59. ročník Matematické olympiády 2009/2010
|
|
- Milena Bílková
- před 9 lety
- Počet zobrazení:
Transkript
1 59. ročník Matematické olympiády 2009/2010 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích potřeb (tzn. knihy, kalkulačky, mobily, apod.). Řešení každého příkladu musí obsahovat: Popis řešení, to znamená slovní popis použitého algoritmu, argumenty zdůvodňující jeho správnost(případně důkaz správnosti algoritmu), diskusi o efektivitě vašeho řešení(časová a paměťová složitost). Slovní popis řešení musí být jasný a srozumitelný i bez nahlédnutí do samotného zápisu algoritmu(do programu). Není vhodné odkazovat se na Vaše řešení předchozích kol, opravovatelé je nemají k dispozici; na autorská řešení se odkazovat můžete. Program. V úlohách P-III-1 a P-III-2 je třeba uvést dostatečně podrobný zápis algoritmu, např. ve tvaru pseudokódu nebo zdrojového textu nejdůležitějších částí programu v programovacím jazyce Pascal nebo C/C++. Ze zápisu můžete vynechat jednoduché operace jako vstupy, výstupy, implementaci jednoduchých matematických vztahů apod. V řešení úlohy P-III-3 je nutnou součástí řešení program pro počítač Kvak. Za každou úlohu můžete získat 0 až 10 bodů. Hodnotí se nejen správnost programu, ale také efektivita zvoleného algoritmu a kvalita popisu řešení. P-III-1 Znovu čokoláda Jeníček bude mít zanedlouho narozeniny. Jeho sestra Mařenka si ještě dobře pamatuje na olámanou čokoládu, kterou od Jeníčka dostala před několika měsíci.rozhodlaseproto,žemudáknarozeninámpodobnýdárek.zašladosklepa azesvétajnéskrýševzalačokoládu,kterousitamkdysiukryla.myšijižstihly ohryzat i tuto čokoládu, ale to Mařence nevadilo stačí přece ohryzané části olámat. Mařenka je ovšem šikovnější než Jeníček a uvědomila si, že nemusí lámáním vytvořit čtverec. Čokolády mají přece často obdélníkový tvar. Tím získá mnoho nových možností, jak lze vyrobit dárek pro Jeníčka. Soutěžní úloha: Jedánpůvodnípočetřádků Rapočetsloupců Sčokoládyamatice R Snul a jedniček udávající, která políčka čokolády zůstala zachována celá. Určete, kolika způsoby může Mařenka uskutečnit svůj plán. Jinými slovy, spočítejte, kolika způsoby lze ve zbytku čokolády vyznačit obdélník bez děr. Všechny hrany obdélníka musí samozřejmě ležet na hranách políček. Stejně velké obdélníky umístěné na různých místech původní čokolády považujeme za různá řešení. 1
2 Formát vstupu: Na prvním řádku vstupu jsou dvě celá čísla R a S oddělená mezerou. Následuje Rřádků,přičemžna r-témznichje Smezeramioddělenýchcelýchčísel a r,1,...,a r,s. Je-lipolíčkočokoládynasouřadnicích(r, s)celé,bude a r,s =1,vopačnémpřípadě a r,s =0. Formát výstupu: Program vypíše na výstup jediné číslo hledaný počet obdélníků. Příklad: Vstup: Výstup: 33 Na obrázku vpravo je zobrazena čokoláda popsaná na vstupu. Šedou barvou jsou vyznačena políčka, která už myši stihly poškodit. Obdélník1 1lzenatétočokoláděvyznačitdesetizpůsoby,2 1pěti,1 2 šesti,3 1dvěma,1 3čtyřmi,1 4dvěma,2 2dvěma,1 5jedním,a2 3 také jedním způsobem. P-III-2 Šachovnice Šach-mat, oznámilsúšklebkemjeníček.mařenkamělasicedosudšachyvelmi