INFLUENCE OF TREATING CONDITIONS ON STRUCTURE OF FORGED PIECES FROM THE STEEL GRADE C35E
|
|
- Romana Holubová
- před 6 lety
- Počet zobrazení:
Transkript
1 OVLIVNĚNÍ STRUKTURY VÝKOVKŮ Z OCELI TYPU C35E PODMÍNKAMI KOVÁŘSKÉHO ZPRACOVÁNÍ INFLUENCE OF TREATING CONDITIONS ON STRUCTURE OF FORGED PIECES FROM THE STEEL GRADE C35E Petr Zuna a, Jana Sobotová a, Jakub Horník a, Karel Macek a, Karel Dytrt a, František Hnilica a, František Jandoš b, Martin Hrubý b a ČVUT v Praze, Fakulta strojní, Praha, Česká republika, petr.zuna@fs.cvut.cz b ŠKODA KOVÁRNY Plzeň s.r.o., Plzeň, Česká republika Abstrakt Příspěvek hodnotí strukturu oceli C35E (12 040) v závislosti na podmínkách ohřevu a deformace. Sledována je teplotní závislost velikosti austenitického zrna v rozsahu teplot 850 C až 1250 C, vliv teploty de formace na strukturu a rekrystalizační procesy ve spojení s precipitáty AlN. Výrazné hrubnutí zrna bylo pozorováno nad teplotou 1100 C. Velikost deformace 25 % při teplotě 1150 C vede k plnému proběhnutí dynamické resp. postdynamické rekrystalizace. Za teploty deformace 850 C proběhne rekrystalizace austenitu pouze částečně. Příspěvek je zpracován s podporou projektu FT-TA3/083. The structure behavior of the steel grade C45E in dependence of heat and deformation conditions is presented in this contribution. The temperature relations of austenitic grain size in range 850 C 1250 C, an d deformation temperature influence on structure and recrystallization processes are considered in relationship with AlN precipitate presence. Intensive grain growth starts over temperature1100 C. Deformation 25 % at temperature 1150 C leads to fully recrystallized structure. Recrystallization processes are executed only partially after deformation at temperature 850 C. 1. Úvod Práce je součástí projektu hodnotícího náchylnost oceli C35E se zvýšeným obsahem dusíku k růstu zrna v podmínkách kovářského ohřevu. Na růst zrna má značný vliv vhodný způsob vyloučení a koncentrace částic AlN. Pro dosažení zvýšení efektu zjemnění zrna se využívá zvýšené množství dusíku. Poměr hliníku a dusíku v oceli by pak neměl překročit relaci Al/N 5 [1], vzhledem k zamezení intenzivní precipitace AlN na hranicích zrn vedoucí k nebezpečnému zkřehnutí. Nejvýraznější efekt brzdění růstu zrna částicemi AlN dosahujeme při vyloučení částic na hranicích jemných austenitických zrn. V našem případě je tedy nutné zajistit během prvního kování dostatečné přetváření vedoucí dynamickou a postdynamickou rekrystalizací ke zjemnění zrna a následně zajistit vyloučení AlN na těchto hranicích. Další ohřevy by neměly vést k rozpuštění AlN vyloučených na hranicích zrn a blokujících jejich růst. [2-4] Konečným cílem tohoto projektu je proto definovat podmínky ohřevu, tváření a ochlazování vedoucí k jemnozrnné finální struktuře. 1
2 2. Experimentální metody a hodnocený materiál Experimentální materiál byl dodán ze závodu ŠKODA STEEL s.r.o. Vzorky byly odebrány z překovaného a vyžíhaného půdního konce ingotu z materiálu C35E (12 040) (žíhání 850 C / 18 h /vzduch / 590 C / 2 1 h / vzduch). Chemické složení oceli je uvedeno v tabulce 1 spolu s kontrolním měřením vybraných prvků vlnově disperzní analýzou charakteristického rtg. záření (WDX). Z tabulky je patrno, že však obsah Al a N je z pohledu studia vlivu AlN, jeho rozpouštění i precipitace relativně nízký. Tabulka 1 Chemické složení hodnoceného materiálu Table 1 Chemical composition of experimental material Prvek C Mn Si P S Cr Al N Analýza tavby 0,45 0,75 0,19 0,005 0,003 0,09 0,021 0,008 WDX 0,33 0,88 0, ,09 0,035 - Růst austenitického zrna byl sledován při teplotách 850, 950, 1050, 1150, 1200 a 1250 C. Vzorky o velikosti 20x20x30 mm opatřené nátěrem kalsenu byly žíhány v zásypu korundu po dobu 15 min, 1 h a 10 h (teplota A c3 ~ 805 C). Ochlazení probíhalo ve vodě nebo na vzduchu. Pro hodnocení rekrystalizace byla uskutečněna laboratorní deformace pěchováním na válečkách 8 mm a výšce 15 mm na padacím bucharu s hmotností beranu 11,6 kg a výškou vedení 3500 mm. Dopadová rychlost beranu činí 8,3 m. s -1. Pro vzorek o výšce 15 mm je pak odpovídající deformační rychlost přibližně 5, s -1. Velikost deformace 25 % a 50 % původní výšky vzorku byla vymezena dorazy. Skutečná deformace ve střední vyhodnocované oblasti činí 0,29 %, resp. 70 %. V oblasti čel vzorku je deformace brzděna třením a pohybuje se v rozsahu 5 %až 10 %. Jedna série vzorků byla deformována po výdrži 15 min na teplotách 850 C, 1050 C a 1150 C v dodaném stavu bez p ředchozího tepelného zpracování. Po deformaci 25 % nebo 50 % původní výšky byly vzorky ochlazovány jednak v zásypu korundu rychlostí v 1 C. s -1, jednak ve vodě o teplotě 20 C. Druhá série vzorků byla austenitizována při teplotě 1250 C / 1 h, následně ochlazena na vzduchu na teplotu deformace 850 C, C nebo 1150 C s desetiminutovou vyrovnávací výdrží na dané teplotě. Po té byla realizována deformace 50% původní výšky s následným ochlazením ve vodě nebo s výdrží na teplotě deformace po dobu 5 min a následným ochlazením ve vodě. Sekundární struktura byla hodnocena na vzorcích ochlazených v zásypu po naleptání 4 % nitalem. Velikost austenitického zrna a hodnocení rekrystalizace austenitu bylo provedeno na vzorcích ochlazovaných ve vodě a leptaných činidlem na bázi kyseliny pikrové. Pro sledování přítomnosti AlN transmisním elektronovým mikroskopem byly připraveny kolodiové repliky stínované chrómem ze vzorků ochlazených v zásypu 3. Výsledky zkoušek a jejich diskuse Vliv teploty a doby žíhání na velikost zrna je uveden v tabulce 2. Z výsledků je zřejmé, že za sledovaných podmínek nevede žíhání do 950 C k výraznému hrubnutí zrna. Lokální hrubnutí zrna je patrné při teplotě 1050 C. Od teploty 1150 C již zrno hrubne výrazně. Sekundární struktura vzorků po austenitzaci a ochlazení na vzduchu byla ve všech případech perliticko-feritická. Ferit tvoří převážně síťoví po hranicích původních austenitických zrn. 2
