I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
|
|
- Sára Dušková
- před 8 lety
- Počet zobrazení:
Transkript
1 DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou tělesa deformovat síla je skalární/ vektorová fyzikální veličina pro jednoznačné určení síly nestačí její velikost, ale potřebujeme znát bod, ve kterém síla působí (působiště) a směr síly tělesa na sebe vzájemně působí přímým kontaktem nebo prostřednictvím polí (typy polí:...) 2. Skládání a rozklad sil Složit síly znamená určit výslednici dvou nebo vice sil, tak, aby měla stejný účinek jako všechny síly dohromady. Síly mohou mít působiště v jednom bodě, pak působiště umísťujeme do těžiště. Určete výslednici graficky její velikost její směr F 1 F 2 F 1 F 2 F 1 F 2 F 1 F 1 F 2 F DYNAMIKA
2 3. Newtonovy pohybové zákony a) První Newtonův pohybový zákon ZÁKON SETRVAČNOSTI: Těleso setrvává v klidu nebo rovnoměrném přímočarém pohybu, pokud se výslednice všech sil na něho působících rovná nule. F1 + F2 + F F n = Fv = 0 v = konst. 1. Auto se pohybuje rychlostí 20 m.s -1. Působí na něj třecí síla 1 kn. Vypočítejte tažnou sílu motoru. TŘENÍ je základní podmínkou a zároveň překážkou pohybu (vysvětli) Třecí síla vzniká, když se jedno těleso pohybuje po druhém. Tato síla má vždy směr proti pohybu tělesa. Podstata třecích sil spočívá v nerovnostech stykových ploch obou těles. F t v F N F t (třecí síla) závisí na:... nezávisí na :... F = f t F N f součinitel smykového tření je materiálová konstanta, která vyjadřuje závislost na kvalitě obou povrchů, její hodnota je napsaná v MFChT (matematicko fyzikálních a chemických tabulkách), ale tato hodnota je pouze přibližná. Pokud chceme zjistit přesnou hodnotu, musíme ji změřit (úkol - vymyslete metodu) f 0... součinitel klidového tření když se těleso začíná pohybovat z klidu f... součinitel smykového tření když se těleso už pohybuje, obvyklá hodnota okolo 0,3 f 0 f... Proč? Vysvětli na příkladech z praxe F N = normálová síla - kolmá tlaková síla působící na těleso je rovna tíhové síle tělesa, souvisí s hmotností, ale také závisí na úhlu roviny, na které se těleso nachází DYNAMIKA
3 α = 0 F t = mgf F N = F G = mg α 0 F 1 α α F N = F 2 mg F N = mg cosα F t = mgf cosα 2. Ocelové těleso o hmotnosti 10 kg je rozpohybováno stálou rychlostí. Součinitel smykového tření je 0,35. Vypočítejte sílu, kterou potřebujeme vynaložit k pohybu tělesa, jestliže 0 a) α = 0 b) 0 α = 30 i) nahoru ii) dolů 3. Určete úhel mezi nakloněnou rovinou vodorovnou rovinou, jestliže se těleso pohybuje dolů konstantní rychlostí bez dalších sil. Součinitel smykového tření počítejte 0,4. 4. Určete sílu potřebnou k rovnoměrnému pohybu tělesa o hmotnosti 80 kg, jestliže součinitel smykového tření je f = 0,7. 5. K rovnoměrnému pohybu tělesa (rychlostí v = 10 m s -1 ) o hmotnosti 600 g po vodorovné podložce je potřebná síla 1,2 N. Vypočítejte součinitel smykového tření. L2/ DYNAMIKA
4 HYBNOST p je vektorová veličina, kterou potřebujeme k definování 2. Newtonova pohybového zákona. Newton hledal veličinu, která se mění během srážky (mech. energie to není částečně se přeměňuje na teplo) = p m v 1 [ p ] = kg m s hybnost tělesa je m - krát větší než jeho rychlost a má stejný směr jako rychlost Zákon zachování hybnosti izolované soustavy: Celková hybnost izolované soustavy zůstává konstantní. p = p př ed po = když sečteme hybnosti (VEKTORY) všech těles v izolované soustavě PŘED jejich srážkou, musí být výsledný vektor stejný jako součet vektorů hybností těchto těles PO srážce. Platí to i v trojrozměrném prostoru, ale my budeme řešit jen jednoduché příklady. 6. Střela o hmotnosti 2 g letící z pistole o hmotnosti 2 kg rychlostí 300 m.s -1. Vypočítejte zpětnou rychlost pistole a určete její směr. 7. a) Železniční vagón o hmotnosti kg jedoucí rychlostí 0,5 m s -1 se srazí s druhým vagónem o poloviční hmotnosti pohybující se stejným směrem rychlostí 0,4 m s -1. Vagóny se při srážce spojí. Určete společnou rychlost jejich pohybu; b) stejná tělesa jako v bodě a) se pohybují proti sobě. Určete společnou rychlost jejich pohybu; c) jaká je rychlost po srážce, jestliže se tělesa budou pohybovat navzájem k sobě kolmo? Poznámka: srážka (ráz): pružný pouze ideální, mech. energie se nemění nepružný tělesa se po srážce spojí, mech. energie není konstantní b) Druhý Newtonův pohybový zákon ZÁKON SÍLY: Výsledná síla působící na hmotný bod je rovna podílu změny hybnosti hmotného bodu a doby, po kterou působila. F p = t Poznámka 1: 1 F R... impuls síly, [ I ] t = I = kg m s DYNAMIKA
5 Poznámka 2: ve většině případů zůstává hmotnost těles konstantní, pak platí m v m v F R = = = m a t t Raketové motory o hmotnosti kg jsou urychlovány silou 3, N. Jaké je zrychlení raket? 9. Těleso o hmotnosti 300 g, pohybující se s stálým zrychlením, má počáteční moment 220 kg m s -1 a po 15 sekundách moment 400 kg.m.s -1. Jaké je zrychlení tělesa? 10. Klasická kulečníková koule má hmotnost 200 g. Během 7 ms na ni působila síla 50 N. Jakou rychlostí se po kontaktu tága bude koule pohybovat? 11. Na těleso o hmotnosti 2 kg, které je původně v klidu, působí stálá síla. Vypočítejte rychlost tělesa 5 s po začátku působení síly. c) Třetí Newtonův pohybový zákon ZÁKON AKCE A REAKCE: Jestliže těleso A působí silou na těleso B, pak těleso B působí na těleso A stejně velkou silou opačného směru. Síly současně vznikají a zanikají. Tyto síly nemůžeme sčítat, protože každá působí na jiné těleso. L2/89-104, X , DYNAMIKA
6 TÍHA a TÍHOVÁ SÍLA Tíhová síla je síla, která přitahuje těleso k Zemi. Je výslednicí síly gravitační a odstředivé, směr přesně do středu Země má pouze na rovníku a na pólech. Její působiště je v těžišti tělesa. m m m Tíha je síla, kterou těleso v tíhovém poli země tlačí na podložku nebo táhne za závěs. Její působiště je v bodě, kde těleso táhne nebo tlačí. Zakresli tíhu a tíhovou sílu: DYNAMIKA
7 8. Dynamika rovnoměrného pohybu po kružnici v = konst. ale v konst. F d... dostředivá síla a d...dostředivé zrychlení trajektorie není přímka, to znamená, že zde existuje výsledná síla (2. NPZ) tato výslednice je kolmá ke směru rychlosti, to mění jen směr a ne její velikost F d = ma d 2 v = ω r = r a d Pulsar o průměru 15 km se otáčí s frekvencí 8 Hz. Vypočítejte rychlost a dostředivé zrychlení hmotného bodu na rovníkovém průměru. 13. Vozidlo se pohybuje po kružnici o poloměru 0,6 m. Určete úhlovou rychlost a dostředivé zrychlení bodu na povrchu pneumatiky, když se vozidlo pohybuje rychlostí 20 m.s -1. L2/ , X Inerciální vztažná soustava V inerciální vztažné soustavě těleso zůstává v klidu nebo se pohybuje rovnoměrně přímočaře. Inerciální vztažná soustava se nepohybuje zrychleně. Když soustava není inerciální, vykazuje zrychlení, působí na tělesa zdánlivé síly = setrvačné síly. Na těleso poté působí síly, i když nejsou v přímém kontaktu s dalšími tělesy. Míč umístěný na podlaze ve vlaku. Diskutuj o jeho pohybu ve vlaku, když se vlak pohybuje s konstantní rychlostí, zrychleně nebo zpomaleně DYNAMIKA
8 Neinerciální vztažná soustava pohybuje se vzhledem ke vztažnému tělesu se zrychlením a. To může znamenat následující typy pohybů:... V této soustavě neplatí 1. a 3. NPZ (diskutujte o možnostech) a na tělesa působí setrvačná síla: F s = m a s = a a s 14. Diskutujte o pohybu míčku v těchto případech: a) ve vlaku při pohybu rovnoměrném přímočarém, zrychleném a zpomaleném b) ve výtahu při pohybu nahoru/dolu s konstantní rychlostí, zrychleně a zpomaleně L2/ Odpovědi: 1. 1 kn N, 80 N, -20 N 3. 21, N 5. 0,2 6. 0,3 m.s ,47 m.s -1 ; 0,2 m.s -1 ; 0,36 m.s ,5 m.s m.s ,75 m.s m.s km.s -1, m.s rad.s -1, 1333 m.s DYNAMIKA
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla
Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)
BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin
Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla
Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.
5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně
Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické
2. Dynamika hmotného bodu
. Dynamika hmotného bodu Syllabus:. Dynamika hmotného bodu. Newtonovy zákony. Síly působící při známém druhu pohybu. Pohybová rovnice hmotného bodu, vrhy, harmonický pohyb. Inerciální a neinerciální soustavy
V roce 1687 vydal Newton knihu Philosophiae Naturalis Principia Mathematica, ve které zformuloval tři Newtonovy pohybové zákony.
