66. ročník Matematické olympiády 2016/2017
|
|
- Věra Daniela Němečková
- před 6 lety
- Počet zobrazení:
Transkript
1 66. ročník Matematické olympiády 2016/2017 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích potřeb (tzn. knihy, kalkulačky, mobily, apod.). Řešení každého příkladu musí obsahovat: Popis řešení, to znamená slovní popis principu zvoleného algoritmu, argumenty zdůvodňující jeho správnost, diskusi o efektivitě vašeho řešení (časová a paměťová složitost). Slovní popis řešení musí být jasný a srozumitelný i bez nahlédnutí do samotného zápisu algoritmu (do programu). Není povoleno odkazovat se na Vaše řešení předchozích kol, opravovatelé je nemají k dispozici; na autorská řešení se odkazovat můžete. Zápis algoritmu. V úlohách P-III-1 a P-III-2 je třeba uvést zápis algoritmu, a to buď ve tvaru zdrojového textu nejdůležitějších částí programu v jazyce Pascal nebo C/C++, nebo v nějakém dostatečně srozumitelném pseudokódu. Nemusíte detailně popisovat jednoduché operace jako vstupy, výstupy, implementaci jednoduchých matematických vztahů, vyhledávání v poli, třídění apod. Řešení úlohy P-III-3 bude vypadat podobně, ale místo pseudokódu musí obsahovat program pro stromochod. Za každou úlohu můžete získat maximálně 10 bodů. Hodnotí se nejen správnost řešení, ale také kvalita jeho popisu (včetně zdůvodnění správnosti) a efektivita zvoleného algoritmu. Algoritmy posuzujeme zejména podle jejich časové složitosti, tzn. podle závislosti doby výpočtu na velikosti vstupních dat. Záleží přitom pouze na řádové rychlosti růstu této funkce. V zadání každé úlohy najdete přibližné limity na velikost vstupních dat. Efektivním vyřešením úlohy rozumíme to, že váš program spuštěný s takovými daty na současném běžném počítači dokončí výpočet během několika sekund. P-III-1 Bizoní rezervace V Severní Americe stále přežívá několik stád bizonů. Jakkoliv nepravděpodobné se to může zdát, každé stádo se vždy pohybuje po předem známé přímce a nikdy ji neopustí. Každé setkání dvou stád na jednom místě je jedinečný zážitek, a proto ochránci přírody vyhlásili každé místo, kde by setkání mohlo nastat, chráněnou přírodní památkou. Nyní je potřeba všechny vytyčené přírodní památky ohradit a vytvořit tak unikátní bizoní rezervaci. Budování ohrady je nákladné, a proto bychom chtěli, aby celková délka ohrady byla co nejkratší. Uvažujme, že Severní Amerika je nekonečná rovina, žádné dvě přímky, po kterých se stáda bizonů pohybují, nejsou rovnoběžné a žádné tři takové přímky se neprotínají v jediném bodě. Nalezněte ohradu s nejmenším obvodem, která obsahuje všechny průsečíky zadaných přímek. Ohradu popište souřadnicemi přírodních 1
2 památek na jejím obvodu ve směru chodu hodinových ručiček. Leží-li nějaká přírodní památka z obvodu na přímce mezi dvěma jinými přírodními památkami na obvodu, pak ji nevypisujte. Existuje-li více vyhovujících řešení, nalezněte libovolné z nich. Formát vstupu Na prvním řádku vstupu je jediné přirozené číslo N (3 N 10 6 ) počet stád bizonů. Následuje N řádků a každý z nich popisuje jedno bizoní stádo. Konkrétně, i-té bizoní stádo je popsáno třemi celými čísly oddělenými mezerami A i, B i a C i, žádné z nich v absolutní hodnotě nepřesáhne Navíc můžete předpokládat, že pro žádné stádo nenastane A i = B i = 0. Potom se i-té stádo pohybuje po přímce určené takovými dvojicemi bodů (x, y), pro které platí A i x + B i y = C i. Zadané přímky budou splňovat předpoklady ze zadání (žádné dvě nejsou rovnoběžné ani shodné a žádné tři se neprotínají v jednom bodě). Formát výstupu Vypište souřadnice přírodních památek na obvodu hledané ohrady, v pořadí po směru hodinových ručiček. Souřadnice každé památky vypisujte na zvláštní řádek a oddělte je mezerou. Příklad Vstup: Výstup: Vstup odpovídá následujícímu obrázku, tečkovaná čára znázorňuje hledanou ohradu. 2, 2 0, 0 3.5, -1 Bodování Plných 10 bodů získáte za správné řešení, které úlohu efektivně vyřeší pro N Až 5 bodů můžete získát za správné řešení, které úlohu efektivně vyřeší pro N