3 Tabulka 2 Vliv doby a teploty žíhání na velikost austenitického zrna d m [mm] Table 2 Time and temperature influence on grain size Teplota 800 C 850 C 950 C 1050 C 1150 C 1200 C 1250 C 15 min 0,017 0,017 0,021 0,068 0,088 0,177 0,25 1h 0,017 0,022 0,149 0,493 0,580 0,841 10h 0,018 0,023 0,250 0,502 0,588 1,000 Deformace 25 % a 50 % původní výšky vzorku při teplotách 850 C, 1050 C a 1150 C vede ve všech případech k rekrystalizaci. Zatímco u vzorků deformovaných při teplotě 850 C se ještě vyskytuje do 5 % deformovaných nerekrystalizovaných zrn, při vyšších teplotách deformace je tvořena struktura pouze rekrystalizovanými polyedrickými zrny. Velikost austenitického zrna po žíhání 15 min bez deformace a po obou stupních deformace při sledovaných teplotách je graficky znázorněna na obr. 1. Patrné je zjemnění zrna rekrystalizací pro oba stupně deformace a všechny sledované teploty. Po větší deformaci je dle očekávání zjemnění zrna výraznější. Zjemnění je nejvýraznější v případě nejvyšší deformační teploty, kdy má výchozí austenitické zrno největší velikost. Dosažené zjemnění zrna má zde hodnotu 55 %. Sekundární struktura je i v tomto případě homogenní perliticko-feritická. Feritické síťoví opět dekoruje původní austenitická zrna. Při vyšších teplotách deformace se ferit lokálně vylučuje i v jehlicovité formě. dm [mm] 0,1 0,08 0,06 0,04 0,02 0 teplota žíháno 15 min (bez deformace) deformace 25 % deformace 50 % Obr. 1 Vliv teploty a velikosti deformace na rozměr austenitického zrna Fig. 1 Influence of temperature and deformation on austenitic grain size dm [mm] 1,0 0,8 0,6 0,4 0,2 0,0 Teplota deformace 50 % bez výdrže deformace 50 %, výdrž 5 min Obr. 2 Velikost austenitického zrna po žíhání 1250 C / 1 h a následné deformaci 50 % při různých teplotách (velikost výchozího zrna d m = 0,841 mm). Fig. 2 Austenitic grain size after annealing at 1250 C/1 hour and deformation 50 % at different temperature (prior grain size after annealing d m = 0,841 mm). 3
4 Velikost austenitického zrna vzorků po austenitizaci 1250 C / 1 h a následně deformovaných na 50 % původní výšky při teplotách 850 C, 1050 C a 1150 C je dokumentována grafem (obr. 2). Při teplotě 850 C není rekrystalizace dokončena. Lze předpokládat brzdící efekt částic AlN vylučovaných jak během výdrže na tvářecí teplotě, tak během deformace a po ní. Rekrystalizace po deformaci při 850 C není ani po výdrži 5 min zcela dokončena. Při vyšších teplotách pozorujeme již bezprostředně po deformaci hrubnutí rekrystalizovaných zrn. S rostoucí teplotou deformace je rekrystalizované zrno hrubší, vzhledem k rychlejšímu průběhu dynamické resp. postdynamické rekrystalizace. Patrné je rovněž výrazné hrubnutí zrna během výdrže 5 min na deformační teplotě (obr. 3). Obr 3 Austenitické zrno po deformaci 50 % a výdrži 5 min Fig. 3 Austenitic grain size after 5 min following deformation 50 % Struktury vzorků zobrazených TEM po deformaci 25 % při teplotě 850 C a 1150 C ochlazených v zásypu korundu dokumentuje ob r. 4. Při teplotě deformace 850 C byl ve feritických zrnech pozorován jemný pr ecipitát, při teplotě 1150 C tento precipitát pozorován nebyl. Přítomnost tohoto jemného precipitátu se zřejmě podílí na brzdění růstu zrna sledované oceli. a) b) Obr. 4 Sekundární struktura po deformaci 25 % při 850 C a) a 1150 C b), TEM Fig. 4 Secondary structure after deformation 25 % at 850 C a) a 1150 C b), TEM 4
5 Výsledky naznačují, že jsou možnosti optimalizovat podmínky kovářských ohřevů a obsah dusíku a hliníku v oceli tak, aby byla zajištěna finální jemnozrnná struktura garantující potřebné užitné vlastnosti. V další práci je věnována pozornost kinetice rozpouštění a precipitace AlN v austenitu a feritu, morfologii AlN v závislosti na podmínkách jeho vzniku na vzorcích z nové laboratorní tavby s vyšším obsahem dusíku. 4. Závěry Do teploty žíhání 950 C nedochází u sledované ocel i se zvýšeným obsahem dusíku k výraznějšímu růstu austenitického zrna. Uplatňuje se zde blokující efekt částic AlN Při teplotě žíhání 1050 C začíná lokální rozpouštění částic AlN což vede k lokálnímu hrubnutí austenického zrna. Od teploty žíhání 1100 C zrno výrazně hrubne, částice AlN zde již nebyly pozorovány. Částice AlN precipitující při teplotě 850 C způsobují brzdění rekrystalizace austenitu Obsah dusíku a hliníku a podmínky zpracování oceli je možno optimalizovat tak, aby byla zajištěna jemnozrnná finální struktura. Literatura [1] Žídek M.: Metalurgická tvařitelnost ocelí za tepla a za studena, ALEKO, Praha 1995 [2] Emenike, C.O.I., Billington J.C.: Aluminium nitride precipitation in multiple microalloyed pipeline steels. In Materials Science and Technology, vol.5, May [3] Doğan Ömer N., Michal G.M., Kwon H.W.: Pinning of austenite grain boundaries by AlN precipitates and abnormal grain growth. In Metallurgical Transactions, vol.25a, august pg [4] Rois P. R.: Effect of aluminium on the equilibrium precipitation of multicomponent f.c.c. carbonitride in microalloyed steel. In Material Science and Engineering, vol. A156, L5, Elsevier
Petr Kubeš. Vedoucí práce: Prof. Ing. Petr ZUNA, CSc. D. Eng. h.c. Konzultant: Ing. Jakub HORNÍK, Ph.D.
