Centrovaná optická soustava

Rozměr: px
Začít zobrazení ze stránky:

Download "Centrovaná optická soustava"

Transkript

1 Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě lámavé kulové ploch optickou osou kulové ploch je každá přímka jsoucí středem kulové ploch. jejich společná optická osa pak musí procházet oběma střed křivosti. První kulová plocha má ohniskové rovin ϕ, ϕ a ohniskové vzdálenosti, Druhá kulová plocha... má ohniskové rovin ϕ, ϕ a ohniskové vzdálenosti, Dále označíme: Optický interval Δ. vzdálenost ϕ od ϕ tj. vzdálenost předmětové ohniskové rovin druhé lámavé ploch od obrazové ohniskové rovin první lámavé ploch (kladná ve směru postupu světla) Uvažme: Souřadnice předmětu pro první lámavou plochu jsou (, ). Jeho obraz (, ) vtvořený touto plochou je současně předmětem (, ) pro. lámavou plochu, která vtvoří výsledný obraz, ). Postupným použitím Newtonových rovnic dostaneme: (

2 Pro výsledný obraz jsme ted dostali vztah: Požadavek na nekonečnost souřadnic výsledného obrazu nám pak dá možnost zjistit polohu předmětové ohniskové rovin ϕ celé soustav. Z nulovosti jmenovatelů plne: e Podobně polohu obrazové ohniskové rovin ϕ celé soustav zjistíme z nekonečnosti souřadnic výchozího předmětu: Při znalosti ohnisek můžeme zavést ohniskové souřadnice celé soustav (,) a ( /, / ) jako vzdálenosti výchozího předmětu a výsledného obrazu od ohnisek soustav. Podle obrázku platí: Nní zjistíme, jaké vztah platí pro tto souřadnice: Je vidět, že kdž deinujeme předmětnou a obrazovou ohniskovou vzdálenost celé soustav jako:

3 3 Dostaneme pro ohniskové souřadnice obrazu výraz: Obrazové ohniskové rovnice pro celou optickou soustavu mají ted naprosto stejný tvar jako pro jednoduchou kulovou plochu! Pozn.: Tento postup nelze použít pro speciální případ Δ 0 (neboť b blo e, e /,, / ) Pak užíváme původní rovnice pro obrazové souřadnice druhé lámavé ploch: Tlustá čočka Je speciální případ centrované optické soustav, kd optické prostředí s absolutním indeem lomu n je ohraničeno dvěma lámavými kulovými plochami (s poloměr r, r ), jejichž vrchol jsou ve vzdálenosti d (tlouštka čočk), přičemž okolní prostředí má absolutní inde lomu n o (viz obr.). Podle vztahů pro dvě obecné lámavé kulové ploch vpočítejme nejprve ohniskové vzdálenosti jednotlivých kulových ploch:

4 A pro druhou kulovou plochu: Dále podle obrázku vjádříme optický interval: Ohniskové vzdálenosti Dosadíme získané výsledk do rovnice pro předmětnou ohniskovou vzdálenost soustav dvou kulových lámavých ploch (nní tlusté čočk): A dále vpočítáme obrazovou ohniskovou vzdálenost tlusté čočk: 4

5 U tlusté čočk jsou ted obě ohniskové vzdálenosti stejné - jako důsledek stejného optického prostředí na obou stranách čočk. Podle dříve uvedených vlastností optického zobrazení to znamená, že uzlové bod tlusté čočk splývají s jejími hlavními bod. Hlavní rovin Vznačme dále v původním obrázku polohu kladných hlavních rovin: viz dříve poloha H + : - poloha H / + : / - / - Vzdálenosti těchto rovin od vrcholů kulových ploch čočk pak označme jako h a h /. Podle obrázku pro ně platí: U čoček se ještě přijímá dohoda, že poloměr vpuklé kulové ploch je kladný, a poloměr duté kulové ploch je záporný a to při pohledu na dotčnou plochu z vnější stran čočk. V našem případě je podle obrázku: r > 0, r < 0 V získaných vztazích ted pozměníme u r znaménko a získáme konečné výraz: 5