ráda, ale už ji to přestává bavit: právě s Jeníčkem prohrála sedmnáctou partii po sobě. Vymyslela si proto novou, vlastní hru, v níž Jeníčka určitě porazí. Hracím plánem je šachovnice, která je směrem doprava a nahoru nekonečná. Každé políčko této šachovnice můžeme označit dvojicí nezáporných celých čísel(x, y). Políčko v levém dolním rohu šachovnice má označení(0, 0), směrem doprava roste souřadnice x, směrem nahoru vzrůstá souřadnice y. Na šachovnici je rozmístěno N šachových koní. Na začátku i kdykoliv během hry může stát více koní na témže políčku. Koně se pohybují podle šachových pravidel. Jsou povoleny pouze takové tahy, při nichž kůň neopustí šachovnici a navíc klesne součet obou souřadnic(viz obrázek na následující straně). Hráč,kterýjenatahu,sivybereněkolikkoní(můžesijichvybrat,kolikchce, alemusívždyaspoňjednoho)akaždýmznichprovedejedentah.hráčisevehře pravidelně střídají. Prohrává ten, kdo nemůže provést další tah(tzn. nemůže pohnout podle pravidel žádným koněm). Mařenkasiužnapsalaprogram,kterýzanibudehráttutohruoptimálním způsobem. Jeníček ale programovat neumí, a proto by přivítal vaši pomoc. Soutěžní úloha: Je dán počet koní N a jejich počáteční rozmístění na šachovnici. První tah provádí Jeníček. 2
3 Napište program, který zjistí, kdo vyhraje, když budou oba hráči hrát optimálně. Pokud zvítězí Jeníček, váš program by mu měl také poradit první tah libovolné vyhrávající strategie. Jestliže úlohu nedokážete vyřešit pro obecné N, část bodů dostanete i v případě, že ji vyřešíte pro jednoho koně, případně pro dva koně začínající na souřadnicích mezi (0,0)a(100,100). (0, 0) Všechny povolené tahy koněm na souřadnicích(3, 2) Formát vstupu: Prvnířádekvstupuobsahujepočetkoní N.Nakaždémznásledujících Nřádků jsoudvěčísla r i a s i,kteráurčujířádekasloupec,kdesenachází i-týkůňnazačátku hry. Formát výstupu: První řádek výstupu bude obsahovat jméno hráče, který vyhraje(jenicek nebo Marenka). Jestliže vyhraje Jeníček, vypište pro každého koně, kterým má Jeníček vúvodnímtahutáhnout,řádeksčísly r a, s a, r b, s b původníanovápolohakoně. Na pořadí těchto řádků nezáleží. Příklad 1: Vstup: Výstup: Marenka Jeníčekmusítáhnoutna(1,2),odtudMařenkatáhnekoněmna(0,0)avyhraje. Příklad 2: Vstup: Výstup: Jenicek Po uvedeném tahu Jeníčka Mařenka ihned prohraje, neboť ani jedním koněm už nemůže pohnout. Všimnětesi,žekdybyJeníčeknechalkonězpolíčka(3,1)napůvodnímmístě,prohraje.Prohrálbyivpřípadě,žebytohotokoněpřesunulnapolíčko(1,2),bezohledu nato,zdabydruhýmkoněmpohnul,nebone. 3
4 P-III-3 Počítač Kvak V tomto ročníku olympiády se setkáváme se speciálním počítačem nazvaným Kvak. Ve studijním textu uvedeným za zadáním úlohy je popsáno, jak tento počítač funguje. Studijní text je shodný s textem z domácího a krajského kola. Soutěžní úloha: a)(3 body) V rouře počítače je posloupnost kladných celých čísel. Označme si je a 1, a 2,..., a N vpořadí,vněmžsevrouřenacházejí.napišteprogram,kterýzkontroluje, zda je tato posloupnost rostoucí. Pokud ano, program ukončí výpočet, aniž by cokoliv vypsal. Jestliže posloupnost není