Kinetika růstu zrna a rekrystalizace při tvářecích režimech pro zpracování oceli SA 508 Kinetics of Grain Growth and Recrystallization during Forming Modes for Processing of Steel SA 508 Petr Kubeš Vedoucí
Hodnocení růstu zrna uhlíkových a nízkolegovaných nástrojových ocelí v závislosti na přítomnosti AlN
Hodnocení růstu zrna uhlíkových a nízkolegovaných nástrojových ocelí v závislosti na přítomnosti AlN Bc. Jaroslav Víšek, Bc. Ladislav Nikel Vedoucí práce prof. Ing. Petr Zuna, CSc., D.Eng.h.c. Abstrakt
A B C D. Time 850 C 950 C 1050 C 1150 C 1200 C. teplota [ C]
Hutnické listy č.2/2010, roč. LXIII ISSN 0018-8069 Materiálové inženýrství Material Engineering Vliv částic AlN a podmínek zpracování na finální strukturu hmotných výkovků Influence of AlN Particles and
SLEDOVÁNÍ VLIVU TEPLOTY A DEFORMACE NA STRUKTURU A VLASTNOSTI UHLÍKOVÝCH A MIKROLEGOVANÝCH OCELÍ
SLEDOVÁNÍ VLIVU TEPLOTY A DEFORMACE NA STRUKTURU A VLASTNOSTI UHLÍKOVÝCH A MIKROLEGOVANÝCH OCELÍ STUDY OF INFLUENCE OF TEMPERATURE AND DEFORMATION ON STRUCTURE AND PROPERTIES OF CARBON AND MICROALLOYED
3. VÝSLEDKY ZKOUŠEK A JEJICH DISKUSE
SLEDOVÁNÍ STRUKTURNÍCH CHARAKTERISTIK A VLASTNOSTÍ VÁLCOVANÝCH VÝROBKU Z UHLÍKOVÝCH A MIKROLEGOVANÝCH OCELÍ V SOUVISLOSTI S VLASTNOSTMI PRIMÁRNÍCH KONTISLITKU MONITORING THE STRUCTURE CHARACTERISTIC AND
INFLUENCE OF TEMPERING ON THE PROPERTIES OF CAST C-Mn STEEL AFTER NORMALIZING AND AFTER INTERCRITICAL ANNEALING. Josef Bárta, Jiří Pluháček
VLIV POPOUŠTĚNÍ NA VLASTNOSTI LITÉ C-Mn OCELI PO NORMALIZACI A PO INTERKRITICKÉM ŽÍHÁNÍ INFLUENCE OF TEMPERING ON THE PROPERTIES OF CAST C-Mn STEEL AFTER NORMALIZING AND AFTER INTERCRITICAL ANNEALING Josef
VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING
VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING Hana Tesařová Bohumil Pacal Ondřej Man VUT-FSI-ÚMVI-OKM, Technická
ASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES
ASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES Martin BALCAR, Jaroslav NOVÁK, Libor SOCHOR, Pavel FILA, Ludvík MARTÍNEK ŽĎAS, a.s., Strojírenská
Vliv obsahu uhlíku na rekrystalizační chování korozivzdorné oceli X6CrNiTi 18-10
Vliv obsahu uhlíku na rekrystalizační chování korozivzdorné oceli X6CrNiTi 18-10 Petr Celba Vedoucí práce: Ing. Jana Sobotová Ph.D. Abstrakt Práce je zaměřena na studium vlivu obsahu uhlíku na rekrystalizační
Kvantifikace strukturních změn v chrom-vanadové ledeburitické oceli v závislosti na teplotě austenitizace
Kvantifikace strukturních změn v chrom-vanadové ledeburitické oceli v závislosti na teplotě austenitizace Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Absrakt Vzorky z Cr-V ledeburitické nástrojové oceli vyráběné
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI David Aišman D.Aisman@seznam.cz ABSTRACT Tato práce se zabývá možnostmi tepelného zpracování pro experimentální ocel 42SiCr. Jedná
ŽÍHÁNÍ. Tepelné zpracování kovových materiálů
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 vnávaznosti na platnost norem. Zákaz šířěnía modifikace těchto materiálů. Děkuji Ing. D. Kavková
OBSERVATION OF KINETICS OF STRUCTURAL CHANGES DURING LONG-TERM ANNEALING OF TRANSITIONAL WELDS ON P91 STEEL
SLEDOVÁNÍ KINETIKY STRUKTURNÍCH ZMĚN BĚHEM DLOUHODOBÉHO ŽÍHÁNÍ PŘECHODOVÝCH SVARŮ OCELÍ P91 OBSERVATION OF KINETICS OF STRUCTURAL CHANGES DURING LONG-TERM ANNEALING OF TRANSITIONAL WELDS ON P91 STEEL Daniela
VLIV OHŘEVU Z HLEDISKA PŘÍPRAVY MATERIÁLU K VÁLCOVÁNÍ VYTYPOVANÝCH ZNAČEK Cr-Mo OCELÍ
VLIV OHŘEVU Z HLEDISKA PŘÍPRAVY MATERIÁLU K VÁLCOVÁNÍ VYTYPOVANÝCH ZNAČEK Cr-Mo OCELÍ THE INFLUENCE OF HEATING-UP IN TERM OF MATERIAL PREPARATION FOR ROLLING OF SEARCHED MARKS Cr-Mo STEELS Tomáš Gajdzica
MECHANICKÉ VLASTNOSTI A VELIKOST ZRNA MIKROLEGOVANÝCH LITÝCH OCELÍ MECHANICAL PROPERTIES AND GRAIN SIZE IN MICROALLOYED CAST STEELS
MECHANICKÉ VLASTNOSTI A VELIKOST ZRNA MIKROLEGOVANÝCH LITÝCH OCELÍ MECHANICAL PROPERTIES AND GRAIN SIZE IN MICROALLOYED CAST STEELS Jiří Cejp Karel Macek Ganwarich Pluphrach ČVUT v Praze,Fakulta strojní,ústav
VLIV DOKOVACÍ TEPLOTY NA STRUKTURU A VLASTNOSTI MIKROLEGOVANÝCH OCELÍ
VLIV DOKOVACÍ TEPLOTY NA STRUKTURU A VLASTNOSTI MIKROLEGOVANÝCH OCELÍ Miroslav Greger a, Salem Batiha a) VŠB TU Ostrava, katedra tváření materiálu, 17. listopadu 15, 708 33 Ostrava Poruba, ČR, E-mail:
otvor 50 mm závar čep 25 mm
Výzkum svařitelnosti místních vad v podmínkách tváření Research of Weldability of Local Defects at Conditions of Forming Ing. Jakub Horník, Ph.D., Prof. Ing. Petr Zuna, CSc., D.Eng.h.c., ČVUT v Praze,
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Abstrakt Předložená práce se zabývá volbou metodiky hodnocení strukturních změn ve vysokolegovaných
Experimentální výzkum tvařitelnosti vysokolegovaných ocelí a niklových slitin
Hutnické listy č.1/8 Experimentální výzkum tvařitelnosti vysokolegovaných ocelí a niklových slitin Ing. Petr Unucka, Ph.D., Ing. Josef Bořuta, CSc., VÍTKOVICE - Výzkum a vývoj, spol. s r. o. Využití tahových
ŽÍHÁNÍ 1. ŽÍHÁNÍ OCELÍ
1 ŽÍHÁNÍ Žíhání je způsob tepelného zpracování, kterým chceme u součásti dosáhnout stavu blízkého stavu rovnovážnému. Podstatou je rovnoměrný ohřev součásti na teplotu žíhání, setrvání na této teplotě
VLIV MIKROLEGUJÍCÍCH PRVKŮ A PARAMETRŮ TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI PLECHŮ JAKOSTI P 460N
VLIV MIKROLEGUJÍCÍCH PRVKŮ A PARAMETRŮ TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI PLECHŮ JAKOSTI P 460N THE EFFECT OF MICROALLOYING ELEMENTS AND HEAT TREATMENT PARAMETERS ON MECHANICAL PROPERTIES OF
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI JEMNOZRNNÝCH SVAŘITELNÝCH OCELÍ PRO TENKOSTĚNNÉ ODLITKY
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI JEMNOZRNNÝCH SVAŘITELNÝCH OCELÍ PRO TENKOSTĚNNÉ ODLITKY INFLUENCE OF HEAT TREATMENT ON PROPERTIES OF FINE-GRAINED WELDABLE STEELS FOR THIN-WALLED CASTINGS Jiří Cejp
tváření, tepelné zpracování
Tváření, tepelné zpracování Hutnické listy č. 2/2008 tváření, tepelné zpracování Vliv doválcovací teploty a chemického složení na vlastnosti ocelí s obsahem uhlíku 0,5 0,8 % Prof. Ing. Ivo Schindler, CSc.,
Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace
Tepelné a chemickotepelné zpracování slitin Fe-C Žíhání, kalení, cementace, nitridace Tepelné zpracování Tepelné zpracování je pochod, při kterém je součást podrobena jednomu nebo několika tepelným cyklům,
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
10.ZÁKLADY TEPELNÉHO ZPRACOVÁNÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
POPIS PRECIPITAČNÍCH DĚJŮ PŘI SEKUNDÁRNÍM VYTVRZENÍ PM NÁSTROJOVÉ OCELI SE ZVÝŠENÝM OBSAHEM NIOBU. P. Novák, M. Pavlíčková, D. Vojtěch, J.
POPIS PRECIPITAČNÍCH DĚJŮ PŘI SEKUNDÁRNÍM VYTVRZENÍ PM NÁSTROJOVÉ OCELI SE ZVÝŠENÝM OBSAHEM NIOBU P. Novák, M. Pavlíčková, D. Vojtěch, J. Šerák Ústav kovových materiálů a korozního inženýrství, Vysoká
, Ostrava, Czech Republic
KOVÁNÍ MIKROLEGOVANÝCH OCELÍ S VANADEM Miroslav Greger VŠB Technická univerzita Ostrava, Fakulta metalurgie a materiálového inženýrství, 7. listopadu 5, 708 33 Ostrava Poruba, ČR E-Mail : miroslav.greger@vsb.cz
TEPELNÉ ZPRACOVÁNÍ. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu
TEPELNÉ ZPRACOVÁNÍ Ing. V. Kraus, CSc. 1 TEPELNÉ ZPRACOVÁNÍ záměrné využívání fázových a strukturních přeměn v tuhém stavu ke změně struktury a tím k získání požadovaných mechanických nebo strukturních
VÝVOJ NOVÝCH NÁSTROJOVÝCH OCELÍ PRO KOVACÍ ZÁPUSTKY
VÝVOJ NOVÝCH NÁSTROJOVÝCH OCELÍ PRO KOVACÍ ZÁPUSTKY Ing. Pavel ŠUCHMANN a, Ing. Jiří KREJČÍK, CSc. b, Ing. Pavel FILA c, Ing. Ladislav JELEN, CSc. d, Ing. Eduard PSÍK e a COMTES FHT a. s., Průmyslová 995,
VYUŽITÍ MIKROLEGUR PŘI TVÁŘENÍ ZA TEPLA VÁLCOVANÝCH TYČÍ. Zdeněk Vašek a Jiří Kliber b
VYUŽITÍ MIKROLEGUR PŘI TVÁŘENÍ ZA TEPLA VÁLCOVANÝCH TYČÍ Abstrakt Zdeněk Vašek a Jiří Kliber b a NOVÁ HUŤ a.s., Ostrava - Kunčice, ČR, zvasek@novahut.cz b VŠB-TU OSTRAVA, FMMI, katedra tváření materiálu,
Mikrostrukturní analýza svarového spoje oceli P92 po creepové expozici
Mikrostrukturní analýza svarového spoje oceli P92 po creepové expozici Naděžda ŽVAKOVÁ, Petr MOHYLA, Zbyňek GALDIA, Flash Steel Power, a. s., Martinovská 3168/48, 723 00 Ostrava - Martinov, Česká republika,
K618 - Materiály listopadu 2013
Tepelné zpracování ocelí. Žíhání Tomáš Doktor K618 - Materiály 1 19. listopadu 2013 Tomáš Doktor (18MRI1) Žíhání 19. listopadu 2013 1 / 15 Cyklus tepelného zpracování Cyklus tepelného zpracování Žíhání
Analýza technologie lisování šroubů z nové feriticko martenzitické oceli
Analýza technologie lisování šroubů z nové feriticko martenzitické oceli Autoři: F. Grosman Politechnika Slaska Katowice D. Cwiklak Politechnika Slaska Katowice E. Hadasik Politechnika Slaska Katowice
Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91.
Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91. Hubáčková Jiřina a), Čížek Lubomír a), Konečná Radomila b) a) VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERSITA OSTRAVA, Fakulta
TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI
TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI Učeň M., Filípek J. Ústav techniky a automobilové dopravy, Agronomická fakulta,
LETECKÉ MATERIÁLY. Úvod do předmětu
LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých
Úvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství.
Laserové kalení Úvod Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. poslední době se začínají komerčně prosazovat
VLIV TERMOMECHANICKÉHO ZPRACOVÁNÍ NA VÝVOJ TRIP JEVU V Si-Mn OCELI. EFFECT OF THERMOMECHANICAL TREATMENT ON TRIP EFFECT DEVELOPMENT IN Si-Mn STEEL
VLIV TERMOMECHANICKÉHO ZPRACOVÁNÍ NA VÝVOJ TRIP JEVU V Si-Mn OCELI EFFECT OF THERMOMECHANICAL TREATMENT ON TRIP EFFECT DEVELOPMENT IN Si-Mn STEEL Ondřej Stejskal b Jozef Zrník a,c Zbyšek Nový a Peter Horňak
OPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg
OPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg OPTIMIZATION OF HEAT TREATMENT CONDITIONS TO IMPROVE OF MECHANICAL PROPETIES OF AlSi9Cu2Mg ALLOY Jan Šerák,
STUDIUM ÚČINKU MIKROSTRUKTURNÍCH ZMĚN NA MECHANICKÉ VLASTNOSTI ZA STUDENA VÁLCOVANÝCH A ŽÍHANÝCH PÁSŮ Z HSLA OCELI
STUDIUM ÚČINKU MIKROSTRUKTURNÍCH ZMĚN NA MECHANICKÉ VLASTNOSTI ZA STUDENA VÁLCOVANÝCH A ŽÍHANÝCH PÁSŮ Z HSLA OCELI STUDY OF EFFECTS OF MICROSTRUCTURAL CHANGES ON MECHANICAL PROPERTIES OF COLD ROLLED AND
Tváření, tepelné zpracování
Hutnické listy č.1/28 tváření, tepelné zpracování Vliv tepelného zpracování na mikrostrukturu a mechanické vlastnosti za studena válcovaných pásů z mikrolegované oceli Ing. Marcel Janošec Prof. Ing. Ivo
Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů
Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Vedoucí práce: Doc. Ing. Milan Honner, Ph.D. Konzultant: Doc. Dr. Ing. Antonín Kříž Bc. Roman Voch Obsah 1) Cíle diplomové práce
VŠB Technical University of Ostrava, Faculty of Mechanical engineering, 17. Listopadu 15, Ostrava Poruba, Czech Republic
SIMULACE PROTLAČOVÁNÍ SLITIN Al NÁSTROJEM ECAP S UPRAVENOU GEOMETRIÍ A POROVNÁNÍ S EXPERIMENTY Abstrakt Jan Kedroň, Stanislav Rusz, Stanislav Tylšar VŠB Technical University of Ostrava, Faculty of Mechanical
PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI
PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI PLASTIC PROPERTIES OF HIGH STRENGHT STEELS CUTTING BY SPECIAL TECHNOLOGIES Pavel Doubek a Pavel Solfronk a Michaela
DEGRADACE STRUTURY A MECHANICKÝCH VLASTNOSTÍ SLITINY LVN13 DLOUHODOBÝM ÚČINKEM TEPLOTY
DEGRADACE STRUTURY A MECHANICKÝCH VLASTNOSTÍ SLITINY LVN13 DLOUHODOBÝM ÚČINKEM TEPLOTY LONG-TERM DEGRADATION OF STRUCTURE AND MECHANICAL PROPERTIES OF LVN13 ALLOY INDUCED BY TEMPERATURE Božena Podhorná
Miloš Marek a, Ivo Schindler a
STŘEDNÍ DEFORMAČNÍ ODPORY ZA TEPLA A STRUKTUROTVORNÉ PROCESY SLEDOVANÉ VÁLCOVÁNÍM OCELOVÝCH VZORKŮ S ODSTUPŇOVANOU TLOUŠŤKOU Miloš Marek a, Ivo Schindler a a VŠB Technická univerzita Ostrava, Ústav modelování
Možnosti Impact testu při posuzování správnosti tepelného zpracování ocelí. Ing. Petr Beneš
Možnosti Impact testu při posuzování správnosti tepelného zpracování ocelí Vedoucí: Konzultanti: Vypracoval: Doc. Dr. Ing. Antonín Kříž Ing. Jiří Hájek Ph.D Ing. Petr Beneš Martin Vadlejch Impact test
POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN ) ON OTHER STEELS
MOŽNOST ZOBECNĚNÍ POKLESU MECHANICKÝCH VLASTNOSTÍ OCELI 12 022 NA DALŠÍ MATERIÁLY POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN 12 022) ON OTHER STEELS Josef ČMAKAL,
PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž
Vakuové tepelné zpracování a tepelné zpracování nástrojů 22. - 23.11. 2011 - Jihlava PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž Západočeská univerzita v Plzni Fakulta strojní Katedra materiálu
VLIV MIKROSTRUKTURY NA ODOLNOST DUPLEXNÍ OCELI 22/05 VŮČI SSC. Petr Jonšta a Jaroslav Sojka a Petra Váňová a Marie Sozańska b
VLIV MIKROSTRUKTURY NA ODOLNOST DUPLEXNÍ OCELI 22/05 VŮČI SSC Petr Jonšta a Jaroslav Sojka a Petra Váňová a Marie Sozańska b b a VŠB-TUO, 17. listopadu 15, 708 33 Ostrava - Poruba, ČR, www.vsb.cz Silesian
VLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE
VLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE J. Drnek Z. Nový P. Fišer COMTES FHT s.r.o., Borská
PRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL. Radim Pachlopník Pavel Vavroš
PRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL Radim Pachlopník Pavel Vavroš Nová Huť, a.s., Vratimovská 689, 707 02 Ostrava Kunčice, ČR, rpachlopnik@novahut.cz,
Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace
Tepelné a chemickotepelné zpracování slitin Fe-C Žíhání, kalení, cementace, nitridace Tepelné zpracování Tepelné zpracování je pochod, při kterém je součást podrobena jednomu nebo několika tepelným cyklům,
Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Obsah Protahovací trn Povrchově kalená součást Fréza Karbidické vyřádkování Cementovaná součást Pozinkovaná součást Pivní korunky Klíč
STUDIUM DEFORMAČNÍHO CHOVÁNÍ NÍZKOUHLÍKOVÉ OCELI PŘI FINÁLNÍM DVOUPRŮCHODU NA PÁSOVÉ TRATI STECKEL ZA TEPLA. Libor Černý a, Ivo Schindler b
STUDIUM DEFORMAČNÍHO CHOVÁNÍ NÍZKOUHLÍKOVÉ OCELI PŘI FINÁLNÍM DVOUPRŮCHODU NA PÁSOVÉ TRATI STECKEL ZA TEPLA Libor Černý a, Ivo Schindler b a NOVÁ HUŤ, a.s., oddělení Technický rozvoj a ekologie, Vratimovská
TEPELNÉ ZPRACOVÁNÍ PM-NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM Markéta Pavlíčková, Dalibor Vojtěch, Jan Šerák, Luboš Procházka, Pavel Novák a Peter Jurči b
TEPELNÉ ZPRACOVÁNÍ PM-NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM Markéta Pavlíčková, Dalibor Vojtěch, Jan Šerák, Luboš Procházka, Pavel Novák a Peter Jurči b a Ústav kovových materiálů a korozního inženýrství, VŠCHT
VLIV TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI A VYSOKOTEPLOTNÍ STABILITU NIKLOVÉ SLITINY IN 792 5A
METAL 27 VLIV TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI A VYSOKOTEPLOTNÍ STABILITU NIKLOVÉ SLITINY IN 792 5A INFLUENCE OF HEAT TREATMENT ON MECHANICA PROPERTIES AND HIGN-TEMPERATURE STRUCTURAL STABILITY
STRUKTURNÍ A FÁZOVÁ ANALÝZA OCELI T23 STRUCTURE AND PHASE ANALYSIS OF T23 STEEL
STRUKTURNÍ A FÁZOVÁ ANALÝZA OCELI T23 STRUCTURE AND PHASE ANALYSIS OF T23 STEEL Marie Svobodová a,b Jindřich Douda b František Hnilica b Josef Čmakal b Jiří Dubský c a KMAT FJFI ČVUT, Trojanova 13, 120
MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER
MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER Kamil Krybus a Jaromír Drápala b a OSRAM Bruntál, spol. s r.
Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Příprava metalografických výbrusů Odběr vzorků nesmí dojít k změně struktury (deformace, ohřev) světelný mikroskop pro dosažení požadovaných
FÁZOVÉ PŘEMĚNY. Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny)
FÁZOVÉ PŘEMĚNY Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny) mechanismus difúzní bezdifúzní Austenitizace Vliv: parametry
VLASTNOSTI RYCHLE ZTUHLÝCH PRÁŠKŮ NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM
VLASTNOSTI RYCHLE ZTUHLÝCH PRÁŠKŮ NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM Markéta Pavlíčková, Dalibor Vojtěch a Pavel Stolař, Peter Jurči b a) Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha, Technická
VÁLCOVÁNÍ ZA STUDENA TRIP OCELI PO TERMOMECHANICKÉM ZPRACOVÁNÍ THE COLD ROLLING OF TRIP STEEL AFTER THERMOMECHANICAL TREATMENT
VÁLCOVÁNÍ ZA STUDENA TRIP OCELI PO TERMOMECHANICKÉM ZPRACOVÁNÍ THE COLD ROLLING OF TRIP STEEL AFTER THERMOMECHANICAL TREATMENT Tomáš Gajdzica a, Jiří Kliber a, Ondřej Žáček b, Ilija Mamuzić c a VŠB - TU
Posouzení stavu rychlořezné oceli protahovacího trnu
Posouzení stavu rychlořezné oceli protahovacího trnu ČSN 19 830 zušlechtěno dle předpisů pro danou ocel tj. kaleno a 3x popuštěno a) b) Obr.č. 1 a) Poškozený zub protahovacího trnu; b) Zdravý zub druhá
HLINÍK A JEHO SLITINY
HLINÍK A JEHO SLITINY Označování hliníku a jeho slitin dle ČSN EN a) Označování hliníku a slitin hliníku pro tváření dle ČSN EN 573-1 až 3 Tyto normy platí pro tvářené výrobky a ingoty určené ke tváření
STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU
STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU MEAN EQUIVALENT STRESS VALUES DURING HOT FORMING OF STEELS - INFLUENCE OF CHEMICAL AND STRUCTURE STATE
TITANEM STABILIZOVANÉ HLUBOKOTAŽNÉ OCELI
TITANEM STABILIZOVANÉ HLUBOKOTAŽNÉ OCELI Eva SCHMIDOVÁ, Josef TOMANOVIČ Katedra mechaniky, materiálů a částí strojů, Dopravní fakulta Jana Pernera, Univerzita Pardubice, Studentská 95, 532 10 Pardubice,
SMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ
SMA 2. přednáška Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ Millerovy indexy rovin (h k l) nesoudělné převrácené hodnoty úseků, které vytíná rovina na osách x, y, z Millerovy indexy této roviny jsou : (1 1
24.-26.5.2005, Hradec nad Moravicí POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM
POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM EFFECT OF SODIUM MODIFICATION ON THE STRUCTURE AND PROPERTIES OF POLYCOMPONENT Mg ALLOYS Luděk Ptáček, Ladislav Zemčík VUT v Brně, Fakulta strojního
INFLUENCE OF HEAT RE-TREATMENT ON MECHANICAL AND FATIGUE PROPERTIES OF THIN SHEETS FROM AL-ALLOYS. Ivo Černý Dagmar Mikulová
VLIV TEPELNÉHO PŘEPRACOVÁNÍ NA MECHANICKÉ A ÚNAVOVÉ VLASTNOSTI TENKÝCH PLECHŮ Z AL-SLITIN INFLUENCE OF HEAT RE-TREATMENT ON MECHANICAL AND FATIGUE PROPERTIES OF THIN SHEETS FROM AL-ALLOYS Ivo Černý Dagmar
VÝVOJ MIKROSTRUKTURY VÍCEFÁZOVÉ OCELI S TRIP EFEKTEM SVOČ - FST 2013
VÝVOJ MIKROSTRUKTURY VÍCEFÁZOVÉ OCELI S TRIP EFEKTEM SVOČ - FST 2013 Bc. Vojtěch Průcha, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce se zabývá rozborem mikrostruktur
Kinetika austenitizace nízkouhlíkové Mn oceli při interkritickém tepelném zpracování
Kinetika austenitizace nízkouhlíkové Mn oceli při interkritickém tepelném zpracování Libor Kraus, Josef Kasl, Stanislav Němeček ŠKODA VÝZKUM s.r.o., ylova 57, 316, Plzeň Abstract his work deal with the
Tváření,tepelné zpracování
tváření, tepelné zpracování Optimalizace řízeného válcování nové konstrukční oceli se zvláštními užitnými vlastnostmi Prof. Ing. Ivo Schindler, CSc., Doc. Dr. Ing. Jaroslav Sojka, VŠB-TU Ostrava, 17. listopadu
Žíhání druhého druhu. Teorie tepelného zpracování Katedra materiálu Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007
Žíhání druhého druhu Teorie tepelného zpracování Katedra materiálu Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007 Rozdělení Žíhání 2. druhu oceli litiny Neželezné kovy austenitizace Rozpad
VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU SLITINY HLINÍKU AA7075 PO INTENZIVNÍ PLASTICKÉ DEFORMACI METODOU ECAP
VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU SLITINY HLINÍKU AA707 PO INTENZIVNÍ PLASTICKÉ DEFORMACI METODOU ECAP EFFECT OF HEAT TREATMENT ON THE STRUCTURE OF THE ALUMINIUM ALLOY AA707 SUBJECTED TO INTENSIVE
VLIV TEPELNÉHO ZPRACOVÁNÍ NA HOUŽEVNATOST LITÝCH MIKROLEGOVANÝCH NÍZKOUHLÍKOVÝCH OCELÍ
VLIV TEPELNÉHO ZPRACOVÁNÍ NA HOUŽEVNATOST LITÝCH MIKROLEGOVANÝCH NÍZKOUHLÍKOVÝCH OCELÍ EFFECT OF HEAT TREATMENT ON TOUGHNESS OF CAST MICROALLOYED LOW-CARBON STEELS Jiří Cejp Karel Macek ČVUT v Praze, Fakulta
TVAŘITELNOST A TRHLINY NA KONTINUÁLNĚ LITÝCH BRAMÁCH. Pavel Szturc a Petr Kozelský b Zdeněk Šáňa c
TVAŘITELNOST A TRHLINY NA KONTINUÁLNĚ LITÝCH BRAMÁCH. Pavel Szturc a Petr Kozelský b Zdeněk Šáňa c a VÍTKOVICE Výzkum a vývoj,spol.s r.o.,pohraniční 31, 706 02 Ostrava - Vítkovice, ČR b VŠB - TU, 17.listopadu
VLIV DEFORMACE NA ROZPAD AUSTENITU OCELI 0,5 C-1 CR-0,8 MN-0,3 SI INFLUENCE OF DEFORMATION ON AUSTENITE DECOMPOSITION OF STEEL 0.5C-1CR-0.8MN-0.
VLIV DEFORMACE NA ROZPAD AUSTENITU OCELI 0,5 C-1 CR-0,8 MN-0,3 SI INFLUENCE OF DEFORMATION ON AUSTENITE DECOMPOSITION OF STEEL 0.5C-1CR-0.8MN-0.3SI Dagmar Jandová, Lenka Vadovicová Západoceská univerzita
a UJP PRAHA a.s., Nad Kamínkou 1345, Praha Zbraslav, b PBS Velká Bíteš a.s. Vlkovská 279, Velká Bíteš,
MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA NIKLOVÉ SLITINY IN 792 5A MECHANICAL PROPERTIES AND STRUCTURE STABILITY OF PROMISING NIKCKEL ALLOY IN 792 5A Božena Podhorná a Jiří Kudrman a Karel Hrbáček
PHYSICAL SIMULATION OF FORMING OF HIGH-ALLOYED STEELS. Petr Unucka a Aleš Bořuta a Josef Bořuta a
FYZIKÁLNÍ SIMULACE TVÁŘENÍ VYSOKOLEGOVANÝCH OCELÍ PHYSICAL SIMULATION OF FORMING OF HIGH-ALLOYED STEELS Petr Unucka a Aleš Bořuta a Josef Bořuta a a MATALURGICKÝ A MATERIÁLOVÝ VÝZKUM s.r.o., Pohraniční
Tepelné zpracování ocelí. Doc. Ing. Stanislav Věchet, CSc. ; Ing. Karel Němec, Ph.D.
Tepelné zpracování ocelí Doc. Ing. Stanislav Věchet, CSc. ; Ing. Karel Němec, Ph.D. Schéma průběhu tepelného zpracování 1 ohřev, 2 výdrž na teplotě, 3 ochlazování Diagram Fe-Fe 3 C Základní typy žíhání
COMTES FHT a.s. R&D in metals
COMTES FHT a.s. R&D in metals 2 Komplexnost Idea na bázi základního a aplikovaného výzkumu Produkt nebo technologie s novou přidanou hodnotou Simulace vlastností materiálu a technologického zpracování
PLASTOMETRICKÉ MODELOVÁNÍ PROVOZNÍCH PODMÍNEK VÁLCOVÁNÍ DLOUHÝCH VÝVALKŮ NA SPOJITÉ TRATI
PLASTOMETRICKÉ MODELOVÁNÍ PROVOZNÍCH PODMÍNEK VÁLCOVÁNÍ DLOUHÝCH VÝVALKŮ NA SPOJITÉ TRATI PLASTOMETRIC SIMULATION THE OPERATIONAL CONDITIONS OF CONTINUOUS ROLLING MILL FOR LONG SHAPES Milan Kotas a, Jiří
Metalurgie vysokopevn ch ocelí
Metalurgie vysokopevn ch ocelí Vysokopevné svařitelné oceli jsou podle konvence označovány oceli s hodnotou meze kluzu vyšší než 460 MPa. Vysokopevné svařitelné oceli uváděné v normách pod označením M
PODSTATA VYSOKOTEPLOTNÍ STABILITY Ni-Cr-W-C SLITIN. THE NATURE OF HIGH-TEMPERATURE HEAT RESISTANCE OF Ni-Cr-W-C ALLYS
PODSTATA VYSOKOTEPLOTNÍ STABILITY Ni-Cr-W-C SLITIN THE NATURE OF HIGH-TEMPERATURE HEAT RESISTANCE OF Ni-Cr-W-C ALLYS Božena Podhorná Jiří Kudrman Škoda-ÚJP, Praha, a.s., Nad Kamínkou 1345, 156 10 Praha-Zbraslav,
VLIV DOKOVACÍH TEPLOT NA STRUKTURU A VLASTNOSTI VÝKOVKŮ Z MIKROLEGOVANÝCH OCELÍ. Miroslav Greger a Stanislav Rusz b Adam Hernas c
VLIV DOKOVACÍH TEPLOT NA STRUKTURU A VLASTNOSTI VÝKOVKŮ Z MIKROLEGOVANÝCH OCELÍ Miroslav Greger a Stanislav Rusz b Adam Hernas c a VŠB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, miroslav.greger@vsb.cz
TVÁŘENÍ NOVÝCH TYPŮ OCELÍ. Ondřej Žáček Jiří Kliber
TVÁŘENÍ NOVÝCH TYPŮ OCELÍ Ondřej Žáček Jiří Kliber VŠB TECHNICKÁ UNIVERZITA OSTRAVA, Fakulta metalurgie a materiálového inženýrství, katedra tváření materiálu, 17. Listopadu 15, 708 33 Ostrava-Poruba,
Kvalitativní zhodnocení modifikací alitačních vrstev
Kvalitativní zhodnocení modifikací alitačních vrstev Marie Rohlová ČVUT v Praze, Ústav materiálového inženýrství, Karlovo nám. 13, 121 35 Praha 2 Nové Město, Česká republika Abstrakt Příspěvek je zaměřen
Návod pro cvičení z předmětu Válcování
Návod pro cvičení z předmětu Válcování Určení vlivu termomechanických parametrů válcování a rychlosti ochlazování na teploty fázových transformací a charakter výsledné mikrostruktury - praktické ověření
TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008. Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008 Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce obsahuje charakteristiku konstrukčních ocelí
CREEPOVÉ VLASTNOSTI A STRUKTURA OCELI P91 CREEP PROPERTIES AND STRUCTURE OF STEEL P91
METAL 8... 8, Hradec nad Moravicí CREEPOVÉ VLASTNOSTI A STRUKTURA OCELI P9 CREEP PROPERTIES AND STRUCTURE OF STEEL P9 Jan Hakl, Tomáš Vlasák, Jiří Kudrman SVÚM a.s., areál VÚ, Podnikatelská, 9 Praha 9
THE IMPACT OF PROCESSING STEEL GRADE 14 260 ON CORROSIVE DEGRADATION VLIV TEPELNÉHO ZPRACOVÁNÍ OCELI 14 260 NA KOROZNÍ DEGRADACI
THE IMPACT OF PROCESSING STEEL GRADE 14 260 ON CORROSIVE DEGRADATION VLIV TEPELNÉHO ZPRACOVÁNÍ OCELI 14 260 NA KOROZNÍ DEGRADACI Votava J., Černý M. Ústav techniky a automobilové dopravy, Agronomická fakulta,
VLIV EXPERIMENTÁLNÍCH PODMÍNEK NA ZÍSKÁVANÉ HODNOTY TEPELNÝCH EFEKTŮ A TEPLOT FÁZOVÝCH PŘEMĚN ČISTÉHO ŽELEZA A OCELI METODOU DTA
VLIV EXPERIMENTÁLNÍCH PODMÍNEK NA ZÍSKÁVANÉ HODNOTY TEPELNÝCH EFEKTŮ A TEPLOT FÁZOVÝCH PŘEMĚN ČISTÉHO ŽELEZA A OCELI METODOU DTA EXPERIMENTAL CONDITIONS INFLUENCE ON PHASE TRANSFORMATIONS HEAT EFFECTS
METALOGRAFIE II. Oceli a litiny
METALOGRAFIE II Oceli a litiny Slitiny železa, uhlíku a popřípadě dalších prvků se nazývají oceli a litiny. Oceli jsou slitiny železa obsahující do 2,14 hm. % uhlíku, litiny s obsahem uhlíku nad 2,14 hm.
KOROZNÍ CHOVÁNÍ Mg SLITIN V PROVZDUŠNĚNÉM FYZIOLOGICKÉM ROZTOKU
KOROZNÍ CHOVÁNÍ Mg SLITIN V PROVZDUŠNĚNÉM FYZIOLOGICKÉM ROZTOKU František HNILICA a, LUDĚK JOSKA b, BOHUMIL SMOLA c, IVANA STULÍKOVÁ c a České vysoké učení technické v Praze, Fakulta strojní, Technická
Výrobky válcované za tepla z konstrukčních ocelí Část 2: Technické dodací podmínky pro nelegované konstrukční oceli
VÁ LC E P R O VÁ LC OV N Y S T R OJ Í R E N S K É V Ý R O BKY H U T N Í M AT E R I Á L U Š L E C H T I L É O CE LI ČSN EN 100252 Výrobky válcované za tepla z konstrukčních ocelí Část 2: Technické dodací
TEPELNÉ ZPRACOVÁNÍ, MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA PERSPEKTIVNÍCH LITÝCH NIKLOVÝCH SUPERSLITIN
TEPELNÉ ZPRACOVÁNÍ, MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA PERSPEKTIVNÍCH LITÝCH NIKLOVÝCH SUPERSLITIN HEAT TREATMENT, MECHANICAL PROPERTIES AND STRUKTURE STABILITY OF PROMISING NIKEL SUPERALLOYS
ZA TEPLA A ZA STUDENA VÁLCOVANÉ PÁSY Z RA-OCELÍ. Čestmír Lang a Ladislav Jílek b
ZA TEPLA A ZA STUDENA VÁLCOVANÉ PÁSY Z RA-OCELÍ Čestmír Lang a Ladislav Jílek b a Braunschweiger Str. 24, D-47 169 Duisburg, SRN, E-mail:cestmit.lang@freenet.de b VÍTKOVICE Výzkum a vývoj, spol. s r. o.
VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM
VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM INFLUENCE OF ALUMINIUM CONTENT ON BEHAVIOUR OF MAGNESIUM CAST ALLOYS IN BENTONITE AND FURAN SAND MOULD
Precipitace. Změna rozpustnosti je základním předpokladem pro precipitační proces
Precipitace Čisté kovy s ohledem na své mechanické parametry nemají většinou pro praktická použití vhodné užitné vlastnosti. Je proto snaha využít všech možností ke zlepší těchto parametrů, zejména pak