6 6 r d n n h r d n n h ) ( n d ) r n ( r r r n n + Optická mohutnost čočk Je deinována jako převrácená hodnota ohniskové vzdálenosti: D jednotkou je: dioptrie D Po dosazení za ohniskovou vzdálenost získáme použitelný vztah: Pro spojnou čočku (spojku).... > 0. D > 0 Pro rozptlnou čočku (rozptlku).. < 0. D < 0 (Nekonečně) tenká čočka Je limitním případem tlusté čočk, kd tlouštka čočk je velmi malá (matematick d 0 ), pak platí:

7 Ted: Hlavní bod tenké čočk splývají se středem čočk. Označení tenké čočk: Význačné bod a rovin tenké čočk (viz obr.): a) Spojka ( / > 0 ) Jak se zobrazí význačné paprsk. jdoucí uzlovými bod ohniskem. rovnoběžné s osou..... a obecný paprsek? b) Rozptlka ( / < 0 ). (vnáší se stejné velikosti, ale na opačnou stranu.) 7

8 D. cv.: Zakreslete opět chod význačných paprsků dle potřeb je nutno prodloužit za čočku. Tvar čoček: Soustava dvou čoček Stejným způsobem jako jsme skládali kulové ploch do optické soustav, můžeme také skládat čočk do výsledné centrované optické soustav a můžeme přitom vužívat stejných rovnic. Jestliže ted vtvoříme optickou soustavu ze dvou čoček s ohniskovými vzdálenostmi a a optickým intervalem Δ, pak výsledná ohnisková vzdálenost této soustav je: Ze vztahu je dobře vidět, že pouhou změnou optického intervalu Δ (může být kladný nebo záporný) lze z libovolných čoček ( > 0, < 0, > 0, < 0 ) vtvořit jak soustavu s kladnou ohniskovou vzdáleností (kolektivní, / > 0 ), tak i soustavu se zápornou ohniskovou vzdáleností (disperzní, / < 0 ) 8

9 9 Situace se zjednoduší, jestliže obě čočk budou tenké (tj. hlavní a uzlové bod jsou ve středu čoček): Označíme-li vzdálenost středů čoček jako d, pak můžeme jednoduše vjádřit optický interval: d Dosadíme do předchozího vztahu: d A vpočítáme optickou mohutnost: V případě, kd jsou tenké čočk těsně u sebe (dotýkají se, d 0) se vztah maimálně zjednoduší: D D D + tj. optické mohutnosti obou čoček se sčítají. Zcela speciální případ soustav dvou čoček nastane, jestliže jejich optický interval Δ bude nulový.to je případ tzv. teleskopické soustav (např. dalekohled) Tato situace je stejná jako u soustav kulových ploch viz výše jelikož, /, nelze zavést ohniskové souřadnice soustav a musí se použít rovnice pro a :

10 Vad optických soustav V minulých odstavcích jsme se zabývali optickým (pomocí kulových ploch a jejich soustav), ve kterém obrazem bodu bl bod, obrazem přímk bla přímka a obrazem rovin bla rovina. Toto ideální optické zobrazení však blo odvozeno za předpokladu, že světelné paprsk neopouštějí prostor kolem optické os paraiální prostor a také bla zanedbána disperze světla. Tto ideální podmínk jsou však v prai velmi často porušen a proto reálné optické zobrazení má vlastnosti poněkud jiné. Jejich popis je však velmi komplikovaný, proto většinou hodnotíme jen odchlk zobrazení danou optickou soustavou od ideálního stavu tzv. chb (vad) zobrazení. Nejčastěji se zkoumají chb při zobrazení bodového předmětu, někd nás také zajímá zobrazení větších útvarů (úseček, ploch). Vad zobrazení dělíme na dvě hlavní skupin: ) Chb monochromatické (které vznikají při zobrazování monochromatickým světlem, tj. s jedinou vlnovou délkou, jejich příčinou je opuštění paraiálního prostoru) ) Chb chromatické (které vznikají při zobrazení bílým světlem, jejich příčinou je disperze světla) Chromatická vada Je důsledkem disperze světla, tj. toho, že inde lomu světla závisí na vlnové délce. Jestliže ted při zobrazení bodového předmětu použijeme světlo složené z více vlnových délek, např. bílé světlo pak pro každou vlnovou délku vznikne obraz v jiném místě, i kdž paprsk neopustí paraiální prostor. To platí i pro obrazové ohnisko, jehož poloha je u tenké čočk určena vztahem: D ( n ) ρ Ted např. pro ialové světlo (větší inde lomu) je větší optická mohutnost.. a ohnisko je blíže čočk: Nejjednodušší korekce toto vad se provede následovně: Místo jedné čočk se použijí dvě (tenké) čočk (dotýkající se), pak: D D + D + 0

11 A budeme požadovat, ab splnul ohniska pro krajní vlnové délk světla, tj. pro červenou a ialovou (modrou) barvu např. pro Fraunhoerov čár C a F: Ted: Protože pravá strana je záporná, musí mít vpuklosti čoček ρ a ρ opačná znaménka - musíme ted vzít spojku a rozptlku z různých materiálů (např. spojku z korunového skla, rozptlku z lintového skla). vznikne tzv. achromát. Ohniska budou skutečně totožná, ale jen pro tto dvě barv, pro ostatní barv se budou dále lišit! Proto může požadovat korekce pro více barev, např. splnutí ohnisek pro tři vlnové délk (Fraunhoerov čár C, D, F).tak vznikne apochromát (často objektiv mikroskopu) Otvorová (sérická ) vada Vzniká při zobrazení na ose širokým svazkem paprsků.paprsk dále od os vtvoří obraz blíže čočk. Tato vada se opět odstraní kombinací spojk a rozptlk. Jestliže se kromě odstranění sérické vad pro určitý bod na ose provede korekce zobrazení i pro blízké okolí tohoto bod v rovině kolmé k ose (je to možné udělat pro dva bod, tzv. sinová podmínka)..vznikne aplanát

12 Astigmatismus Vzniká při zobrazení bodu mimo optickou osu, i úzkým svazkem paprsků. pohled z boku pohled shora Odstraňuje se vhodnou volbou indeů lomu, poloměrů a vzdáleností lámavých ploch...vznikne anastigmát Koma Vzniká při zobrazení bodu mimo optickou osu, širokým svazkem paprsků, je to vlastně astigmatismus pro široké svazk Odstraňuje se opět kombinací čoček. Zkreslení obrazu Projevuje se při zobrazování celé rovin, kolmé k ose (důležité v geodezii): Vzniká, kdž se bod různě vzdálené od os zobrazují s různým zvětšením. Odstraňuje se opět kombinací čoček. bez zkreslení poduškovité soudkovité Zklenutí obrazu Projevuje se rovněž při zobrazení kolmé rovin jejím obrazem je zakřivená plocha konec kapitol K. Rusňák, verze 05/05

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných

Více

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení. PaedDr. Jozef Beňuška jbenuska@nextra.sk ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kd se v zrcadle vidíme převrácení PaedDr. Jozef Beňuška jbenuska@nextra.sk Kulová zrcadla - jsou zrcadla, jejichž zrcadlící plochu tvoříčást povrchu koule (kulový

Více

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Zobrazení čočkami Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Spojky schematická značka (ekvivalentní

Více

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami.

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami. Paprsková optika Zobrazení zrcadl a čočkami zobrazování optickými soustavami tvořené zrcadl a čočkami obecné označení: objekt, který zobrazujeme, nazýváme předmět cílem je nalézt jeho obraz vzdálenost

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

9. Geometrická optika

9. Geometrická optika 9. Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = křivka (často přímka), podél níž se šíří světlo, jeho energie

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zrcadla Zobrazení zrcadlem Zrcadla jistě všichni znáte z každodenního života ráno se do něj v koupelně díváte,

Více

Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1.

Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1. nauka o optickém zobrazování pracuje s pojmem světelného paprsku úzký svazek světla, který by vycházel z malého osvětleného otvoru v limitním případě, kdy by se jeho příčný rozměr blížil k nule a stejně

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve líně LABORATORNÍ CVIČENÍ YIKY II Název úloh: Měření ohniskové vzdálenosti čočk Jméno: Petr Luzar Skupina: IT II/ Datum měření:.listopadu 007 Obor: Informační technologie Hodnocení:

Více

Maticová optika. Lenka Přibylová. 24. října 2010

Maticová optika. Lenka Přibylová. 24. října 2010 Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Zobrazení čočkou

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Zobrazení čočkou Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zobrazení čočkou Čočky, stejně jako zrcadla, patří pro mnohé z nás do běžného života. Někdo nosí brýle, jiný

Více

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence : Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,

Více

Bodový zdroj světla A vytvoří svazek rozbíhajících se paprsků, které necháme projít optickou soustavou.

Bodový zdroj světla A vytvoří svazek rozbíhajících se paprsků, které necháme projít optickou soustavou. Optické zobrazení Optické zobrazení je proces, kterým optické soustavy vytvářejí obrazy reálných předmětů. Tyto soustavy mění chod světelných paprsků. Obsahují zrcadla, čočky, odrazné hranoly aj. Princip

Více

Vady optických zobrazovacích prvků

Vady optických zobrazovacích prvků Vady optických zobrazovacích prvků 1. Úvod 2. Základní druhy čoček a základní pojmy 3. Zobrazení pomocí čoček 4. Optické vady čoček 5. Monochromatické vady čoček 6. Odstranění monochromatických vad 7.

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami II Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník projekt GML Brno Docens DUM č. 5 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 05.04.2014 Ročník: 4B Anotace DUMu: Písemný test navazuje na témata probíraná v hodinách

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III

Více

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202 5.2.3 Duté zrcadlo I Předpoklady: 520, 5202 Dva druhy dutých zrcadel: Kulové zrcadlo = odrazivá plocha zrcadla je částí kulové plochy snazší výroba, ale horší zobrazení (pro přesné zobrazení musíme použít

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

Název: Čočková rovnice

Název: Čočková rovnice Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

OPTIKA - NAUKA O SVĚTLE

OPTIKA - NAUKA O SVĚTLE OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790

Více

Optika nauka o světle

Optika nauka o světle Optika nauka o světle 50_Světelný zdroj, šíření světla... 2 51_Stín, fáze Měsíce... 3 52_Zatmění Měsíce, zatmění Slunce... 3 53_Odraz světla... 4 54_Zobrazení předmětu rovinným zrcadlem... 4 55_Zobrazení

Více

Měření ohniskových vzdáleností čoček, optické soustavy

Měření ohniskových vzdáleností čoček, optické soustavy Úloha č. 9 Měření ohniskových vzdáleností čoček, optické soustavy Úkoly měření: 1. Stanovte ohniskovou vzdálenost zadaných tenkých čoček na základě měření předmětové a obrazové vzdálenosti: - zvětšeného

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

Výfučtení: Jednoduché optické soustavy

Výfučtení: Jednoduché optické soustavy Výfučtení: Jednoduché optické soustavy Na následujících stránkách vám představíme pravidla, kterými se řídí světlo při průchodu různými optickými prvky. Část fyziky, která se těmito jevy zabývá, se nazývá

Více

3. OPTICKÉ ZOBRAZENÍ

3. OPTICKÉ ZOBRAZENÍ FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 3. OPTICKÉ ZOBRAZENÍ Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu

Více

2.1.18 Optické přístroje

2.1.18 Optické přístroje 2.1.18 Optické přístroje Předpoklad: 020117 Pomůck: kompletní optické souprav I kdž máme zdravé oči (správné brýle) a skvěle zaostřeno, neuvidíme všechno. Př. 1: Co děláš, kdž si chceš prohlédnout malé,

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

Fyzika 2 - rámcové příklady Geometrická optika

Fyzika 2 - rámcové příklady Geometrická optika Fyzika 2 - rámcové příklady Geometrická optika 1. Stanovte absolutní index lomu prostředí, jestliže rychlost elektromagnetických vln v daném prostředí dosahuje hodnoty 0,65c. Jaký je rozdíl optických drah

Více

Podpora rozvoje praktické výchovy ve fyzice a chemii

Podpora rozvoje praktické výchovy ve fyzice a chemii DUTÁ ZRCADLA ) Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? f = 25 cm = 0,25 m r =? (m) Ohnisko dutého zrcadla leží přesně uprostřed mezi jeho vrcholem a středem křivosti,

Více

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202 5.2.3 Duté zrcadlo I Předpoklady: 5201, 5202 Dva druhy dutých zrcadel: kulové = odrazivá plocha zrcadla je částí kulové plochy snazší výroba, ale horší zobrazení (aby se zobrazovalo přesně, musíme použít

Více

5.2.5 Vypuklé zrcadlo

5.2.5 Vypuklé zrcadlo 5.2.5 ypuklé zrcadlo Předpoklady: 5203, 5204 Duté zrcadlo dopadající paprsky se odrážejí od vnitřní strany části povrchu koule Například svazek paprsků rovnoběžných s osou odrazí zrcadlo do jednoho bodu

Více

3. Optika III. 3.1. Přímočaré šíření světla

3. Optika III. 3.1. Přímočaré šíření světla 3. Optika III Popis soupravy: Souprava Haftoptik s níž je prováděn soubor experimentů Optika III je určena k demonstraci optických jevů pomocí segmentů se silnými magnety. Ty umožňují jejich fixaci na

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

Zákon lomu světla (Snellův zákon) lze matematicky vyjádřit vztahem: , n2. opticky řidšího do prostředí opticky hustšího, láme se ke kolmici.

Zákon lomu světla (Snellův zákon) lze matematicky vyjádřit vztahem: , n2. opticky řidšího do prostředí opticky hustšího, láme se ke kolmici. 26. Optické zobrazování lomem a odrazem, jeho využití v optických přístrojích Světlo je elektromagnetické vlnění, které můžeme vnímat zrakem. Rozsah jeho vlnových délek je 390 nm 760 nm. Prostředí, kterým

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Více

Krafková, Kotlán, Hiessová, Nováková, Nevímová

Krafková, Kotlán, Hiessová, Nováková, Nevímová Krafková, Kotlán, Hiessová, Nováková, Nevímová Optická čočka je optická soustava dvou centrovaných ploch, nejčastěji kulových, popř. jedné kulové a jedné rovinné plochy. Čočka je tvořena z průhledného

Více

5.2.8 Zobrazení spojkou II

5.2.8 Zobrazení spojkou II 5.2.8 Zobrazení spojkou II Předpoklady: 5207 Př. 1: Najdi pomocí význačných paprsků obraz svíčky, jejíž vzdálenost od spojky je menší než její ohnisková vzdálenost. Postupujeme stejně jako v předchozích

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

6. Geometrická optika

6. Geometrická optika 6. Geometrická optika 6.1 Měření rychlosti světla Jak už bylo zmíněno v kapitole o elektromagnetickém vlnění, předpokládali přírodovědci z počátku, že rychlost světla je nekonečná. Tento předpoklad zpochybnil

Více

Historické brýle. 1690: brýle Norimberského stylu se zelenými čočkami. 1780: stříbrné brýle. konec 18. století: mosazné obruby, kruhové čočky

Historické brýle. 1690: brýle Norimberského stylu se zelenými čočkami. 1780: stříbrné brýle. konec 18. století: mosazné obruby, kruhové čočky BRÝLOVÉ ČOČKY Historické brýle 1690: brýle Norimberského stylu se zelenými čočkami 1780: stříbrné brýle středověký čtecí kámen konec 18. století: mosazné obruby, kruhové čočky Bikonvexní a bikonkávní čočky

Více

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová Aplikovaná optika I: příklady k procvičení celku Geometrická optika Jana Jurmanová Geometrická optika Následující úlohy řešte graficky či výpočtem. 1. Předmět vysoký 1cm je umístěn 30cm od spojky, která

Více

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211 5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

ZOBRAZENÍ ČOČKAMI. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Jaroslav Trnka. Úvod 3

ZOBRAZENÍ ČOČKAMI. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Jaroslav Trnka. Úvod 3 ZOBRAZENÍ ČOČKAMI Studijní text pro řešitele FO a ostatní zájemce o fyziku Jaroslav Trnka Obsah Úvod 3 1 Optické zobrazení 4 1.1 Základnípojmy... 4 1.2 Paraxiálníaproximace.... 4 2 Zobrazení jedním kulovým

Více

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla S v ě telné jevy Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla Světelný zdroj - těleso v kterém světlo vzniká a vysílá je do okolí

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

KULOVÁ ZRCADLA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima

KULOVÁ ZRCADLA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima KULOVÁ ZRCADLA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima Zakřivená zrcadla Zrcadla, která nejsou rovinná Platí pro ně zákon odrazu, deformují obraz My se budeme zabývat speciálním typem zakřivených

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

Fyzikální korespondenční seminář UK MFF 22. II. S

Fyzikální korespondenční seminář UK MFF  22. II. S Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku

Více

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy

Více

Středoškolská technika Jednoduchý projektor

Středoškolská technika Jednoduchý projektor Středoškolská technika 2018 Setkání a prezentace prací středoškolských studentů na ČVUT Jednoduchý projektor Klára Brzosková Gymnázium Josefa Božka Frýdecká 689/30, Český Těšín 1 Anotace V mé práci SOČ

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková Mikroskopie I M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz MIKROSVĚT nano Poměry velikostí mikro 9 10 10 8 10 7 10 6 10 5 10 4 10 3 size m 2 9 7 5 3 4 8 1 micela virus světlo 6 písek molekula

Více

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

5.2.9 Zobrazení rozptylkou

5.2.9 Zobrazení rozptylkou 5.2.9 Zobrazení rozptylkou Předpoklady: 5205, 5206, 5207, 5208 Spojka je uprostřed tlustší než na okrajích láme paprsky tak, že rozbíhavý svazek paprsků může změnit na sbíhavý (proto také vytváří skutečné

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Analytická geometrie kvadratických útvarů v rovině

Analytická geometrie kvadratických útvarů v rovině Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme

Více

7.ročník Optika Lom světla

7.ročník Optika Lom světla LOM SVĚTLA. ZOBRAZENÍ ČOČKAMI 1. LOM SVĚTLA NA ROVINNÉM ROZHRANÍ DVOU OPTICKÝCH PROSTŘEDÍ Sluneční světlo se od vodní hladiny částečně odráží a částečně proniká do vody. V čisté vodě jezera vidíme rostliny,

Více

1 Základní pojmy a vztahy

1 Základní pojmy a vztahy 1 Ohniskové vzdálenosti a vady čoček a zvětšení optických přístrojů Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický objektiv, Ramsdenův okulár v držáku

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Geometrická optika 1

Geometrická optika 1 Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = přímka, podél níž se šíří světlo, jeho energie index lomu (základní

Více

Historie světelné mikroskopie. Světelná mikroskopie. Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie

Historie světelné mikroskopie. Světelná mikroskopie. Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie Historie světelné mikroskopie Světelná mikroskopie Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie 1 Historie světelné mikroskopie Světelná mikroskopie Robert Hook

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2]. Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y

Více

Tabulka I Měření tloušťky tenké vrstvy

Tabulka I Měření tloušťky tenké vrstvy Pracovní úkol 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Spojky a rozptylky II

Spojky a rozptylky II 2.1.15 pojky a rozptylky II Předpoklady: 020114 Pomůcky: svíčka, jedna optická sada, Př. 1: Využij význačné paprsky pro konstrukci obrazu svíčky, která je umístěna: a) ve vzdálenosti větší než 2 od čočky,

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

5.2.7 Zobrazení spojkou I

5.2.7 Zobrazení spojkou I 5.2.7 Zobrazení spojkou I Předpoklady: 5203, 5206 Př. : Prostuduj na obrázku znaménkovou konvenci pro čočky a srovnej ji se znaménkovou konvencí pro zrcadla. Jaké jsou rozdíly, čím jsou zřejmě způsobeny?

Více

APLIKOVANÁ OPTIKA A ELEKTRONIKA

APLIKOVANÁ OPTIKA A ELEKTRONIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MILOSLAV ŠVEC A JIŘÍ VONDRÁK APLIKOVANÁ OPTIKA A ELEKTRONIKA MODUL 01 OPTICKÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu 1..1 Průběh funkce III (prohnutí Předpoklad: 111 Pedagogická poznámka: Při poctivém probírání b tato látka zabrala dvě celé vučovací hodin. Studenti z toho nebudou příliš nadšení, je zde příliš mnoho definic

Více

6.2.1 Zobrazení komplexních čísel v Gaussově rovině

6.2.1 Zobrazení komplexních čísel v Gaussově rovině 6.. Zobraení komplexních čísel v Gaussově rovině Předpoklad: 605 Pedagogická ponámka: Stihnout obsah hodin je poměrně náročné. Při dostatku času je lepší dojít poue k příkladu 7 a btek hodin spojit s úvodem

Více

Rozdělení přístroje zobrazovací

Rozdělení přístroje zobrazovací Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více