rostoucí, program zjistí a vypíše nejmenší itakové,že a i a i+1. b)(7 bodů) V rouře počítače je posloupnost kladných celých čísel. Víte, že jedno ztěchtočíselmávrouřenadpolovičnívětšinu totočíslosetedyvrouřevyskytuje vícekrát, než všechna ostatní čísla dohromady. Napište program, který toto číslo najde a vypíše. Studijní text: V letošním ročníku olympiády se budeme setkávat se speciálním počítačem zvaným Kvak. Jedinýdatovýtyp,sekterýmKvakpracuje,senazývánumber,cožjecelé číslo z rozsahu od 0 do včetně.* Všechny matematické výpočty provádí Kvak modulo65536,takženapříkladhodnotouvýrazu je4. Kvak používá 26 proměnných, které nazýváme registry. Registry jsou označeny písmenyaažzavkaždémznichmůžebýtuloženajednahodnotatypunumber.na začátku výpočtu jsou ve všech registrech nuly. Kromě registrů má Kvak ještě jednu jednosměrnou rouru neomezené délky, do které se mohu ukládat hodnoty typu number. Je to jediná datová struktura, kterou Kvak používá. S rourou lze provádět dvě operace: vložitdoníčíslozregistru Xpříkazemput X, zopačnéhokoncerouryodebratčísloauložithodoregistru Xpříkazem get X. Čísla se v rouře počítače nemohou předbíhat, Kvak je tedy bude odebírat ve stejném pořadí, v jakém je do roury vložil.** Roura má neomezenou kapacitu, lze do ní vložit libovolné množství čísel. Není-li řečeno jinak, roura je na začátku výpočtu prázdná. Počítač Kvak má také možnost vypisovat čísla(výsledky výpočtu) na výstup. Příkazy V následující tabulce jsou shrnuty všechny příkazy, které Kvak umí provádět a které tedy můžete používat v programech. *65535=2 16 1,typnumberjetedypřesněto,coznátejako16-bitovécelé číslo bez znaménka. ** Takovou datovou strukturu obvykle nazýváme fronta. 4
5 příkaz význam příkazu get X Kvakodeberejednočíslozrouryauložíhodoregistru X. put X Kvakvložídorouryčíslozregistru X. putčíslo Kvakvložídanéčíslodoroury. print Kvakodeberejednočíslozrouryavypíšehonavýstup. add sčítání:kvakodeberedvěčíslazrouryavložídorouryjejichsoučet. sub odčítání:kvakodeberedvěčíslazrouryavložídorouryjejichrozdíl (první minus druhé). mul násobení:kvakodeberedvěčíslazrouryavložídorouryjejich součin. div dělení:kvakodeberedvěčíslazrouryavložídorouryceloučást jejich podílu(první lomeno druhé). mod zbytek:kvakodeberedvěčíslazrouryavložídorouryzbytek,který dá první z nich po celočíselném dělení druhým. label L návěstí:totomístovprogramudostaneoznačení L(kde Lmůžebýt libovolný řetězec). Stejné návěstí nesmí být v programu vícekrát. jump L skok: Kvak bude pokračovat v provádění programu od místa, které má označení L. jz X L skok jestliže nula: Je-li v registru X nula, Kvak provede příkaz jump L. jeq X Y L skokjestližeserovnají:je-livregistrech X a Y stejnáhodnota, Kvak provede příkaz jump L. jgt X Y L skokjestližejevětší:je-livregistru Xvětšíhodnotanežvregistru Y,Kvakprovedepříkazjump L. jempty L skok jestliže je prázdná: Není-li v rouře žádné číslo, Kvak provede příkaz jump L. stop konec: Kvak ukončí svůj výpočet. Pokud se během výpočtu stane, že se pokusíme odebrat číslo z roury počítače a roura přitom bude prázdná, nastane chyba. Chyba nastane také tehdy, když se pokusíme dělit nulou, počítat zbytek po dělení nulou, nebo skočit na neexistující místo v programu. Dojde-li výpočet programu na konec, Kvak po provedení posledního příkazu korektně skončí(jako kdyby na konci programu byl ještě příkaz stop.) V zápisu programu můžeme psát více příkazů na jeden řádek, v takovém případě je od sebe oddělujeme středníkem. Příklad 1 Následující program spočítá a vypíše součet všech čísel od 1 do 20. put 20 put 0 5
6 label start get a jz a end put a ; put a ; put 1 add sub get b ; put b jump start label end print Pokaždé, když se Kvak při provádění programu dostane ke třetímu řádku (label start),budouvrouřeprávědvěčísla.jestližeprvníznichoznačíme N, hodnotadruhéhobuderovnasoučtu S=(N+1)+ +20.Poténačteme Ndo registrua.je-li N=0,mámevrouřehledanýsoučet,můžemehovypsatnavýstup a skončit. V opačném případě chceme provést dvě věci: Přičíst N k dosud získanému součtu,anásledně Nzmenšito1.Poprovedenířádkušest(třipříkazyput)máme vrouřepostupněčísla: S, N, N,1.Příkazaddsečteprvnídvě,pojehoprovedení budevrouřetrojicečísel N,1, N+S.Povykonánídalšíhopříkazusubbudouvrouřehodnoty N+ Sa N 1.Toužjetéměřto,copotřebujeme,jenomvopačném pořadí.protoprvníznichnačtemedoregistrubaznovuvložímedoroury. Příklad 2 V rouře je neprázdná posloupnost čísel. Napíšeme program, který spočítá a vypíše na výstup jejich součet.(přesněji, jeho zbytek po dělení ) Budeme stále opakovat následující postup: Zjistíme, zda jsou v rouře aspoň dvě čísla. Jestliže ano, některá dvě z nich sečteme a nahradíme je jejich součtem. Pokudtamuždvěčíslanejsou,zůstalotamtadyužjenomjedinéatozjevněsoučtem všech původních čísel. V programu pro počítač Kvak můžeme tuto myšlenku implementovat například následovně: label cyklus get a jempty konec put a add jump cyklus label konec put a print Nazačátkukaždéiteraceodeberemezrouryjednočísloavložímehodoregistrua.Pokudsetímrouravyprázdnila,mámevregistruahledanýsoučet,stačíhouž jenomvypsat.pokudne,číslozregistruavrátímezpětdoroury.vtomokamžiku jsouvrouřealespoňdvěčíslaamůžemetedybezobavprovéstpříkazadd. Časová složitost tohoto řešení je lineární vzhledem k počtu čísel, která byla na začátku výpočtu v rouře. Každá iterace cyklu totiž provádí jen konstantní počet příkazůazmenšínámojednopočetčíselvrouře. 6
59. ročník Matematické olympiády 2009/2010
59. ročník Matematické olympiády 2009/2010 Úlohy domácího kola kategorie P ÚlohyP-I-1aP-I-2jsoupraktickyzaměřenéavašímúkolemvnichjevytvořit a odladit efektivní program v jazyce Pascal, C nebo C++. Řešení
59. ročník Matematické olympiády 2009/2010
59. ročník Matematické olympiády 2009/2010 Úlohy krajského kola kategorie P Krajskékolo59.ročníkuMOkategoriePsekonávúterý12.1.2010vdopoledních hodinách.nařešeníúlohmáte4hodinyčistéhočasu.vkrajskémkolemo-pseneřeší
MATEMATICKÁ OLYMPIÁDA NA STŘEDNÍCH ŠKOLÁCH
MATEMATICKÁ OLYMPIÁDA NA STŘEDNÍCH ŠKOLÁCH kategoriea,b,cap 59. ROČNÍK, 2009/2010 http://math.muni.cz/mo Studenti středních škol, zveme vás k účasti v matematické olympiádě, jejíž soutěžní kategorie A,B,CaPpořádámeprávěprovás.
61. ročník Matematické olympiády 2011/2012
61. ročník Matematické olympiády 2011/2012 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži
63. ročník Matematické olympiády 2013/2014
63. ročník Matematické olympiády 2013/2014 Úlohy ústředního kola kategorie P 2. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích
Zadání soutěžních úloh
Zadání soutěžních úloh Kategorie žáci Soutěž v programování 25. ročník Krajské kolo 2010/2011 15. až 16. dubna 2011 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Za každou
53. ročník Matematické olympiády 2003/2004
5. ročník Matematické olympiády 00/004 Úlohy celostátního kola kategorie P. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každého příkladu musí obsahovat: Popis řešení, to znamená slovní
Hodnocení soutěžních úloh
Terč Koeficient 1 soutěžních úloh Kategorie žáci Soutěž v programování 25. ročník Krajské kolo 2010/2011 15. až 16. dubna 2011 Napište program, který zobrazí střelecký terč dle vzorového obrázku. Jak má
Zadání soutěžních úloh
Zadání soutěžních úloh Kategorie žáci Soutěž v programování 24. ročník Krajské kolo 2009/2010 15. až 17. dubna 2010 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Za každou
Abstrakt. V příspěvku se budeme zabývat kombinatorickými hrami s úplnou informací
Teorie her Viki Němeček Abstrakt. V příspěvku se budeme zabývat kombinatorickými hrami s úplnou informací pro dva hráče. Vysvětlíme si základní pojmy, zahrajeme si několik jednodušších her a naučíme se
Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).
7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené
66. ročník Matematické olympiády 2016/2017
66. ročník Matematické olympiády 2016/2017 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži
Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:
Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury
63. ročník Matematické olympiády 2013/2014
6. ročník Matematické olympiády 0/0 Úlohy ústředního kola kategorie P. soutěžní den Na řešení úloh máte, hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži je zakázáno
V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2
Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných
Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012
Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18
67. ročník Matematické olympiády 2017/2018
67. ročník Matematické olympiády 2017/2018 Úlohy ústředního kola kategorie P 2. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích
67. ročník Matematické olympiády 2017/2018
67. ročník Matematické olympiády 2017/2018 Úlohy domácího kola kategorie P Úlohy P-I-1 a P-I-2 jsou praktické, vaším úkolem v nich je vytvořit a odladit efektivní program v jazyce Pascal, C nebo C++. Řešení
Martin Milata, <256615@mail.muni.cz> 27.11.2007. Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už je od
IB000 Lámání čokolády Martin Milata, 27.11.2007 1 Čokoláda s alespoň jedním sudým rozměrem Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už
66. ročník Matematické olympiády 2016/2017
66. ročník Matematické olympiády 016/017 Úlohy krajského kola kategorie P Krajské kolo 66. ročníku MO kategorie P se koná v úterý 17. 1. 017 v dopoledních hodinách. Na řešení úloh máte 4 hodiny čistého
Úlohy krajského kola kategorie C
65. ročník matematické olympiády Úlohy krajského kola kategorie. Najděte nejmenší možnou hodnotu výrazu x xy + y, ve kterém x a y jsou libovolná celá nezáporná čísla.. Určete, kolika způsoby lze všechny
63. ročník Matematické olympiády 2013/2014
6. ročník Matematické olympiády / Úlohy krajského kola kategorie P Krajské kolo 6. ročníku MO kategorie P se koná v úterý.. v dopoledních hodinách. Na řešení úloh máte hodiny čistého času. V krajském kole
Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.
Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou
Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.
Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.
Hledání správné cesty
Semestrální práce z předmětu A6M33AST Závěrečná zpráva Hledání správné cesty Nela Grimová, Lenka Houdková 2015/2016 1. Zadání Naším úkolem bylo vytvoření úlohy Hledání cesty, kterou by bylo možné použít
68. ročník Matematické olympiády 2018/2019
68. ročník Matematické olympiády 2018/2019 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži
Korespondenční Seminář z Programování
Korespondenční Seminář z Programování SOUTĚŽ KASIOPEA 27. ročník Zadání úloh Březen 2015 V tomto textu naleznete zadání úloh online soutěže Kasiopea 2015, která probíhá o víkendu 22. 23. března. Veškeré
Matematická olympiáda ročník ( ) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Z5 II 2 Z5 II 3
1 of 6 20. 1. 2014 12:14 Matematická olympiáda - 49. ročník (1999-2000) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Jirka půjčil Mirkovi předevčírem přibližně 230 Kč, tj. 225
Návody k domácí části I. kola kategorie C
61. ročník Matematické olympiády Návody k domácí části I. kola kategorie C 1. Najděte všechny trojčleny p(x) = ax 2 + bx + c, které dávají při dělení dvojčlenem x + 1 zbytek 2 a při dělení dvojčlenem x
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty
Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)
1.1 Struktura programu v Pascalu Vstup a výstup Operátory a některé matematické funkce 5
Obsah Obsah 1 Programovací jazyk Pascal 1 1.1 Struktura programu v Pascalu.................... 1 2 Proměnné 2 2.1 Vstup a výstup............................ 3 3 Operátory a některé matematické funkce 5
Programy na PODMÍNĚNÝ příkaz IF a CASE
Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak
Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.
Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,
Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.
Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani
Základy algoritmizace
Algoritmus Toto je sice na první pohled pravdivá, ale při bližším prozkoumání nepřesná definice. Například některé matematické postupy by této definici vyhovovaly, ale nejsou algoritmy. Přesné znění definice
Zadání soutěžních úloh
Zadání soutěžních úloh Kategorie mládež Soutěž v programování 25. ročník Krajské kolo 2010/2011 15. až 16. dubna 2011 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Za
Teorie her(povídání ke čtvrté sérii)
Teorie her(povídání ke čtvrté sérii) Je velice obtížné definovat obecně, co je to hra. Navíc tento pojem intuitivně chápeme. Budeme se zabývat takovými hrami jako jsou šachy nebo pišqorky hrami dvou hráčů,
Školní kolo soutěže Baltík 2009, kategorie C
Úloha 1 Sídliště Počet bodů: 40 b Pracujte v 3D režimu s Baltíkem. a) Bílý a šedivý Baltík si postaví šachovnici o rozměru 6x6 políček následujícím způsobem. Předměty SGP21.sgpm a SGP22.sgpm upravte na
Hodnocení soutěžních úloh
Hodnocení soutěžních úloh Superciferný součet Koeficient 1 Kategorie mládež Soutěž v programování 24. ročník Krajské kolo 2009/2010 15. až 17. dubna 2010 Vaší úlohou je vytvořit program, který spočítá
Poslední nenulová číslice faktoriálu
Poslední nenulová číslice faktoriálu Kateřina Bambušková BAM015, I206 Abstrakt V tomto článku je popsán a vyřešen problém s určením poslední nenulové číslice faktoriálu přirozeného čísla N. Celý princip
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
Funkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace
Programování: základní konstrukce, příklady, aplikace IB111 Programování a algoritmizace 2011 Připomenutí z minule, ze cvičení proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady:
67. ročník Matematické olympiády 2017/2018
67. ročník Matematické olympiády 2017/2018 Úlohy krajského kola kategorie P Krajské kolo 67. ročníku MO kategorie P se koná v úterý 23. 1. 2018 v dopoledních hodinách. Na řešení úloh máte 4 hodiny čistého
Jako pomůcka jsou v pravém dolním rohu vypsány binární kódy čísel od 0 do 15 a binární kódy příkazů, které máme dispozici (obr.21). Obr.
Model procesoru Jedná se o blokové schéma složené z registrů, paměti RAM, programového čítače, instrukčního registru, sčítačky a řídicí jednotky, které jsou propojeny sběrnicemi. Tento model má dva stavy:
Matematický KLOKAN : ( ) = (A) 1 (B) 9 (C) 214 (D) 223 (E) 2 007
Matematický KLOKN 007 kategorie enjamín Úlohy za 3 body. Které číslo patří do prázdného rámečku? 007 : ( + 0 + 0 + 7) 0 0 7 = () () 9 (C) 4 (D) 3 (E) 007. Který z dílů stavebnice musíš přiložit k dílu
Úlohy krajského kola kategorie C
6. ročník matematické olympiády Úlohy krajského kola kategorie C. Pro libovolná reálná čísla x, y, z taková, že x < y < z, dokažte nerovnost x 2 y 2 + z 2 > (x y + z) 2. 2. Honza má tři kartičky, na každé
Programování v jazyce C pro chemiky (C2160) 3. Příkaz switch, příkaz cyklu for, operátory ++ a --, pole
Programování v jazyce C pro chemiky (C2160) 3. Příkaz switch, příkaz cyklu for, operátory ++ a --, pole Příkaz switch Příkaz switch provede příslušnou skupinu příkazů na základě hodnoty proměnné (celočíselné
Nový způsob práce s průběžnou klasifikací lze nastavit pouze tehdy, je-li průběžná klasifikace v evidenčním pololetí a školním roce prázdná.
Průběžná klasifikace Nová verze modulu Klasifikace žáků přináší novinky především v práci s průběžnou klasifikací. Pro zadání průběžné klasifikace ve třídě doposud existovaly 3 funkce Průběžná klasifikace,
Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
Úlohy domácí části I. kola kategorie C
6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete všechny dvojice (x, y) reálných čísel, která vyhovují soustavě rovnic (x + )2 = y, (y )2 = x + 8. Řešení. Vzhledem k tomu,
ALGORITMIZACE Příklady ze života, větvení, cykly
ALGORITMIZACE Příklady ze života, větvení, cykly Cíl kapitoly: Uvedení do problematiky algoritmizace Klíčové pojmy: Algoritmus, Vlastnosti správného algoritmu, Možnosti zápisu algoritmu, Vývojový diagram,
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
68. ročník Matematické olympiády 2018/2019
68. ročník Matematické olympiády 2018/2019 Úlohy krajského kola kategorie P Krajské kolo 68. ročníku MO kategorie P se koná v úterý 22. 1. 2019 v dopoledních hodinách. Na řešení úloh máte 4 hodiny čistého
1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:
1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.
Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012
Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z
Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
Lekce 01 Úvod do algoritmizace
Počítačové laboratoře bez tajemství aneb naučme se učit algoritmizaci a programování s využitím robotů Lekce 01 Úvod do algoritmizace Tento projekt CZ.1.07/1.3.12/04.0006 je spolufinancován Evropským sociálním
Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus
Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je
Teorie her a ekonomické rozhodování. 2. Maticové hry
Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru
Posloupnosti a jejich limity
KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny
Zadání soutěžních úloh
16. až 18. dubna 2015 Krajské kolo 2014/2015 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Za každou úlohu můžete dostat maximálně 10 bodů, z nichž je většinou 9 bodů
Iterační výpočty. Dokumentace k projektu č. 2 do IZP. 24. listopadu 2004
Dokumentace k projektu č. 2 do IZP Iterační výpočty 24. listopadu 2004 Autor: Kamil Dudka, xdudka00@stud.fit.vutbr.cz Fakulta Informačních Technologií Vysoké Učení Technické v Brně Obsah 1. Úvod...3 2.
1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:
1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.
3 Co je algoritmus? 2 3.1 Trocha historie... 2 3.2 Definice algoritmu... 3 3.3 Vlastnosti algoritmu... 3
Obsah Obsah 1 Program přednášek 1 2 Podmínky zápočtu 2 3 Co je algoritmus? 2 3.1 Trocha historie............................ 2 3.2 Definice algoritmu.......................... 3 3.3 Vlastnosti algoritmu.........................
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
66. ročník Matematické olympiády 2016/2017
66. ročník Matematické olympiády 2016/2017 Úlohy domácího kola kategorie P Úlohy P-I-1 a P-I-2 jsou praktické, vaším úkolem v nich je vytvořit a odladit efektivní program v jazyce Pascal, C nebo C++. Řešení
2.1 Podmínka typu case Cykly Cyklus s podmínkou na začátku Cyklus s podmínkou na konci... 5
Obsah Obsah 1 Řídicí struktury 1 2 Podmínka 1 2.1 Podmínka typu case......................... 2 3 Příkaz skoku 3 4 Cykly 4 4.1 Cyklus s podmínkou na začátku................... 4 4.2 Cyklus s podmínkou
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.
Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel
x 0; x = x (s kladným číslem nic nedělá)
.. Funkce absolutní hodnota Předpoklady: 08, 07 x - zničí znaménko čísla, všechna čísla změní na nezáporná Jak vyjádřit matematicky? Pomocí číselné osy: x je vzdálenost obrazu čísla na číselné ose od počátku.
Úlohy krajského kola kategorie C
67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =
O soutěži MaSo. Co je to MaSo? 21. MaSo. V Praze a letos poprvé také v Brně. maso.mff.cuni.cz. o dvakrát za rok o nejen počítání o soutěž družstev
MaSo jaro 2017 Co je to MaSo? o dvakrát za rok o nejen počítání o soutěž družstev O soutěži MaSo spolupráce, komunikace, týmová hra 21. MaSo V Praze a letos poprvé také v Brně maso.mff.cuni.cz Organizace
M - Příprava na pololetní písemku č. 1
M - Příprava na pololetní písemku č. 1 Určeno jako studijní materiál pro třídu 2K. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu
Příklady z Kombinatoriky a grafů I - LS 2015/2016
Příklady z Kombinatoriky a grafů I - LS 2015/2016 zadáno 1.-4. 3. 2016, odevzdat do 8.-11. 3. 2016 1. Zjistěte, které z následujících funkcí definovaných pro n N jsou v relaci Θ(), a vzniklé třídy co nejlépe
Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
MATEMATICKÁ OLYMPIÁDA
MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 65. ROČNÍK, 2015/2016 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste
67. ročník Matematické olympiády 2017/2018
67. ročník Matematické olympiády 2017/2018 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
57. ročník Matematické olympiády 2007/2008
57. ročník Matematické olympiády 007/008 Úlohy ústředního kola kategorie P. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každého příkladu musí obsahovat: Popis řešení, to znamená slovní
Vánoční turnaj GP Praha 2012
Vánoční turnaj GP Praha 0 konaný péčí HALAS o.s. dne. prosince 0 Jméno hráče: Pravidla obecná: Do každého políčka vepište jednu číslici -N podle velikosti tabulky není-li v zadání jinak zmíněno. Zadání
VISUAL BASIC. Přehled témat
VISUAL BASIC Přehled témat 1 ÚVOD DO PROGRAMOVÁNÍ Co je to program? Kuchařský předpis, scénář k filmu,... Program posloupnost instrukcí Běh programu: postupné plnění instrukcí zpracovávání vstupních dat
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze Studijní program Matematika, bakalářské studium Studijní program Informatika, bakalářské studium 2014, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a,
IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)
IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Vzorce. Suma. Tvorba vzorce napsáním. Tvorba vzorců průvodcem
Vzorce Vzorce v Excelu lze zadávat dvěma způsoby. Buď známe přesný zápis vzorce a přímo ho do buňky napíšeme, nebo použijeme takzvaného průvodce při tvorbě vzorce (zejména u složitějších funkcí). Tvorba
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ. 1.07/1.5.00/34.0637 Šablona III/2 Název VY_32_INOVACE_39_Algoritmizace_teorie Název školy Základní škola a Střední
MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.
MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13
Program a životní cyklus programu
Program a životní cyklus programu Program algoritmus zapsaný formálně, srozumitelně pro počítač program se skládá z elementárních kroků Elementární kroky mohou být: instrukce operačního kódu počítače příkazy
pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A
Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy
a se nazývá aritmetická právě tehdy, když existuje takové číslo d R
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.