Dynamika I Kinematika se zabývala popisem pohybu, ale ne jeho příčinou. Například o vrzích jsme řekli, že zrychlení je konstantní a směřuje svisle dolů, ale neřekli jsme proč. Dynamika se zabývá příčinami
mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s
1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření
DYNAMIKA DYNAMIKA. Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky jsou tři Newtonovy pohybové zákony.
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 30. 8. 2012 Název zpracovaného celku: DYNAMIKA DYNAMIKA Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky
Příklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
Dynamika hmotného bodu
Dynamika hmotného bodu (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Newtonovy zákony První Newtonův zákon Druhý Newtonův zákon Třetí Newtonův zákon Zákon zachování
FYZIKA. Newtonovy zákony. 7. ročník
FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt
SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...
KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
Dynamika hmotného bodu
Dynamika hmotného bodu Dynamika Dynamika odvozeno odřeckéhoδύναμις síla Část mechaniky, která se zabývá příčinami změny pohybového stavu tělesa Je založena na třech Newtonových zákonech pohybu Dynamika
Přípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)
BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin
Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie
Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,
Test jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
Newtonovy pohybové zákony
Newtonovy pohybové zákony Zákon setrvačnosti = 1. Newtonův pohybový zákon (1. Npz) Zákon setrvačnosti: Těleso setrvává v klidu nebo rovnoměrném přímočarém pohybu, jestliže na něj nepůsobí jiná tělesa (nebo
Dynamika pro učební obory
Variace 1 Dynamika pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Newtonovy pohybové zákony
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ
6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy
Mechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
III. Dynamika hmotného bodu
III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]
Fyzika_6_zápis_8.notebook June 08, 2015
SÍLA 1. Tělesa na sebe vzájemně působí (při dotyku nebo na dálku). Působení je vždy VZÁJEMNÉ. Působení na dálku je zprostředkováno silovým polem (gravitační, magnetické, elektrické...) Toto vzájemné působení
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím
17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?
1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH
Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost:
Projekt Efektivní Učení Reforou oblastí gynaziálního vzdělávání je spolufinancován Evropský sociální fonde a státní rozpočte České republiky. MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojy: Setrvačnost:
Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Mechanika 1. ročník, kvinta 2 hodiny Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Úvod Žák vyjmenuje základní veličiny
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky
Testovací příklady MEC2
Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být
Úvod. 1 Převody jednotek
Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve
Laboratorní práce č. 3: Měření součinitele smykového tření
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně
Rychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.
2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena
BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)
BIOMECHANIKA 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) Studijní program, obor: Tělesná výchovy a sport Vyučující:
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:
F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD
F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu
Mechanika - kinematika
Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb
Obsah. 1 Newtonovy zákony Zákon zachování hybnosti Druhy sil 9. 4 Pohyb na rovné ploše 11
Obsah 1 Newtonovy zákony 2 1.1 První Newtonův zákon...................... 2 1.2 DruhýNewtonův zákon..................... 3 1.3 TřetíNewtonův zákon...................... 6 1.4 Zákon zachování hybnosti....................
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?
MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J
Pokyny k řešení didaktického testu - Dynamika
Dynamika hmotného bodu 20 Pokyny k řešení didaktického testu - Dynamika 1. Test obsahuje 20 otázek, které jsou rozděleny do několika skupin. Skupiny jsou označeny římskými číslicemi. Úvodní informace se
1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:
1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 3. V pravoúhlých souřadnicích je rychlost rovnoměrného přímočarého
13 otázek za 1 bod = 13 bodů Jméno a příjmení:
13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit
DYNAMIKA ROTAČNÍ POHYB
DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL -
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL - řešení... 8 17_Skládání různoběžných sil působících v jednom
BIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla)
BIOMECHANIKA 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. SÍLY BRZDÍCÍ
Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.
Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první
Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1
DUM Základy přírodních věd DUM III/2-T3-07 Téma: Mechanika a kinematika Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TESTY Testy Část 1 1. Čím se zabývá kinematika? 2. Které těleso
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:
Počty testových úloh
Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých
Mechanika úvodní přednáška
Mechanika úvodní přednáška Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9
Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................
TŘENÍ A PASIVNÍ ODPORY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
Věra Keselicová. březen 2013
VY_52_INOVACE_VK46 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová březen 2013 6. ročník
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1
Řešení úloh kola 5 ročníku fyzikální olympiády Kategorie D Autořiúloh:JJírů(až6),MJarešová(7) a) Označme sdráhumezivesnicemi, t časjízdynakole, t časchůze, t 3 čas běhuav =7km h, v =5km h, v 3 =9km h jednotlivérychlosti
KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině
KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme
1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul
Látka a těleso 1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul Druh látky (skupenství): pevné l. kapalné
(2) 2 b. (2) Řešení. 4. Platí: m = Ep
(1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci
hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano
Tuhé těleso, hmotný bod, počet stupňů volnosti hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Stupně volnosti konstanta určující nejmenší
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská
FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohybová rovnce Prof. RNDr. Vlém Mádr, CSc. Prof. Ing. Lbor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.
Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,
Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA PRÁCE A ENEGRIE Teorie Uveďte tři konkrétní
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ..07/.5.00/4.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím