Měření vzdáleností a výpočty rychlostí pomocí internetu
|
|
- Barbora Tesařová
- před 10 lety
- Počet zobrazení:
Transkript
1 Jméno: Školní rok: Měření vzdáleností a výpočty rychlostí pomocí internetu Třída: Laboratorní práce číslo: 1) Na webové stránce změř vzdálenost z do vzdušnou čarou. Návod: Klikni na Plánování a měření trasy a v nabídce vyber Ruční měření. Klikni na mapě na místo, z kterého vyrážíš. Chvilku počkej. Klikni na mapě na druhé místo. Zaokrouhli naměřenou vzdálenost a zapiš ji. Vzdálenost z do vzdušnou čarou je km. 2) Na webové stránce změř vzdálenost z do nejkratší cestou, jedeš-li autem. Návod: Klikni na Plánování a měření trasy a v nabídce vyber Autem, nejkratší cestou. Vyplň místa, odkud chceš jet a kam přijet. Klikni na Najít trasu a chvilku počkej. Vykreslí se ti do mapy cesta, zobrazí se ti vzdálenost vybraných míst a přibližná doba jízdy autem. Zaokrouhli naměřenou vzdálenost a zapiš ji v km. Zaokrouhli zjištěnou dobu a napiš ji v hodinách. Vypočti průměrnou rychlost automobilu při jízdě nejkratší cestou. Vzdálenost z do nejkratší cestou je km. Doba jízdy nejkratší cestou je h. Průměrná rychlost v km/h automobilu je. 3) Na webové stránce změř vzdálenost z do nejrychlejší cestou, jedeš-li autem. Návod: Klikni na Plánování a měření trasy a v nabídce vyber Autem, nejrychlejší cestou. Vyplň místa, odkud chceš jet a kam přijet. Klikni na Najít trasu, chvilku počkej. Vykreslí se ti do mapy cesta, zobrazí se ti vzdálenost vybraných míst a přibližná doba jízdy autem. Zaokrouhli naměřenou vzdálenost a zapiš ji v km. Zaokrouhli zjištěnou dobu a napiš ji v hodinách. Vypočti průměrnou rychlost automobilu při jízdě nejrychlejší cestou. Vzdálenost z do nejrychlejší cestou je km. Doba jízdy nejrychlejší cestou je h. Průměrná rychlost v km/h automobilu je. 4) Na webové stránce změř vzdálenost z do, jestliže jedeš na kole. Návod: Klikni na Plánování a měření trasy a v nabídce vyber Na kole, dám přednost cyklotrasám. Vyplň místa, odkud chceš jet a kam přijet. Klikni na Najít trasu, chvilku počkej. Vykreslí se ti do mapy cesta, zobrazí se ti vzdálenost vybraných míst a přibližná doba jízdy na kole. Zaokrouhli naměřenou vzdálenost a zapiš ji v km. Zaokrouhli zjištěnou dobu a napiš ji v hodinách. Vypočti průměrnou rychlost cyklisty. Vzdálenost z do, jedu-li na kole, je km. Doba jízdy na kole je h. Průměrná rychlost v km/h cyklisty je. 5) Na webové stránce vyhledej autobusové, nebo vlakové spojení z do. Vyber si to, které se ti nejvíce líbí, a zapiš vzdálenost, kterou autobus, nebo vlak ujede. Zjisti také, jak dlouho autobus, nebo vlak tuto vzdálenost pojede. Zaokrouhli zjištěnou vzdálenost a zapiš ji v km. Zaokrouhli zjištěnou dobu a napiš ji v hodinách. Vypočti průměrnou rychlost autobusu, nebo vlaku. Vzdálenost z do, kterou urazí vlak, nebo autobus, je km. Doba jízdy vlaku, nebo autobusu je h. Průměrná rychlost v km/h vlaku, nebo autobusu je.
2 Měření vzdáleností a výpočty rychlostí pomocí internetu Poznámky pro vyučující Laboratorní práce je určena k procvičení výpočtu průměrné rychlosti a ke zdokonalení se v práci s internetem. Jedná se o středně náročnou práci, při které někteří žáci potřebují výpomoc. Pomocí internetových stránek měří žáci vzdálenosti dvou míst vzdušnou čarou, jedou-li autem, na kole, hromadnou dopravou a vypočítávají průměrnou rychlost daného dopravního prostředku.