3 P-III-2 Hostina Hostimír si našel nové zaměstnání. Každý zaměstnanec jeho nové firmy má pevně stanovenou pracovní dobu. Každému je jeho pracovní doba stanovena s ohledem na jeho potřeby někteří mohou pracovat jen ráno, někteří pracují i přes půlnoc, a podobně; nikdo ale nepracuje celý den. Stejný rozvrh se opakuje pravidelně každý den. Hostimír by rád upekl koláčky a pohostil ostatní zaměstnance. Nicméně ví, že jakmile koláčky vybalí, všichni se na ně vrhnou a okamžitě je snědí. Vzhledem k různým rozvrhům zaměstnanců ale nemusí nikdy být ve firmě všichni přítomni zároveň. Aby tedy pohostil všechny zaměstnance, bude Hostimír muset upéct více dávek; pomozte mu určit kolik. Soutěžní úloha Na vstupu dostanete celé číslo m udávající délku dne (v milisekundách) na Hostimírově planetě a n intervalů a i, b i udávajících začátky a konce pracovních dob zaměstnanců, opět v milisekundách. Může být i b i < a i, v tom případě daný zaměstnanec pracuje přes půlnoc. Vybalí-li Hostimír koláčky v čase t, pohostí všechny zaměstnance splňující a i t b i nebo b i < a i t nebo t b i < a i. Nalezněte co nejméně časů t 1,..., t k takových, že vybalí-li Hostimír koláčky v těchto časech, pak pohostí všechny zaměstnance firmy. Formát vstupu Na prvním řádku dostanete dvě přirozená čísla, n a m (1 n 10 6, 4 m 10 9 ), kde číslo m udává počet milisekund dne na Hostimírově planetě a n je počet zaměstnanců firmy. Na i-tém z dalších n řádků jsou dvě různá celá čísla a i a b i, kde 0 a i, b i < m. Formát výstupu Vypište jedno celé číslo k udávající nejmenší počet různých časů takových, že každý zaměstnanec je ve firmě v alespoň jeden z nich (vybalí-li tedy Hostimír koláčky v těchto k časech, pohostí všechny zaměstnance). Příklad Vstup: Výstup: 2 Hostimír může vybalit koláčky v časech 3 a 16. Bodování Plných 10 bodů získáte za správné řešení, které úlohu efektivně vyřeší pro n Až 7 bodů můžete získat za řešení, které úlohu efektivně vyřeší pro n Až 5 bodů můžete získat za řešení, které předpokládá, že nikdo nepracuje přes půlnoc (tj. všechny zadané intervaly a i, b i splňují a i < b i ). 3
4 P-III-3 Stromochod K této úloze se vztahuje studijní text uvedený na následujících stranách. Studijní text je identický se studijním textem z domácího a krajského kola. Pro každý vrchol stromu definujeme jeho levý podstrom, který obsahuje levého syna a všechny jeho (i nepřímé) potomky. Pokud levý syn neexistuje, levý podstrom je prázdný. Analogicky pravý podstrom. O stromu pak řekneme, že je dokonale vyvážený, pokud pro každý jeho vrchol platí, že počet vrcholů v levém a pravém podstromu se liší nejvýše o 1. Například první strom na následujícím obrázku je dokonale vyvážený, zatímco druhý ne: levý podstrom šedivého vrcholu je prázdný, ale pravý dvouvrcholový. Naprogramujte stromochod, aby ověřil, zda je zadaný strom dokonale vyvážený. Odpovězte značkou ok v kořeni. Ve svém řešení nemusíte programovat technické detaily, ale popište je dostatečně podrobně na to, aby bylo jasné, jak se na stromochodu naprogramují a s jakou složitostí. 4
5 Studijní text V tomto ročníku olympiády budeme programovat stromochod speciální zařízení určené k procházení binárních stromů. Graf se skládá z konečné množiny vrcholů a konečné množiny hran. Každá hrana spojuje dva vrcholy, každé dva vrcholy jsou spojeny nejvýše jednou hranou. Hrany nemají směr nerozlišujeme, který vrchol je počáteční a který koncový. Cesta říkáme posloupnosti vrcholů, které na sebe navazují (i-tý je spojený hranou s (i + 1)- ním). Strom je graf, v němž mezi každými dvěma vrcholy vede právě jedna cesta. Strom můžeme zakořenit jeden jeho vrchol prohlásit za kořen. Pro každé dva vrcholy spojené hranou pak umíme říci, který z nich je otec (to je ten bližší kořeni) a který syn. Kořen je jediný vrchol, který nemá otce. Vrcholům, které nemají žádné syny, říkáme listy stromu. Podstrom budeme říkat části stromu tvořené daným vrcholem, jeho syny, syny jeho synů, a tak dále až k listům. Podstrom je tedy také strom a daný vrchol je jeho kořenem. Binární je takový zakořeněný strom, jehož každý vrchol má nejvýše dva syny. U synů rozlišujeme, který z nich je levý a který pravý. Dokonce i v případech, kdy existuje jen jeden syn, zajímá nás, zda je levý, nebo pravý. Na následujícím obrázku vidíte několik různých binárních stromů: Stromochod slouží k řešení různých problému týkajících se binárních stromů. Můžeme si ho představit jako počítač, který se pohybuje po stromu a v každém okamžiku výpočtu se nachází v právě jednom z vrcholů stromu. Paměť stromochodu je omezená: může si pamatovat jen konečné množství bitů informace, tedy v každém okamžiku se může nacházet jen v jednom z konečně mnoha stavů. Mimo to stromochod smí poznamenávat informace do navštívených vrcholů: do každého vrcholu se vejde opět jen konečné množství informace a tyto informace může stromochod číst a zapisovat pouze v tom vrcholu, v němž se zrovna nachází. Těmto údajům uloženým ve vrcholu budeme říkat značky. Stromochod budeme programovat v jazyce podobném Pascalu nebo C. Kvůli omezení na konečný počet stavů můžeme používat pouze celočíselné proměnné s předem daným rozsahem (třeba 0..9) a booleovské proměnné pro pravdivostní hodnoty. To například znamená, že není možné používat pole ani ukazatele. Z řídicích konstrukcí jsou k dispozici podmínky, cykly a goto. Procedury a funkce je možné používat, ale na jejich parametry se vztahují stejná omezení na typy a není povolena rekurze. Na aktuální vrchol se můžeme odkazovat prostřednictvím proměnné V. Ta se chová jako záznam (pascalský record, Céčková struct) a obsahuje značky uložené 5
6 ve vrcholu. Podobu značek si můžete předepsat, ale musí jich být konstantní počet a opět platí omezení na povolené typy. Pokud chceme stromochod přesunout do levého syna, zavoláme funkci jdi_l. Podobně jdi_p pro pravého syna a jdi_o pro otce. Tato funkce nemá žádné parametry ani výsledek. Pokud se pokusíte přesunout do neexistujícího vrcholu, program se zastaví s chybou. Proto se hodí předem otestovat, zda syn či otec existuje: k tomu slouží funkce ex_l, ex_p a ex_o. Ty nemají žádné parametry a vracejí booleovskou hodnotu. Výpočet stromochodu probíhá následovně. Na vstupu dostaneme nějaký strom, stromochod umístíme do jeho kořene a všechny značky vynulujeme. Výjimku mohou tvořit značky, o kterých je výslovně řečeno, že jsou součástí vstupu. Poté se rozeběhne program, stromochod se prochází po stromu a nakonec se zastaví. Výstup potom přečteme z určených značek. Pozor, jeden program pro stromochod musí danou úlohu řešit pro všechny stromy. Rozsah proměnných tedy nesmí záviset na velikosti stromu. Efektivitu programů můžeme posuzovat obvyklým způsobem. Doba běhu programu bude odpovídat počtu přesunů po stromu, časová složitost je maximum z dob běhu přes všechny stromy s daným počtem vrcholů. Paměťovou složitost neposuzujeme, protože všechny programy ukládají lineární množství informace. Příklad Rozmysleme si, jak stromochodem navštívit všechny vrcholy stromu a do každého umístit značku. Strom budeme procházet do hloubky: začneme v kořeni, pak se zanoříme do levého podstromu, až se z něj vrátíme, přesuneme se do pravého podstromu, a nakonec se vrátíme z celého stromu. (Pokud si strom nakreslíme na papír, tento průchod odpovídá obcházení z kořene proti směru hodinových ručiček.) Jelikož nemáme k dispozici rekurzi, budeme si v každém vrcholu pamatovat značku jménem stav, která bude říkat, kolikrát jsme už ve vrcholu byli. Navštívímeli vrchol poprvé, zamíříme do levého syna; podruhé zamíříme do pravého a potřetí se už vrátíme do otce. Pokud levý nebo pravý syn neexistují, budeme se chovat, jako bychom se z nich okamžitě vrátili. Program bude vypadat následovně. type vrchol = record { Tento typ popisuje, jaké značky ukládáme do vrcholů } byl_jsem_tu: boolean; { Chceme nastavit ve všech vrcholech } stav: 0..3; { Kolikrát jsme ve vrcholu byli } end; begin repeat V.byl_jsem_tu := true; V.stav := V.stav + 1; case V.stav of 1: if ex_l then jdi_l; 2: if ex_p then jdi_p; 3: if not ex_o then halt else jdi_o; 6
7 end; until false; end. Časová složitost tohoto programu je lineární s počtem vrcholů, protože každý vrchol navštívíme nejvýše třikrát. 7
66. ročník Matematické olympiády 2016/2017
66. ročník Matematické olympiády 016/017 Úlohy krajského kola kategorie P Krajské kolo 66. ročníku MO kategorie P se koná v úterý 17. 1. 017 v dopoledních hodinách. Na řešení úloh máte 4 hodiny čistého
66. ročník Matematické olympiády 2016/2017
66. ročník Matematické olympiády 2016/2017 Úlohy domácího kola kategorie P Úlohy P-I-1 a P-I-2 jsou praktické, vaším úkolem v nich je vytvořit a odladit efektivní program v jazyce Pascal, C nebo C++. Řešení
61. ročník Matematické olympiády 2011/2012
61. ročník Matematické olympiády 2011/2012 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži
63. ročník Matematické olympiády 2013/2014
63. ročník Matematické olympiády 2013/2014 Úlohy ústředního kola kategorie P 2. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích
68. ročník Matematické olympiády 2018/2019
68. ročník Matematické olympiády 2018/2019 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži
63. ročník Matematické olympiády 2013/2014
6. ročník Matematické olympiády / Úlohy krajského kola kategorie P Krajské kolo 6. ročníku MO kategorie P se koná v úterý.. v dopoledních hodinách. Na řešení úloh máte hodiny čistého času. V krajském kole
59. ročník Matematické olympiády 2009/2010
59. ročník Matematické olympiády 2009/2010 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)
53. ročník Matematické olympiády 2003/2004
5. ročník Matematické olympiády 00/004 Úlohy celostátního kola kategorie P. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každého příkladu musí obsahovat: Popis řešení, to znamená slovní
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
NPRG030 Programování I, 2018/19 1 / :03:07
NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování
Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012
Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
63. ročník Matematické olympiády 2013/2014
6. ročník Matematické olympiády 0/0 Úlohy ústředního kola kategorie P. soutěžní den Na řešení úloh máte, hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži je zakázáno
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle
Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem
Test prvočíselnosti Úkol: otestovat dané číslo N, zda je prvočíslem 1. zkusit všechny dělitele od 2 do N-1 časová složitost O(N) cca N testů 2. stačí zkoušet všechny dělitele od 2 do N/2 (větší dělitel
68. ročník Matematické olympiády 2018/2019
68. ročník Matematické olympiády 2018/2019 Úlohy krajského kola kategorie P Krajské kolo 68. ročníku MO kategorie P se koná v úterý 22. 1. 2019 v dopoledních hodinách. Na řešení úloh máte 4 hodiny čistého
ADT STROM Lukáš Foldýna
ADT STROM Lukáš Foldýna 26. 05. 2006 Stromy mají široké uplatnění jako datové struktury pro různé algoritmy. Jsou to matematické abstrakce množin, kterou v běžném životě používáme velice často. Příkladem
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015
Programování 3. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Implementace zásobníku a fronty pomocí
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
6 Příkazy řízení toku
6 Příkazy řízení toku Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost příkazům pro řízení toku programu. Pro všechny tyto základní
Vyvažování a rotace v BVS, všude se předpokládá AVL strom
Vyvažování a rotace v BVS, všude se předpokládá AVL strom 1. Jednoduchá levá rotace v uzlu u má operační složitost a) závislou na výšce levého podstromu uzlu u b) mezi O(1) a Θ(n) c) závislou na hloubce
Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.
Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou
Programovací jazyk Pascal
Programovací jazyk Pascal Syntaktická pravidla (syntaxe jazyka) přesná pravidla pro zápis příkazů Sémantická pravidla (sémantika jazyka) pravidla, která každému příkazu přiřadí přesný význam Všechny konstrukce
Pascal. Katedra aplikované kybernetiky. Ing. Miroslav Vavroušek. Verze 7
Pascal Katedra aplikované kybernetiky Ing. Miroslav Vavroušek Verze 7 Proměnné Proměnná uchovává nějakou informaci potřebnou pro práci programu. Má ve svém oboru platnosti unikátní jméno. (Připadne, musí
68. ročník Matematické olympiády 2018/2019
68. ročník Matematické olympiády 2018/2019 Řešení úloh krajského kola kategorie P P-II-1 Tulipány Budeme řešit o něco obecnější úlohu: dovolíme si předepsat, zda má na n-té pozici být tulipán, a pokud
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
Grafické řešení rovnic a jejich soustav
.. Grafické řešení rovnic a jejich soustav Předpoklady: 003 Pedagogická poznámka: V této hodině kreslíme na čtverečkovaný papír tak, aby jeden čtvereček představovala vzdálenost. Př. : Vyřeš graficky soustavu
bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT
binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım
Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39
Základy algoritmizace Michal Krátký 1, Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Základy algoritmizace, 2006/2007 Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39
Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání
Select sort: krok 1: výběr klíče z n prvků vyžaduje 1 porovnání krok 2: výběr klíče z 1 prvků vyžaduje 2 porovnání krok 3: výběr klíče z 2 prvků vyžaduje 3 porovnání atd. celkem porovnání Zlepšení = použít
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
59. ročník Matematické olympiády 2009/2010
59. ročník Matematické olympiády 2009/2010 Úlohy krajského kola kategorie P Krajskékolo59.ročníkuMOkategoriePsekonávúterý12.1.2010vdopoledních hodinách.nařešeníúlohmáte4hodinyčistéhočasu.vkrajskémkolemo-pseneřeší
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620
Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 1. Vymezení pojmů Strom: Strom je takové uspořádání prvků - vrcholů, ve kterém lze rozeznat předchůdce - rodiče a následovníky - syny.
