T5-DS(TH)-CS(10)30-TR7,5-WS-WL(P)-AF25 EC certifikáty shody Reg.-Nr.: K1-0751-CPD-146.0-01-01/07 SPK Popis Deska NOBASIL

Více

HELUZ Family 2in1 důležitá součást obálky budovy

HELUZ Family 2in1 důležitá součást obálky budovy 25.10.2013 Ing. Pavel Heinrich 1 HELUZ Family 2in1 důležitá součást obálky budovy Ing. Pavel Heinrich Technický rozvoj heinrich@heluz.cz 25.10.2013 Ing. Pavel Heinrich 2 HELUZ Family 2in1 Výroba cihel

Více

Montované technologie. Technologie staveb Jan Kotšmíd,3.S

Montované technologie. Technologie staveb Jan Kotšmíd,3.S Montované technologie Technologie staveb Jan Kotšmíd,3.S Montované železobetonové stavby U montovaného skeletu je rozdělena nosná část sloupy, průvlaky a stropní panely) a výplňová část (stěny): Podle

Více

ŽALUZIOVÝ KASTLÍK. Norma/předpis. Popis výrobku a použití. Důležitá upozornění

ŽALUZIOVÝ KASTLÍK. Norma/předpis. Popis výrobku a použití. Důležitá upozornění Systémové řešení Ytong pro bezproblémovou dodatečnou montáž venkovních žaluzií Vhodný pro většinu venkovních žaluzií na trhu, vyvíjeno s výrobci žaluzií Voděodolný, trvanlivý, neobsahuje žádné škodlivé

Více

Nejčastěji realizujeme stavby, které se nazývají difúzně uzavřené.

Nejčastěji realizujeme stavby, které se nazývají difúzně uzavřené. Postup výstavby ZÁKLADOVÁ DESKA Dřevostavby od firmy Profi-Gips s.r.o. jsou stavěny zejména na konstrukci, která je kombinací základových pasů a železobetonové desky. Do podkladu je použito zhutněné kamenivo

Více

Tepelně technické vlastnosti zdiva

Tepelně technické vlastnosti zdiva Obsah 1. Úvod 2 2. Tepelná ochrana budov 3-4 2.1 Závaznost požadavků 3 2.2 Budovy které musí splňovat normové požadavky 4 ČSN 73 0540-2(2007) 5 2.3 Ověřování požadavků 4 5 3. Vlastnosti použitých materiálů

Více

Technologie rychlé výstavby

Technologie rychlé výstavby Technologie rychlé výstavby Velkoformátové produkty Ytong Jumbo Ytong příčkový panel Silka Tempo Ytong Jumbo Statické vlastnosti Štíhlostní poměr velkoformátového zdiva hef / tef < 27 3500 / 250 =

Více

tvrdé dřevo (v panelech) Vnitřní stěny, vnitřní podpory beton, přírodní kámen, cihly, klinkerové cihly, vápenopískové cihly

tvrdé dřevo (v panelech) Vnitřní stěny, vnitřní podpory beton, přírodní kámen, cihly, klinkerové cihly, vápenopískové cihly NOSNÉ KONSTRUKCE Betonové základy 80-150 100 Venkovní stěny / -sloupy beton, železobeton (vnější prostředí) 60-80 70 přírodní kámen (vnější prostředí) 60-250 80 cihly, lícové cihly (vnější prostředí) 80-150

Více

TECHNICKÉ DETAILY PROVÁDĚNÍ STX.THERM SANA Zdvojení ETICS

TECHNICKÉ DETAILY PROVÁDĚNÍ STX.THERM SANA Zdvojení ETICS TECHNICKÉ DETAILY PROVÁDĚNÍ STX.THERM SANA Zdvojení ETICS Obsah 1) Výpočet celkové délky kotvy Spiral Anksys... 3 2) Zdvojení ETICS - založení s odskokem soklové izolace... 4 3a) Zdvojení ETICS - napojení

Více

Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce

Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce Ing. Jiří Šála, CSc. tel. +420 224 257 066 mobil +420 602 657 212 e-mail: salamodi@volny.cz Přehled budov podle

Více

Dodatečné zateplení objektů Mateřské školy Školní 518, Klášterec nad Ohří

Dodatečné zateplení objektů Mateřské školy Školní 518, Klášterec nad Ohří Dodatečné zateplení objektů Mateřské školy Školní 518, Klášterec nad Ohří D-1.1.a - TECHNICKÁ ZPRÁVA Pro provedení stavby a) Identifikace stavby Investor stavby: Město Klášterec nad Ohří Místo stavby:

Více

Energeticky pasivní dům v Opatovicích u Hranic na Moravě. pasivní dům v Hradci Králové

Energeticky pasivní dům v Opatovicích u Hranic na Moravě. pasivní dům v Hradci Králové Energeticky pasivní dům v Opatovicích u Hranic na Moravě pasivní dům v Hradci Králové o b s a h autoři projektová dokumentace: Asting CZ Pasivní domy s. r. o. www. asting. cz základní popis 2 poloha studie

Více

PREZENTACE CETRIS. Přednášející: Glos Martin. Obchodní manažer ČR, SR

PREZENTACE CETRIS. Přednášející: Glos Martin. Obchodní manažer ČR, SR PREZENTACE CETRIS Přednášející: Glos Martin Obchodní manažer ČR, SR Složení cementotřískové desky CETRIS Hlavní přednosti desek CETRIS Fyzikálně mechanické vlastnosti Lineární roztažnost při změně vlhkosti.

Více

VYPRACOVAL ZODPOVĚDNÝ PROJEKTANT. Obec Olbramice, Prostorná 132, Olbramice, 742 83 Klimkovice

VYPRACOVAL ZODPOVĚDNÝ PROJEKTANT. Obec Olbramice, Prostorná 132, Olbramice, 742 83 Klimkovice technická zpráva INVESTOR NÁZEV AKCE OBSAH VÝKRESU VYPRACOVAL ZODPOVĚDNÝ PROJEKTANT Ing. arch. Lukáš Krekáň Obec Olbramice, Prostorná 132, Olbramice, 742 83 Klimkovice NOVOSTAVBA ZÁZEMÍ SK SOKOL OLBRAMICE

Více

TECHNICKÝ LIST ZDÍCÍ TVAROVKY

TECHNICKÝ LIST ZDÍCÍ TVAROVKY TECHNICKÝ LIST ZDÍCÍ TVAROVKY Specifikace Betonové zdící tvarovky jsou průmyslově vyráběny z vibrolisovaného betonu. Základem použitého betonu je cementová matrice, plnivo (kamenivo) a voda. Dále jsou

Více

HELUZ FAMILY. Cihla bez kompromisů

HELUZ FAMILY. Cihla bez kompromisů Cihla bez kompromisů 2in1 Stačí jedna vrstva a máte pasivní dům. Cihla FAMILY 2in1 má nejlepší tepelně izolační vlastnosti na trhu. NORMÁLNÍ JE NEZATEPLOVAT 2 PROČ JEDNOVRSTVÉ ZDIVO BEZ ZATEPLENÍ? Doporučujeme

Více

aktualizováno k 23.7.2014 Ing. Radek STEUER, Ph.D.

aktualizováno k 23.7.2014 Ing. Radek STEUER, Ph.D. Požární bezpečnost - dodatečné zateplování budov původně stavebně dokončených před rokem 2000 (vyjma dřevostaveb) a certifikovaná požárně bezpečnostní řešení ETICS Cemix THERM aktualizováno k 23.7.2014

Více