3 Jméno: Školní rok: Měření reakční doby Třída: Laboratorní práce číslo: Úkol: Změř svoji reakční dobu. Pomůcky, které jsem použil/la: Navrhni, jak lze změřit reakční dobu (můžeš nakreslit obrázek): Teorie: Volný pád je pohyb padajícího tělesa ve vakuu (například na měsíci, kde není vzduch), nebo ve vzduchu, když můžeme zanedbat odporovou sílu. Jde o pohyb, kdy rychlost tělesa je neustále větší a větší. Ve skutečnosti ale tělesa na zemi padají vzduchem. Proto jejich rychlost se nezvětšuje stále, ale po určité době už zůstane stejná. Pro volný pád platí - zakroužkuj správná tvrzení: 1) Tělesa padají bez odporu vzduchu. 2) Na těleso působí vzduch odporovou silou. 3) Na těleso působí gravitační síla 4) Rychlost tělesa se neustále zvětšuje. 5) Všechna tělesa padají stejnou rychlostí a rychlost pádu nezávisí na hmotnosti tělesa. Pro pád těles ve vzduchu platí - zakroužkuj správná tvrzení: 1) Na těleso působí odpor vzduchu. 2) Těleso padá, protože na něho působí Země gravitační silou. 3) Rychlost tělesa závisí například na tvaru, velikosti a hmotnosti tělesa. 4) Rychlost tělesa se neustále zvětšuje. Měření: 1) Měření délky úseku na tyči mezi dvěma značkami: první měření l 1 = cm druhé měření l 2 = cm třetí měření l 3 = cm čtvrté měření l 4 = cm páté měření l 5 = cm 2) Součet: l 1 + l 2 + l 3 + l 4 + l 5 = cm 3) Průměr: l = cm = m 4) Reakční doba t = s : 5 = s = ms Závěr:(Do závěru napiš výslednou reakční dobu a zamysli se, co může rychlost tvých reakcí ovlivnit.)
4 Měření reakční doby Poznámky pro vyučující Každý den náš organismus vyhodnocuje veliké množství smyslových podnětů, na které poté reaguje. Jsou situace vyžadující rychlou odezvu. Ať už třeba hrajeme fotbal, sjíždíme na lyžích kopec, nebo jedeme na kole v dnešním hustém provozu na silnici. I když některé naše reakce proběhnou velmi rychle, nikdy neproběhnou okamžitě. I zlomky sekund mohou být v některých situacích docela dlouhá doba. Rychlost lidských reakcí zajímá nejen lékaře, ale třeba také psychology a kriminalisty. V této laboratorní práci si žáci změří svoji reakční dobu. Na základě znalostí o sčítání sil, výslednici sil, gravitační a odporové síle, volném pádu a pádu těles ve vzduchu si reakční dobu zjistí pomocí pádu tyče, kterou chytají, a měří na ni vzdálenost, o kterou se tyč posunula při pádu. Poté již pomocí známého vzorce pro volný pád spočítají čas pádu, respektive svoji reakční dobu. Vzhledem k tomu, že se volný pád na základních školách probírá okrajově a bez uvedení vzorců, je k tomuto laboratornímu listu také soubor v programu MS Excel, který reakční dobu vypočte za žáky. Nadanější žáky však lze k vzorci dovést. Pomůcky: Delší tyč, pravítko, fix. Postup: Spolužák podrží žákovi tyč asi tak 1,5 metru nad zemí a půl metru od něho ve svislé poloze. Žák předpaží jednu ruku a uchopí tyč. V místě, kde končí jeho dotek, udělá fixem první značku. Poté uvolní ruku tak, aby jeho prsty se skoro dotýkaly tyče. Pokud spolužák pustí tyč, musí bez problémů proklouznout rukou. Je-li vše připravené, spolužák v některé chvíli upustí tyč. Úkolem je tyč chytit právě tou skoro dotýkající se rukou aniž by žák pohnul paží či loktem. Prostě jen sevře pěst. Spolužák však nesmí říci, kdy tyč upustí. V místě úchytu udělá žák druhou značku. Nyní stačí již jen změřit vzdálenost dvou značek vyznačených fixem, měření provést několikrát, vypočítat průměrnou hodnotu vzdálenosti a tuto hodnotu dosadit do vzorce pro výpočet doby pádu tělesa. V pracovním listě je uveden zjednodušený vzorec. Je možné také použít na výpočet soubor v programu MS Excel. Tím žák zjistí dobu, která uplyne od podnětu (v tomto případě zpozorování pádu tyče) do reakce na podnět (úchyt tyče). Tuto dobu můžeme nazývat reakční dobou. Za tuto dobu tyč padající volným pádem urazí pravě úsek vymezený dvěma značkami. Je dobré, aby si žák napřed několikrát vyzkoušel chytnutí tyče. Popřípadě poprosil spolužáka, aby mu dal tyč blíž, dál, výš apod. Jednotlivé doby reakce při měření jsou velice ovlivněny tím, jak se žáci na daný pokus soustředí. V běžném životě se doby reakce hodně mění. Jsou především ovlivněni soustředěností na danou věc, únavou, stresem nebo věkem. Velkou roli hraje také alkohol a další omamné látky. Při jízdě na kole může být naše doba reakce mnohem větší, zvláště když se kocháme krajinou či povídáme si s kamarádem. Stejně je to například u fotbalového nebo florbalového brankáře. Soustředěnost v prvním případě zvyšuje naši bezpečnost, v druhém oddaluje výhru soupeře. V našem experimentu zpracovával podnět (pohyb koštěte) mozek. Tím je reakční doba delší. V některých případech je však potřeba, aby doba reakce byla opravdu co nejmenší. V případě, že bychom si šáhli prstem na rozpálenou plotýnku, proběhla by naše reakce, tedy ucuknutí s rukou, velmi rychle bez účasti mozku. Lidské tělo má výhodu, že tyto obranné reflexy, při kterých se zabraňuje působení bolestivého podnětu, nezpracovává mozek, ale mícha v páteři. Díku tomu je reakce rychlejší. Současně však s reakcí na bolest jde zpráva o bolesti i do mozku. Takže po šáhnutí na rozžhavenou plotýnku o popálenině víme a leckdy si nejen velmi nepříjemný zážitek dlouho dobu pamatujeme, ale zůstane nám i památka na ruce.
5 Převeď na kn a MN: N = kn = MN N = kn = MN ,67 N = kn = MN N = kn = MN Výsledná síla a rovnováha těles Na parašutistu při pádu vzduchem působí především dvě síly. První silou působí Země ve směru svisle dolů. Tuto sílu nazýváme. Druhou silou působí okolní vzduch proti směru pohybu, tudíž svisle nahoru. Tuto druhou sílu nazýváme. A) Jestliže je síla gravitační a stejně veliká, poté výsledná síla je. B) Není-li síla gravitační a síla stejně veliká, poté výslednice není. C) Je-li výsledná síla nulová poté parašutista se pohybuje. D) Není-li výsledná síla nulová poté parašutista, nebo. Parašutista Nakresli parašutistu s padákem a znázorni gravitační sílu, kterou na něj působí Země. Hmotnost parašutisty s padákem je 100 kg. Zvol vhodné měřítko. A) Znázorni do obrázku druhou sílu F 2 tak, aby se parašutista pohyboval rovnoměrným přímočarým pohybem. B) Napiš, jak se nazývá síla F 2. C) Jaká je velikost výslednice sil F 1 a F 2? Odporová síla vzduchu při pádu parašutisty Jak lze odporovou sílu zvětšit? Jak lze odporovou sílu zmenšit? Vyber, co je pravda pro pád těles ve vzduchu a co je pravda pro volný pád. Na těleso působí odpor vzduchu. Těleso padá, protože na něho působí Země gravitační silou. Rychlost tělesa závisí na tvaru a hmotnosti tělesa. Rychlost tělesa závisí na velikosti tělesa. Rychlost tělesa nezávisí na velikosti tělesa. Rychlost tělesa nezávisí na tvaru a hmotnosti tělesa. Rychlost tělesa se neustále zvětšuje. Rychlost tělesa se zvětšuje jen určitou dobu. Vysvětli, proč člověk padající s otevřeným padákem, dopadne na zem bezpečně malou rychlostí.
6 Převeď: N = kn 2,45 MN = kn kn = MN kn = MN 80,2 MN = kn 2,58 kn = N N = kn N = MN Výsledná síla Jestliže výsledná síla působící na těleso je nulová, poté těleso nebo se pohybuje. Jestliže výsledná síla působící na těleso není nulová, poté těleso nebo. Rozhodni, v kterém případě (v kterých případech) jsou síly, působící na vlak, v rovnováze: a) výslednice sil působící na vlak je rovna 10 kn. b) vlak stojí. c) vlak se pohybuje stále stejnou rychlostí. d) výslednice sil, působící na vlak je rovna 0 N. e) vlak zrychluje. f) vlak zpomaluje. Pád tělese ve vzduchu Na parašutistu při pádu ve vzduchu působí především dvě síly. První silou působí Země. Nazývá se a směr má. Velikost této síly závisí na. Druhou silou působí okolní vzduch. Síla se nazývá a směr má. Velikost této síly závisí na,,,. Při pádu těles ve vzduchu se rychlost padajícího tělesa. Tím se také zvětšuje síla. V okamžiku, když je odporová síla stejně veliká jako síla, se rychlost tělesa již nemění. Volný pád Jestliže na těleso působí pouze Země gravitační silou, poté padá volným pádem. Při takovém pádu zažíváme stav beztíže. Tento stav také zažívají kosmonauti ve vesmíru, když na ně gravitační síla nepůsobí. Kdy můžeš zažít stav beztíže? Při volném pádu se rychlost neustále zvětšuje. Velikost okamžité rychlosti tělesa se vypočte tak, že čas pádu se vynásobí deseti. Rychlost vyjde v m/s, jestliže čas se dosadí v sekundách. Dráhu, kterou urazilo těleso, lze vypočítat tak, že čas pádu se vynásobí opět stejným časem pádu a poté ještě pěti. Dráha vyjde v metrech, jestliže čas se dosadí v sekundách. Na základě poučky, doplň tabulku: t (s) v (m/s) v (km/h) s (m)
7 Jméno: Školní rok: Určení těžiště Třída: Laboratorní práce číslo: Úkol: Urči těžiště vážky a káněte zobrazených na obrázcích. Úvod: Kočka se prochází s naprostou jistotou na střeše vysokého domu stejně jako na plotě. Krásně a ladně se pohybuje a přitom lehce pokyvuje ocasem. A pokud spadne, má velkou šanci, že pád přežije. Člověk to již má horší. Chce-li přejít propast po laně, musí být dobře trénovaný. Leckdy má v rukách dlouhou tyč, nebo se jistí. Oproti kočce totiž naše tělo není přizpůsobeno chůzi po úzkých předmětech, jako jsou ploty a lana. Zvířata člověka v ledasčem trumfují. Na rozdíl od zvířat však lidé jsou jediní tvorové na Zemi, kteří mají znalosti o těžišti a tyto znalosti dokážou využít. Každé těleso si můžeme představit jako velký počet malých částí. Na každou takovou malou část působí gravitační síla. Pokud nahradíme všechny tyto síly jednou celkovou výslednou silou, její působiště bude v bodě, který se nazývá těžiště. Jestliže těleso podepřeme v těžišti, zůstane v rovnováze a nepřeklopí se. Jednoduchou metodou, jak zjistit polohu těžiště, je podkládání tělesa v různých místech například prstem, nebo tužkou (podle toho, jak chceme být přesní), dokud těleso není vyváženo. Místo podepírání tělesa ho můžeme také pověsit na kousek provázku. Těžiště se v takovém případě nachází svisle pod bodem zavěšení na úsečce, která se nazývá těžnice. Zavěsíme-li tedy nějaké nepravidelné těleso postupně ve dvou různých místech, najdeme těžiště v průsečíku dvou těžnic. Pomůcky, které jsem použil/la: Postup: Obrázek vážky a káněte podlep čtvrtkou a vystřihni je. Zjisti, kde se nacházejí těžiště vystřihnutých obrázků pomocí první uvedené metody v úvodu (jeden obrázek dle tvého výběru) a pomocí druhé uvedené metody v úvodu (druhý obrázek). Těžiště zakresli do obrázků. Do závěru nalep na druhou stranu laboratorního listu obrázek vážky a káněte s vyznačenými těžišti a zároveň zkus odpovědět, proč provazochodci používají dlouhou tyč při chůzi po laně. Závěr:
8
9 Určení těžiště Poznámky pro vyučující Určit těžiště jako průsečík těžnic, které se sestrojí pomocí několika různých zavěšení tělesa na provázek nebo špejli, je velmi známá metoda. Nicméně pro žáky není nejjednodušší těžnici na těleso narýsovat a úkol vyžaduje šikovnost. V laboratorní práci mají žáci určit, kde se nalézá těžiště obrázku vážky a obrázku káněte.
Pracovní listy pro laboratorní práce na ZŠ a domácí pokusy
Pracovní listy pro laboratorní práce na ZŠ a domácí pokusy PAVEL KABRHEL Univerzita Hradec Králové Abstrakt Při laboratorní práci žáci kromě měření vypracovávají také protokol, který lze považovat za žákovskou
FO53G1: Převážíme materiál na stavbu Ve stavebnictví se používá řada nových materiálů; jedním z nich je tzv. pórobeton. V prodejní nabídce jsou
FO53G1: Převážíme materiál na stavbu Ve stavebnictví se používá řada nových materiálů; jedním z nich je tzv. pórobeton. V prodejní nabídce jsou uvedeny pórobetonové tvárnice o rozměrech 300 mm x 249 mm
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...
GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s?
GRAF 1: s (m) a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? e) Jakou dráhu ujede automobil za 5 s? f) Za jak
Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
1 _ 2 _ 3 _ 2 4 _ 3 5 _ 4 7 _ 6 8 _
Obsah: 1 _ Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 7 _ Výpočet času... 6 8 _ Pracovní list: ČTENÍ Z
Řešení příkladů na rovnoměrně zrychlený pohyb I
..9 Řešení příkladů na rovnoměrně zrychlený pohyb I Předpoklady: 8 Pedagogická poznámka: Cílem hodiny je, aby se studenti naučili samostatně řešit příklady. Aby dokázali najít vztah, který umožňuje příklad
Zadání projektu Pohyb
Zadání projektu Pohyb Časový plán: Zadání projektu, přidělení funkcí, časový a pracovní plán 22. 9. Vlastní práce 3 vyučovací hodiny + výuka v TV Prezentace projektu 11. 10. Test a odevzdání portfólií
[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.
5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami
Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu...
Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 6 _ Výpočet dráhy... 5 7 _ Výpočet času... 6 8 _ PL:
KINEMATIKA 13. VOLNÝ PÁD. Mgr. Jana Oslancová VY_32_INOVACE_F1r0213
KINEMATIKA 13. VOLNÝ PÁD Mgr. Jana Oslancová VY_32_INOVACE_F1r0213 Volný pád První systematické pozorování a měření volného pádu těles prováděl Galileo Galilei (1564-1642) Úvodní pokus: Poslouchej, zda
KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
Fyzikální korespondenční škola 2. dopis: experimentální úloha
Fyzikální korespondenční škola 2. dopis: experimentální úloha Uzávěrka druhého kola FKŠ je 28. 2. 2010 Kde udělal Aristotelés chybu? Aristotelés, jeden z největších učenců starověku, z jehož knih vycházela
Newtonovy pohybové zákony
Newtonovy pohybové zákony Zákon setrvačnosti = 1. Newtonův pohybový zákon (1. Npz) Zákon setrvačnosti: Těleso setrvává v klidu nebo rovnoměrném přímočarém pohybu, jestliže na něj nepůsobí jiná tělesa (nebo
( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210
Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL -
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL - řešení... 8 17_Skládání různoběžných sil působících v jednom
Pohyb tělesa (5. část)
Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2
Slovní úlohy o pohybu I
.2. Slovní úlohy o pohybu I Předpoklady: 0024 Př. : Běžec na lyžích se pohybuje na celodenním výletu průměrnou rychlostí km/h. Jakou vzdálenost ujede za hodinu? Za hodiny? Za hodin? Za t hodin? Najdi vzorec,
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky
Cíl a následující tabulku: t [ s ] s [ mm ]
.. Rychlost Předpoklady: 0 Rychlost: kolik ukazuje ručička na tachometru jak rychle se míhá krajina za oknem jak rychle se dostaneme z jednoho místa na druhé Okamžitá rychlost se při jízdě autem neustále
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
a) Jak na sebe vzájemně mohou působit tělesa? b) Vysvětli, jak je možné, aby síla působila na dálku. c) Co může způsobit síla? d) Vysvětli pojmy a
SÍLA opakování 1 a) Jak na sebe vzájemně mohou působit tělesa? b) Vysvětli, jak je možné, aby síla působila na dálku. c) Co může způsobit síla? d) Vysvětli pojmy a uveď příklady: Působení síly statické
POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením
Výpočet dráhy. Autor: Pavel Broža Datum: 12. 4. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.
Výpočet dráhy Autor: Pavel Broža Datum: 12. 4. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.3763 Výpočet dráhy vzor 1 Auto jelo po dálnici průměrnou rychlostí 120 km/h.
Cíl a následující tabulku. t [ s ] s [ mm ]
1.1.8 Rychlost I Předpoklady: 010107 Pomůcky: Rychlost: kolik ukazuje ručička na tachometru, jak rychle se míhá krajina za oknem, jak rychle se dostaneme z jednoho místa na druhé. Okamžitá rychlost se
Rovnoměrný pohyb II
2.2.12 Rovnoměrný pohyb II Předpoklady: 020210 Pomůcky: Př. 1: Jakou vzdálenost urazí za pět minut automobil jedoucí rychlostí 85 km/h? 5 t = 5min = h, v = 85 km/h 5 s = vt = 85 km = 7,1 km Automobil jedoucí
Mechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka)
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) A) Výklad: Posuvné účinky: Ze studia posuvných účinků síly jsme zjistili: změny rychlosti nebo směru posuvného pohybu tělesa závisejí na tom, jak velká síla
Měření součinitele odporu pláště kužele
Měření součinitele odporu pláště kužele Zadání: změřte součinitel odporu tělesa tvaru pláště kužele, který spustíte k zemi z výšky h Pomůcky: metr, pravítko, kružítko, tužka, nůžky, lepicí páska, papír,
Úlohy pro 52. ročník fyzikální olympiády, kategorie EF
FO52EF1: Dva cyklisté Dva cyklisté se pohybují po uzavřené závodní trase o délce 1 200 m tak, že Lenka ujede jedno kolo za dobu 120 s, Petr za 100 s. Při tréninku mohou vyjet buď stejným směrem, nebo směry
Rovnoměrný pohyb IV
2.2.4 Rovnoměrný pohyb IV Předpoklady: 02023 Pomůcky: Př. : erka jede na kole za kamarádkou. a) Za jak dlouho ujede potřebných 6 km rychlostí 24 km/h? b) Jak daleko bude po 0 minutách? c) Jak velkou rychlostí
23_Otáčivý účinek síly 24_Podmínky rovnováhy na páce 25_Páka rovnováha - příklady PL:
Obsah 23_Otáčivý účinek síly... 2 24_Podmínky rovnováhy na páce... 2 25_Páka rovnováha - příklady... 3 PL: Otáčivý účinek síly - řešení... 4 27_Užití páky... 6 28_Zvedání těles - kladky... 6 29_Kladky
1.1.13 Poskakující míč
1.1.13 Poskakující míč Předpoklady: 1103, 1106 Pedagogická poznámka: Tato hodina je zvláštní tím, že si na začátku nepíšeme její název. Nový druh pohybu potřebujeme nový pokus Zatím jsme stále na začátku
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 4, Kinematika pohybu I. (zákl. pojmy - rovnoměrný přímočarý pohyb, okamžitá a průměrná rychlost, úlohy na pohyb těles, rovnoměrně zrychlený a zpomalený pohyb, volný pád) Studijní program,
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
Poskakující míč
1.1.16 Poskakující míč Předpoklady: 010110 Zatím jsme stále na začátku zkoumáme jednoduché pohyby, nejjednodušší (rovnoměrný) už známe čeká nás druhý nejjednodušší pohyb. Druhým jednoduchým a snadno opakovatelným
FYZIKA. Newtonovy zákony. 7. ročník
FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt
Autor: Jana Krchová Obor: Fyzika FYZIKÁLNÍ VELIČINY. Délka Doplň ve větě chybějící slova: Fyzikální veličina je těles, kterou lze..
FYZIKÁLNÍ VELIČINY Délka Doplň ve větě chybějící slova: Fyzikální veličina je těles, kterou lze.. Doplň chybějící písmena : Každá fyzikální veličina má: 1) - - z v 2) z - - - k 3) - - k l - d - - j - -
Úlohy pro 52. ročník fyzikální olympiády kategorie G
FO52G1: Kolik naložíme Automobilový přívěs, který využívají chalupáři k přepravě materiálu, má nákladovou plochu o rozměrech: šířka 1,40 m, délka 1,60 m a výška hrazení 40 cm. Přívěs má nosnost 560 kg.
Fyzika_6_zápis_8.notebook June 08, 2015
SÍLA 1. Tělesa na sebe vzájemně působí (při dotyku nebo na dálku). Působení je vždy VZÁJEMNÉ. Působení na dálku je zprostředkováno silovým polem (gravitační, magnetické, elektrické...) Toto vzájemné působení
GRAVITAČNÍ POLE. Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí
GRAVITAČNÍ POLE Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí Přitahují se i vzdálená tělesa, například, z čehož vyplývá, že kolem Země se nachází gravitační pole
Věra Keselicová. březen 2013
VY_52_INOVACE_VK46 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová březen 2013 6. ročník
Přípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.
Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,
Téma Pohyb grafické znázornění
Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast:
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Síla, gravitační
Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Sekunda 2 hodiny týdně Pomůcky, které poskytuje sbírka
Fyzika pokus 11. 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa
Fyzika pokus 11 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa Projekt TROJLÍSTEK podpora výuky přírodopisu, biologie, fyziky a chemie žáků ve věku 11 až 15 let reg.
1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul
Látka a těleso 1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul Druh látky (skupenství): pevné l. kapalné
4IS01F8 mechanická práce.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/ Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 01
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Pořadové číslo: 01 Ověření ve výuce Třída: 8.A Datum: 26.9.2012 1 Mechanická práce Předmět: Ročník: Fyzika 8. ročník
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
2.2.5 Dvě rychlosti. Předpoklady: Pomůcky:
2.2.5 Dvě rychlosti Předpoklady: 020204 Pomůcky: Př. 1: V tabulkách jsou výsledky z tělocviku. Která z dívek je nejrychlejší v běhu na 100 m? Která je nejrychlejší v běhu na 12 minut? Vytvoř dvě pořadí
2.5.5 Těžiště. Předpoklady: Pomůcky: kartónové obrazce na hledání těžiště, vidličko-korko-jehlo-div,
2.5.5 ěžiště Předpoklady: 020504 Pomůcky: kartónové obrazce na hledání těžiště, vidličko-korko-jehlo-div, Př. 1: Do korkové zátky je zapíchnuta jehla a dvě vidličky. Vysvětli, proč stojí na druhé jehle
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika
Měření velikosti gravitační síly
Jméno: Školní rok: Měření velikosti gravitační síly Třída: Laboratorní práce číslo: Úkol: Zjisti, jak velikou gravitační silou na tebe působí Země. Pomůcky, které jsem použil/la: Siloměr, několik závaží
R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.
2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?
Autorka: Pavla Dořičáková
Rychlost Obsahový cíl: - Žák pracuje s veličinami dráha, rychlost, čas. - Žák pracuje se základními jednotkami pro dráhu, rychlost, čas. Jazykový cíl: - Žák používá správné tvary přídavných jmen a jejich
1.2.11 Tření a valivý odpor I
1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:
Vzdělávací oblast: Člověk a příroda Vzdělávací obor (předmět): Fyzika - ročník: SEKUNDA
5.3.2. Vzdělávací oblast: Člověk a příroda Vzdělávací obor (předmět): Fyzika - ročník: SEKUNDA Téma Klid a pohyb tělesa Dělení pohybů Učivo Výstupy Kódy Dle RVP Školní (ročníkové) V-PTS-01 rozhodne, jaký
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
Test jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
GRAVITAČNÍ SÍLA A HMOTNOST TĚLESA
GRAVITAČNÍ SÍLA A HMOTNOST TĚLESA Vzdělávací předmět: Fyzika Tematický celek dle RVP: Pohyb těles. Síly Tematická oblast: Pohyb a síla Cílová skupina: Žák 7. ročníku základní školy Cílem pokusu je sledování
Metodický list. Název materiálu: Měření rychlosti zvukovým záznamem. Autor materiálu: Mgr. Martin Havlíček
Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický list Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT (III/2) Sada:
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště
Síla, skládání sil, těžiště Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/
Síla, skládání sil, těžiště Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/ Vzájemné působení těles Pozoruj a popiš vzájemné působení sil Statické a dynamické působení sil čtvrtku).
Rovnoměrný pohyb I
2.2. Rovnoměrný pohyb I Předpoklady: 02020 Pomůcky: Shrnutí minulé hodiny: Naměřený reálný rovnoměrný pohyb poznáme takto: Rozdíly mezi hodnotami dráhy v pohybové tabulce jsou při stálém časovém intervalu
Rychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných
4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
K čemu slouží vektory?
Fyzikálně - matematický projekt K čemu slouží vektory? Machalík Patrik Novák Michal Novotný Michal Gymnázium Jakuba Škody Septima A 2011/2012 Úvod Tento projekt se zabývá skládáním vektorů pomocí matematických
2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
1.2.10 Tření a valivý odpor I
1.2.10 Tření a valivý odpor I Předpoklady: 1209 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 7. ročník M.Macháček : Fyzika pro ZŠ a VG 6/1 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7/1 (Prometheus), M.Macháček : Fyzika pro
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla
Měření délky První jednotky délky Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla stopa asi 30 cm palec asi 2,5 cm loket (vídeňský) asi 0,75
Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE
Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)
BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)
BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin
1.2.2 Měříme délku II
1.2.2 Měříme délku II Předpoklady: 010201 Pomůcky: metr, zavinovací metr, krejčovský metr, šuplera, metrický šroub, pásmo, provázek s vyznačeným metrem, provázek s vyznačenými decimetry, pravítko 30 cm
Experiment P-6 TŘECÍ SÍLA
Experiment P-6 TŘECÍ SÍLA CÍL EXPERIMENTU Studium vztahu mezi třecí a normálovou silou a koeicientem tření. Sledování změn třecí síly při použití různých povrchů í tělesa. Výpočet součinitelů tření (klidové,
POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY
POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz Na obrázku je graf závislosti dráhy tělesa na čase. Odpověz na otázky:
EU OPVK III/2/1/3/2 autor: Ing. Gabriela Geryková, Základní škola Žižkova 3, Krnov, okres Bruntál, příspěvková organizace
POHYBY TĚLES / VÝPOČET RYCHLOSTI foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz 1 VÝPOČET RYCHLOSTI - rychlost v vypočítáme jako podíl velikosti dráhy s a času t, za který
Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...
Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného
Fyzika. 6. ročník. měřené veličiny. značky a jednotky fyzikálních veličin
list 1 / 5 F časová dotace: 2 hod / týden Fyzika 6. ročník F 9 1 02 uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí LÁTKY A TĚLESA látka, těleso,
Soubor úloh k Mechanice (komb. studium)
Soubor úloh k Mechanice (komb. studium) 1. úloha Pozrite si nasledujúce grafy, pričom si všimnite odlišné osi: Ktorý z grafov predstavuje pohyb s konštantnou rýchlosťou? (A) I, II a IV (B) I a III (C)
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
58. ročník fyzikální olympiády kategorie G okresní kolo školní rok
58. ročník fyzikální olympiády kategorie G Zadání 1. části K řešení můžeš použít kalkulačku i tabulky. 1. Neutrální atom sodíku má ve svém jádru a) 10 protonů b) 11 protonů c) 10 elektronů d) 12 protonů
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
III. Dynamika hmotného bodu
III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]
Název: Měření zrychlení těles při různých praktických činnostech
Název: Měření zrychlení těles při různých praktických činnostech Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)
KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST. Mgr. Jana Oslancová VY_32_INOVACE_F1r0204
KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST Mgr. Jana Oslancová VY_32_INOVACE_F1r0204 OPAKOVÁNÍ Otázka 1: Jak se vypočítá změna veličiny (např. dráhy, času) mezi dvěma měřeními? Otázka 2: Jak se vypočítá velikost