Klauzurní část školního kola kategorie A se koná
56. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1. rčete všechna reálná čísla s, pro něž má rovnice 4x 4 20x 3 + sx 2 + 22x 2 = 0 čtyři různé reálné kořeny, přičemž součin
Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy
Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
Binární soubory (datové, typované)
Binární soubory (datové, typované) - na rozdíl od textových souborů data uložena binárně (ve vnitřním tvaru jako v proměnných programu) není čitelné pro člověka - všechny záznamy téhož typu (může být i
Zadání druhého zápočtového projektu Základy algoritmizace, 2005
Zadání druhého zápočtového projektu Základy algoritmizace, 2005 Jiří Dvorský 2 května 2006 Obecné pokyny Celkem je k dispozici 8 zadání příkladů Každý student obdrží jedno zadání Vzhledem k tomu, že odpadly
Binární vyhledávací stromy
Binární vyhledávací stromy Definice: Binární vyhledávací strom (po domácku BVS) je buďto prázdná množina nebo kořen obsahující jednu hodnotu a mající dva podstromy (levý a pravý), což jsou opět BVS, ovšem
Pohyb tělesa (5. část)
Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.
67. ročník Matematické olympiády 2017/2018
67. ročník Matematické olympiády 2017/2018 Úlohy ústředního kola kategorie P 2. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích
Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému
1. Implementace funkce počet vrcholů. Předmět: Algoritmizace praktické aplikace (3ALGA)
Předmět: Algoritmizace praktické aplikace (3ALGA) Vytvořil: Jan Brzeska Zadání: Vytvoření funkcí na stromech (reprezentace stromu směrníky). Zadané funkce: 1. Počet vrcholů 2. Počet listů 3. Součet 4.
PQ-stromy a rozpoznávání intervalových grafů v lineárním čase
-stromy a rozpoznávání intervalových grafů v lineárním čase ermutace s předepsanými intervaly Označme [n] množinu {1, 2,..., n}. Mějme permutaci π = π 1, π 2,..., π n množiny [n]. Řekneme, že množina S
Vyučovací hodina. 1vyučovací hodina: 2vyučovací hodiny: Opakování z minulé hodiny. Procvičení nové látky
Vyučovací hodina 1vyučovací hodina: Opakování z minulé hodiny Nová látka Procvičení nové látky Shrnutí 5 min 20 min 15 min 5 min 2vyučovací hodiny: Opakování z minulé hodiny Nová látka Procvičení nové
Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti.
Seznamy a stromy Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti. Klíčové pojmy: Seznam, spojový seznam, lineární seznam, strom, list, uzel. Úvod
Zadání soutěžních úloh
Zadání soutěžních úloh Kategorie žáci Soutěž v programování 25. ročník Krajské kolo 2010/2011 15. až 16. dubna 2011 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Za každou
66. ročník Matematické olympiády 2016/2017
66. ročník Matematické olympiády 2016/2017 Řešení úloh ústředního kola kategorie P 1. soutěžní den P-III-1 Bizoní rezervace Zadány jsou alespoň tři přímky v obecné poloze a hledáme konvexní obal všech
1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10
Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
5 Rekurze a zásobník. Rekurzivní volání metody
5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2
Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných
Algoritmizace. 1. Úvod. Algoritmus
1. Úvod Algoritmizace V dnešní době již počítače pronikly snad do všech oblastí lidské činnosti, využívají se k řešení nejrůznějších úkolů. Postup, který je v počítači prováděn nějakým programem se nazývá
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
2.1 Podmínka typu case Cykly Cyklus s podmínkou na začátku Cyklus s podmínkou na konci... 5
Obsah Obsah 1 Řídicí struktury 1 2 Podmínka 1 2.1 Podmínka typu case......................... 2 3 Příkaz skoku 3 4 Cykly 4 4.1 Cyklus s podmínkou na začátku................... 4 4.2 Cyklus s podmínkou
68. ročník Matematické olympiády 2018/2019
68. ročník Matematické olympiády 2018/2019 Úlohy domácího kola kategorie P Úlohy P-I-1 a P-I-2 jsou praktické, vaším úkolem v nich je vytvořit a odladit efektivní program v jazyce Pascal, C nebo C++. Řešení
Hodnocení soutěžních úloh
Terč Koeficient 1 soutěžních úloh Kategorie žáci Soutěž v programování 25. ročník Krajské kolo 2010/2011 15. až 16. dubna 2011 Napište program, který zobrazí střelecký terč dle vzorového obrázku. Jak má
a) b) c) Radek Mařík
2012-03-20 Radek Mařík 1. Čísla ze zadané posloupnosti postupně vkládejte do prázdného binárního vyhledávacího stromu (BVS), který nevyvažujte. Jak bude vypadat takto vytvořený BVS? Poté postupně odstraňte
2. Složitost, grafové algoritmy (zapsal Martin Koutecký)
2. Složitost, grafové algoritmy (zapsal Martin Koutecký) Model Ram Při analýze algoritmu bychom chtěli nějak popsat jeho složitost. Abychom mohli udělat toto, potřebujeme nejprve definovat výpočetní model.
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
INFORMATIKA. Vybrané podposloupnosti
INFORMATIKA Vybrané podposloupnosti (Úlohy z MO kategorie P, 30. část) PAVEL TÖPFER Matematicko-fyzikální fakulta UK, Praha V našem seriálu putujícím po zajímavých úlohách Matematické olympiády - kategorie
NPRG030 Programování I, 2017/18 1 / :22:16
NPRG030 Programování I, 2017/18 1 / 26 20. 10. 2017 11:22:16 Ordinální typy standardní: integer, char, boolean Vlastnosti ordinálních typů: 1. hodnot je konečný počet a hodnoty jsou uspořádány 2. ke každé
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
6. Tahy / Kostry / Nejkratší cesty
6. Tahy / Kostry / Nejkratší cesty BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
Martin Milata, <256615@mail.muni.cz> 27.11.2007. Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už je od
IB000 Lámání čokolády Martin Milata, 27.11.2007 1 Čokoláda s alespoň jedním sudým rozměrem Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už
Úvod do programování
Úvod do programování Základní literatura Töpfer, P.: Algoritmy a programovací techniky, Prometheus, Praha učebnice algoritmů, nikoli jazyka pokrývá velkou část probíraných algoritmů Satrapa, P.: Pascal
MATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maimální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.
Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani
67. ročník Matematické olympiády 2017/2018
67. ročník Matematické olympiády 2017/2018 Úlohy krajského kola kategorie P Krajské kolo 67. ročníku MO kategorie P se koná v úterý 23. 1. 2018 v dopoledních hodinách. Na řešení úloh máte 4 hodiny čistého
Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek
Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Hammingovy kódy. dekódování H.kódů. konstrukce. šifrování. Fanova rovina charakteristický vektor. princip generující a prověrková matice
Hammingovy kódy konstrukce Fanova rovina charakteristický vektor šifrování princip generující a prověrková matice dekódování H.kódů třída lineárních binárních kódů s A n, 3 n = délka kódu, d = distance
Úvod do řešení lineárních rovnic a jejich soustav
Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové
MATEMATIKA základní úroveň obtížnosti
ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_145_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Cílem seminární práce je aplikace teoretických znalostí z přednášky na konkrétní úlohy. Podstatu algoritmu totiž
Zadání příkladů pro semestrální práci 9 Cílem seminární práce je aplikace teoretických znalostí z přednášky na konkrétní úlohy. Podstatu algoritmu totiž člověk nejlépe pochopí až pokud jej sám implementuje,
65. ročník Matematické olympiády 2015/2016
65. ročník Matematické olympiády 2015/2016 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic
Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních
68. ročník Matematické olympiády 2018/2019
68. ročník Matematické olympiády 2018/2019 Řešení úloh ústředního kola kategorie P 2. soutěžní den P-III-4 Výlet Abychom našli požadovaný výlet délky 4, stačí najít dvě hvězdy a a b, které mají dva společné
Datové struktury Úvod
Datové struktury Úvod Navrhněte co nejjednodušší datovou strukturu, která podporuje následující operace: 1. Insert a Delete v O(n), Search v O(log n); Datové struktury Úvod Navrhněte co nejjednodušší datovou
Operační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší