Tabulka I Měření tloušťky tenké vrstvy



Podobné dokumenty
2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

Petr Šafařík 21,5. 99,1kPa 61% Astrofyzika Druhý Třetí

Zadání. Pracovní úkol. Pomůcky

Zadání. Pracovní úkol. Pomůcky

Úkoly. 1 Teoretický úvod. 1.1 Mikroskop

2 (3) kde S je plocha zdroje. Protože jas zdroje není závislý na směru, lze vztah (5) přepsat do tvaru:

Podle studijních textů k úloze [1] se divergence laserového svaku definuje jako

Úloha 3: Mřížkový spektrometr

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

PRAKTIKUM II Elektřina a magnetismus

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou.

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A]

PRAKTIKUM II Elektřina a magnetismus

Fyzikální praktikum FJFI ČVUT v Praze

Praktikum III - Optika

1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V.

Praktikum III - Optika

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. F3240 Fyzikální praktikum 2

Praktikum školních pokusů 2

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

Jméno a příjmení. Ročník. Měřeno dne. Marek Teuchner Příprava Opravy Učitel Hodnocení. 1 c p. = (ε r

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Praktikum III - Optika

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:...

Interference a ohyb světla

Maticová optika. Lenka Přibylová. 24. října 2010

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.III. Název: Mřížkový spektrometr

Úloha 10: Interference a ohyb světla

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Zadání. Pracovní úkol. Pomůcky

Úloha 6: Geometrická optika

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Stavba Michelsonova interferometru a ověření jeho funkce

Praktikum III - Optika

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Fyzikální praktikum III

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Interference a ohyb světla

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

Relativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+:

Laboratorní práce č. 3: Měření vlnové délky světla

Praktikum III - Optika

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek

Vlnové vlastnosti světla. Člověk a příroda Fyzika

Praktikum III - Optika

Úloha 15: Studium polovodičového GaAs/GaAlAs laseru

5 Geometrická optika

1 Základní pojmy a vztahy

Závislost odporu termistoru na teplotě

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.XI. Název: Měření stočení polarizační roviny

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky

Fyzikální praktikum I

M I K R O S K O P I E

17. března Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

KULOVÁ ZRCADLA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne

Úloha č.: XVII Název: Zeemanův jev Vypracoval: Michal Bareš dne Posuzoval:... dne... výsledek klasifikace...

Mikrovlny. 1 Úvod. 2 Použité vybavení

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

7 Hallůvjevvkovuapolovodiči

Fyzika II. Marek Procházka Vlnová optika II

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

Optika pro mikroskopii materiálů I

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

PRAKTIKUM II Elektřina a magnetismus

Fyzikální praktikum FJFI ČVUT v Praze

Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie

I Mechanika a molekulová fyzika

Mikrovlny. K. Kopecká*, J. Vondráček**, T. Pokorný***, O. Skowronek****, O. Jelínek*****

3. Totéž proveďte pro 6 8 hodnot indukce při pozorování ve směru magnetického pole. Opět určete polarizaci.

Centrovaná optická soustava

PRAKTIKUM I Mechanika a molekulová fyzika

PRAKTIKUM IV Jaderná a subjaderná fyzika

L a b o r a t o r n í c v i č e n í z f y z i k y

Úloha 5. Měření indexu lomu refraktometrem, mikroskopem a interferometrem

Po stopách Alberta Michelsona, Marina Mersenna a dalších

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

Fyzikální praktikum II

Digitální učební materiál

Praktikum I Mechanika a molekulová fyzika

Fyzikální praktikum II

Laboratorní práce č. 1: Měření délky

Praktikum II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus

Mikroskopické metody Přednáška č. 3. Základy mikroskopie. Kontrast ve světelném mikroskopu

Vypracoval. Jakub Kákona Datum Hodnocení

Transkript:

Pracovní úkol 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte stupnici okuláru metodou postupných měření. 4. Pomocí Newtonových interferenčních kroužků změřte oba poloměry křivosti u dvou vybraných čoček. 5. Chybu v určení poloměru křivosti stanovte z vhodně použité lineární regrese. 6. Výsledky měření v bodě 4 porovnejte s optickou mohutností čoček změřenou pomocí fokometru. Teorie K měření tloušťky tenké vrstvy se často používá Tolanského metoda. Je založena na vícepaprskové interferenci světla na vzduchové mezeře mezi měřeným vzorkem a polopropustným zrcátkem. Na části vzorku je měřená vrstva vrypem odstraněna.tím vznikne skok v rozměru celé tloušťky vrstvy. Celý tento systém se dále pokryje vysoce odrazivou nepropustnou vrstvou kovu. Poté osvětlíme vzduchovou klínovou mezeru mezi vzorkem a polopropustným zrcadlem mnochromatickým světlem o vlnové délce λ. Na systém dopadá rovnoběžný svazek paprsků téměř kolmo. Na vzduchové mezeře vzniká interfence paprsků a my pozorujeme tmavé interfenční proužky odpovídající interferenčnímu maximu. Na místě vrypu na vzorku se v interferenční proužky posunou do strany. Můžeme zjistit tloušťku vrstvy podle vztahu [1]: λ t = x 1 (1) x 2 2 kde x 2 je vzdálenost jednotlivých proužků, x 1 je vzdálenost, o kterou se proužky na hraně vrypu posunuly. Newtonovykroužky vznikají interferencí světla na tenké vzduchové vrstvě mezi dvěma dotýkajícími se povrchy. Jeden, nebo oba povrchy mohou být zakřivené. Na čočku o poloměru křivosti R položíme tenkou skleněnou destičku. Tloušťka klínové vrstvy mezi nimi se spojitě mění a interferenční proužky spojující místa o stejné tloušťce vyplní soustředné kružnice kolem místa dotyku čočky s destičkou. Z pozorování průměrů ρ k, ρ n Newtonovým proužků lze určit poloměr křivosti čočky [1]: R = (ρ k 2 ρ 2 n ) (2) λ k n Používáme mikroskop se zvětšením Z. Skutečnou velikost vzdálenosti x tak určíme podle vztahu: x = Z. x m (3) kde x m je velikost naměřená na noniu posuvného šroubu mikroskopu. Pomocí fokometru lze naměřit optickou mohutnost φ čoček. Platí vztah *2+: φ = n 1 ( 1 R 1 + 1 R 2 ) (4) kde n je index lomu skla a R 1, R 2 jsou oba poloměry křivosti čočky. Výsledky měření Por měření používáme světlo o vlnové délce λ= 589,3 nm. Tabulka I Měření tloušťky tenké vrstvy 1.místo vrstvy 2.místo vrstvy 3.místo vrstvy č.měření 1. 2. 1. 2. 1. 2. x 1 *dílky+ 2,39 ±,2 2,39 ±,2 2,9 ±,1 2,8 ±,1 2,58 ±,2 2,56 ±,2 x 2 *dílky+ 1,85 ±,1 1,96 ±,1 1,76 ±,1 1,77 ±,1 2,8 ±,1 2,5 ±,1 t [nm] 382 ± 3 36 ± 3 349 ± 3 345 ± 3 365 ± 3 368 ± 3

Chybu odečtení jednoho měření uvažuji ±,5. Měřila jsem však více proužků najednou, proto je chyba celkově menší. Podle vztahu (1) jsem určila tloušťku tenké vrstvy na třech různých místech. Relativní chyba této veličiny je součtem relativnách chyb x 1,x 2. t 1 = (371 ± 2) nm t 2 = (347 ± 2) nm t 3 = (367 ± 2) nm Dále jsem okalibrovala stupnici mikroskopu, pod kterým jsem poté pozorovala Newtonovy kroužky. Vložila jsem pod mikroskop skleněnou destičku se stupnicí délky 1cm s nejmenším dílkem,1mm. Zjišťovala jsem odpovídající hodnotu na otočném šroubu mikroskopu pro tyto známé délky. Tabulka II Kalibrace mikroskopu x [mm] x' [dílky],1,2,11,67,3 1,28,4 1,91,5 2,55,6 3,18,7 3,79,8 4,41,9 5,3, 5,67 1,1 6,28 1,2 6,91 1,3 7,53 Pomocí lineární regrese jsem určila hodnotu jednoho dílku stupnice mikroskopu, tedy jeho zvětšení. Z = (,178 ±,3) Proměřovala jsem poloměry křivosti obou stran čoček č.1 a č.3. Pod mikroskop jsem umístila čočku a na ní položila tenkou skleněnou destičku. V mikroskopu jsem zaostřila na Newtonovy kroužky a nastavila jej tak, aby střed soustředných kružnic byl zhruba uprostřed zorného pole. Nitkový kříž jsem posunula do středu kružnic a natočila tak, aby byly jeho ramena kolmá na kružnice. Poté jsem měřila průměr zobrazených Newtonových kroužků tak, že jsem odečetla polohy dvou protilehlých stran každého kroužku a tyto hodnoty v absolutní hodnotě odečetla. Tabulka III Poloměry Newtonových kroužků pro obě strany čoček 1 a 3 k ρ k [mm] č.1/str.a č.1/str.b č.3/str.a č.3/str.b 1 2,21,3,45,65,16,25,24,36 3,38,8,31,45 4,44,36,52 5,47,41,58 6,5,45,64 7,56,49,69 8,6,52 9,64,55 1,67,58 11,62 12,64 13,67 14,69 15,72 16,74

V tabulce je k řád daného interferenčního maxima. Poloměry jsou již přepočítané podle zvětšení mikroskopu do jednotek [mm]. Pro zpracování těchto výsledků jsem použila lineární regresi. Do Grafů I-IV jsem vynesla závislost R*(k-n)λ=(ρ k 2 -ρ n 2 ), kde R byl parametr, který jsem nechala fitovat programem Gnuplot. Za k jsem dosazovala vždy k=1, tedy poloměr kroužku prvního řádu. Z lineární regrese jsem dostala tyto hodnoty pro poloměry křivosti čoček.: R 1A =(76 ± 1) mm R 1B =(373 ±,1) mm R 3A =(59,1 ±,1) mm R 3B =(119,7±,7) mm Graf I - poloměr křivosti čočky 1/str.A 5 1 2 3 4 5 6 7 8 9 Graf II - poloměr křivosti čočky 1/str.B 5.5 1 1.5 2

.55.5 5 Graf III - poloměr křivosti čočky 3/str.A 2 4 6 8 1 12 14 Graf IV - poloměr křivosti čočky 3/str.B 5 1 2 3 4 5 6 V posledním úkolu jsem měřila optickou mohutnost zkoumaných čoček na fokometru. Pro každou čočku jsem toto měření provedla dvakrát. Výsledná hodnota je průměrem těchto dvou naměřených hodnot. φ 1 =(12,2 ±,2) D φ 3 =(17, ±,2) D Ze vztahu (4) jsem dále určila indexy lomu skla měřených čoček. n 1 =(1,77 ±,4) n 3 =(1,67 ±,6) Chybu určení indexů lomu jsem určila podle zákona o přenosu chyb. Diskuze Při měření tloušťky tenké vrstvy jsem změřila vzdálenost více proužků a tu pak vydělila příslušným počtem. Takto jsem eliminovala chybu, která vzniká při odečtení polohy nitkového kříže. Tuto chybu uvažuji σ= ±,5 dílku hlavně díky mírnému rozmazání jednotlivých prožků. Tloušťka tenké vrstvy není na všech místech stejná. Naměřené tloušťky

v místech 1 a 3 se v rámci vypočítaných chyb shodují, avšak tloušťka v místě 2 se liší od těchto hodnot o 7%. Při výpočtu poloměru křivosti čoček jsem užívala lineární regrese. Výsledné hodnoty jsou zaneseny v Grafech I-IV. Jak je z Grafů vidět, se dobře shodují s uvažovanou linerání závislostí. Z toho důvodu vychází relativní chyby linerání regrese malé: η 1A =1,32%, η 1B =,3%, η 3A =,17%, η 3B =,58%. Závěr V tomto praktiku jsme se seznámili se základními jednoduchými aplikacemi interferenčních jevů v experimentální fyzice. Naměřili jsem tloušťku tenké vrstvy na třech různých místech: t 1 = (371 ± 2) nm t 2 = (347 ± 2) nm t 3 = (367 ± 2) nm Výsledky kalibrace stupnice mikroskopu jsou v Tabulce II. Z tohoto měření jsme zjistili zvětšení mikroskopu Z = (,178 ±,3). Experimentálně zjištěné poloměry křivosti obou stran čoček 1 a 3 jsou: R 1A =(76 ± 1) mm R 1B =(373 ±,1) mm R 3A =(59,1 ±,1) mm R 3B =(119,7±,7) mm Na fokometru jsme odečetli optickou mohutnost měřených čoček: φ 1 =(12,2 ±,2) D φ 3 =(17, ±,2) D Získali jsme hodnoty indexu lomu skla čoček: n 1 =(1,77 ±,4) n 3 =(1,67 ±,6) Použitá literatura [1] I. Pelant a kolektiv Fyzikální praktikum III, Optika; matfyzpress; 25 [2] Brož, J. a kol.: Fyzikální a matematické tabulky, SNTL, Praha 198