Porokluz pólů a statická stabilita synchronního generátoru



Podobné dokumenty
Synchronní stroje. Φ f. n 1. I f. tlumicí (rozběhové) vinutí

Synchronní stroj je točivý elektrický stroj na střídavý proud. Otáčky stroje jsou synchronní vůči točivému magnetickému poli.

Osnova kurzu. Elektrické stroje 2. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

Určeno pro posluchače bakalářských studijních programů FS

Elektrárny A1M15ENY. přednáška č. 6. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, Praha 6

Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II. Vítězslav Stýskala, Jan Dudek únor Elektrické stroje

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, synchronní stroje. Pracovní list - příklad vytvořil: Ing.

Ele 1 Synchronní stroje, rozdělení, význam, princip činnosti

princip činnosti synchronních motorů (generátoru), paralelní provoz synchronních generátorů, kompenzace sítě synchronním generátorem,

Elektrické výkonové členy Synchronní stroje

SYNCHRONNÍ STROJE (Synchronous Machines) B1M15PPE

i β i α ERP struktury s asynchronními motory

Základy elektrotechniky

Stejnosměrné generátory dynama. 1. Princip činnosti

Příloha P1 Určení parametrů synchronního generátoru, měření provozních a poruchových stavů synchronního generátoru

Doc. Ing. Stanislav Kocman, Ph.D , Ostrava

ELEKTRICKÉ STROJE Ing. Eva Navrátilová

1. Pracovníci poučení dle 4 Vyhlášky 50/1978 (1bod):

Synchronní stroje 1FC4

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C

ELEKTRICKÉ STROJE - POHONY

SYNCHRONNÍ MOTOR. Konstrukce

Vítězslav Stýskala TÉMA 1. Oddíly 1-3. Sylabus tématu

sběrací kroužky, 8) hřídel. se střídavý elektrický proud odebírá a vede

Mechatronické systémy struktury s asynchronními motory

5. POLOVODIČOVÉ MĚNIČE

1 OBSAH 2 STEJNOSMĚRNÝ MOTOR. 2.1 Princip

Energetická bilance elektrických strojů

ELEKTRICKÉ STROJE ÚVOD

Elektrický výkon v obvodu se střídavým proudem. Účinnost, účinník, činný a jalový proud

Synchronní generátor. SEM Drásov Siemens Electric Machines s.r.o. Drásov 126 CZ Drásov

Elektroenergetika 1. Elektrické části elektrárenských bloků

Skalární řízení asynchronních motorů

musí být odolný vůči krátkodobým zkratům při zkratovém přenosu kovu obloukem,

Základy elektrotechniky

STABILITA SYNCHRONNÍHO HO STROJE PRACUJÍCÍHO

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE

Třífázové synchronní generátory

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, Mělník Ing.František Moravec

SYNCHRONNÍ STROJE. Konstrukce stroje, princip činnosti

1. Regulace otáček asynchronního motoru - skalární řízení

1 ELEKTRICKÉ STROJE - ZÁKLADNÍ POJMY. 1.1 Vytvoření točivého magnetického pole

Pohonné systémy OS. 1.Technické principy 2.Hlavní pohonný systém

Elektroenergetika 1. Elektrické části elektrárenských bloků

MS - polovodičové měniče POLOVODIČOVÉ MĚNIČE

Stejnosměrné stroje Konstrukce

X14POH Elektrické POHony. K13114 Elektrických pohonů a trakce. elektrický pohon. Silnoproudá (výkonová) elektrotechnika. spotřeba el.

1. Synchronní stroj Rozdělení synchronních strojů:

Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru.

Název: Autor: Číslo: Únor Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Část pohony a výkonová elektronika 1.Regulace otáček asynchronních motorů

přednáška č. 5 Elektrárny B1M15ENY Generátory: Konstrukce, typy Základní vztahy Regulace, buzení Ing. Jan Špetlík, Ph.D.

Synchronní stroje. Synchronní stroje. Synchronní stroje. Synchronní stroje Siemenns 1FC4

13. Budící systémy alternátorů

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1 JEDNOFÁZOVÝ INDUKČNÍ MOTOR

MOTORU S CIZÍM BUZENÍM

Spínaný reluktanční motor s magnety ve statoru

Asynchronní stroje. Fakulta elektrotechniky a informatiky VŠB TUO. Ing. Tomáš Mlčák, Ph.D. Katedra elektrotechniky.

Konstrukce stejnosměrného stroje

Příloha 3 Určení parametrů synchronního generátoru [7]

Všechny otázky Elektrotechnika II

1. Spouštění asynchronních motorů

Řízení asynchronních motorů

Zaměření Pohony a výkonová elektronika. verze

Mechatronické systémy se spínanými reluktančními motory

Stejnosměrný generátor DYNAMO

Synchronní stroj-řízení napětí, budící soustava, zdroje buzení, řízení otáček synchronního motoru

Vyvedení jalového výkonu ze synchronního generátoru

Měření a automatizace

10. Měření trojfázových synchronních generátorů

5. Elektrické stroje točivé

Elektrické stroje pro hybridní pohony. Indukční stroje asynchronní motory. Doc.Ing.Pavel Mindl,CSc. ČVUT FEL Praha

Elektrické stroje. stroje Úvod Asynchronní motory

Elektrické stroje. Jejich použití v automobilech. Použité podklady: Doc. Ing. Pavel Rydlo, Ph.D., TU Liberec

Aplikace měničů frekvence u malých větrných elektráren

STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, rozdělení stejnosměrných strojů a jejich vlastnosti

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

Ochrany bloku. Funkce integrovaného systému ochran

20ZEKT: přednáška č. 10. Elektrické zdroje a stroje: výpočetní příklady

Základy elektrotechniky 2 (21ZEL2)

Merkur perfekt Challenge Studijní materiály

Mechatronické systémy s krokovými motory (KM) 1. Rozdělení krokových motorů

1. JEDNOFÁZOVÝ ŘÍZENÝ MŮSTKOVÝ USMĚRŇOVAČ S R A RL ZÁTĚŽÍ

Název: Autor: Číslo: Únor Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Pohony s krokovými motorky

SYNCHRONNÍ GENERÁTOR PRACUJÍCÍ DO SAMOSTATNÉ ZÁTĚŽE

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

Stejnosměrné motory řady M

AS jako asynchronní generátor má Výkonový ýštítek stroje ojedinělé použití, jako typický je použití ve větrných elektrárnách, apod.

2.6. Vedení pro střídavý proud

TRANSFORMÁTORY Ing. Eva Navrátilová

1. Pojistky, jističe a proudové chrániče

STŘÍDAVÉ SERVOMOTORY ŘADY 5NK

Transkript:

1 Porokluz pólů a statická stabilita synchronního generátoru Stabilita chodu synchronního generátoru je dána synchronizačním výkonem, který stroj udržuje v synchronním chodu. Protože synchronizační výkon se mění se zatížením a to tak, že v chodu naprázdno je největší, kdežto na mezi statické stability je nulový, je výhodné podat vysvětlení stability na základě vlastnosti synchronních strojů. U b j.x d.id +Re j.x q.i q U +Im -Im d-osa I I d q I -Re q-osa Obr. 1 Vektorový diagram synchronního stroje s vyniklými póly

2 Vektorový diagram synchronního stroje s vyniklými póly je na obr. 1. Vektory napětí jsou nakresleny za předpokladu konstantní magnetické vodivosti hlavního magnetického toku. Vektory U b a U svírají zátěžný úhel β, úhel ψ je vnitřní úhel mezi statorovým proudem a vnitřním napětím U b synchronního stroje. Pro kreslení a vysvětlení byl použit synchronní stroj s vyniklými póly proto, že jsou značně různé velikosti reaktanci X d (synchronní podélná) a X q (synchronní příčná). Přestože se u strojů s hladkým rotorem udává pouze jedna reaktance (X d ), ve skutečnosti s ohledem na konstrukci stroje se liší podélná a příčná reaktance cca o 15%. Pro naši úvahu vyjdeme ze základní rovnice pro výkon stroje P m.u f.i. cos kterou dle vektorového diagramu upravíme na tvar 1, U X X.Ub 2 d q P m..sin U..sin2 2..Xq Reluktanční výkon synchronního stroje, tj. výkon nenabuzeného stroje když U b = 0 Maximální reluktanční výkon pro β = 45 o 2 Xq P m.u 1 f. 2.. X q Moment synchronního stroje s vyjádřenými póly je m.p X X U.Ub 2 d q M..sin U..sin 2..f 2 2..Xq Synchronizační konstanta synchronního stroje s vyjádřenými póly je podle vzorce P P. pro Δβ = 1 U.U X X k m. b 2 d q.cos U..cos 2 s.xq V tomto případě se zanedbává odpor fáze R a rozptylová reaktance X 1б je součástí reaktancí X d. Tyto poznatky jsou důležité pro vysvětlení statické stroje synchronního stroje. Statická stabilita. 2 Xq P m.u..sin2 2.X.X d q V tomoto odstavci uvedeme případ paralelní práce synchronního alternátoru s tvrdou síti. Činný výkon dodávaný alternátorem do sítě je: U X X.Ub 2 d q P m.u.i.cos m..sin U..sin2 1 f 2..Xq

3 Maximální činný výkon, který může stroj dodávat do sítě je: U.Ub Pmax m. pro sinβ = 1, tedy β = 90 o a pro X d = X q (zjednodušení pro hladký rotor). Prokluz pólů nastane tehdy, jestliže začneme neúměrně zvyšovat zátěžný úhel β tím, že zvyšujeme dodávaný výkon generátoru z turbíny nebo tím, že při konstantním výkonu budeme generátor odbuzovat. Z praktického hlediska pro první případ je možné uvažovat tyto podmínky: synchronní generátor byl právě přifázován, dle charakteristiky naprázdno U b = U, maximální výkon, který může dodávat do sítě je dán rovnici +Re 2 U P max m. v případě, že X U d uvažujeme X d = X q. V případě nerovnosti těchto reaktancí je ale úhel β větší o reluktanční j.x q.i výkonovou část. Na obr. 3 je vektorový diagram pro mez j.x q.i q stability s tím, že X d : X q = 1,5 a U b = U. Pro maximální U = U výkon je β = 70 o. Při jakémkoliv dalším zvýšení výkonu b j.x d.i o max = 70 turbíny dojde k prokluzu pólů a +Im m.i b0 stroj se dostává do asynchronního (nadsynchronního) chodu. q j.x d.id I I d Vektor proudu I se pohybuje po kružnici o poloměru m.i bo. I Maximální výkon je v tomto přebuzený podbuzený případě dán rovnici -Re 2 d-osa m.u P max.1,1004 Obr.2 Mez stability synchronního stroje -Im q-osa Při jakémkoliv dalším zvýšení výkonu turbíny přejde stroj do labilního chodu a dochází k prokluzu póĺů (synchronizační výkon je nulový). Z praktického hlediska nemá maximální výkon skoro žádný význam. Zpravidla je doprovázen značným nárustem statorového proudu a protože ochrany synchronního generátoru vyhodnocují jeho stav z napětí a proudu, dojde k jeho odpojení od sítě z důvodu překročení nastavené maximální hodnoty proudu, přičemž je signalizován stav podbuzení (I. sinφ odpovídá jalovénu výkonu Q, přičemž platí dle V křivek, je li synchronní stroj buzen proudem I bo, je vždy ve stavu podbuzeném). zatížený synchronní generátor je odbuzován, U b < U (I b Є{I bo ; 0}).V tomto případě dle obr. 2 synchronizační výkon klesá a v případě I b = 0 dosáhne stroj meze stability podstatně rychleji (dle V - křivek). Vektor statorového proudu má tvar: U 1 I j.. 2 Xq U j.. d 2 1 X 1 X 1 j.2.e q X d Ub j.

4 Synchronní stroj bez buzení má U b = 0. Proud statoru je dán prvním a druhým členem předchozího výrazu. Prvý člen je proud, časově posunutý o 2 za fázovým napětím U a jeho poloha se se změnou zatížení nemění. Druhý člen je rovněž proud, který v chodu naprázdno (pro β = 0) časově předbíhá fázové napětí U o. Se zatížením se poloha tohoto druhého 2 proudu mění a to s dvojnásobnou hodnotou zátěžného úhlu, avšak ve smyslu opačném. U Nejmenší hodnota statorového proudu je na ose jim a má hodnotu I min j.. U Největší hodnota statorového proudu je na ose jim a má hodnotu I j. max. Xq U Střed kružnice statorového proudu je na ose jim a má hodnotu 1 1 j... 2 Xq Synchronní stroj s nabuzeným rotorem má U b > 0. Je tedy nutno ještě přičíst dodnotu proudu Ub j.. Pro různé zátěžné úhly a různé buzení je zobrazením statorových proudů soustava Pascalových spirál. Na obr. 3 je záznam asynchronního chodu generátoru (prokluz pólů) Obr. 3 prokluz pólu 22. Budicí systémy synchronních strojů Budicí systém je zařízení dodávající budicí proud stroje, zahrnující všechny regulační a řídicí prvky, včetně zařízení pro odbuzení nebo potlačení buzení, včetně ochran. Budicí vinutí bývá zpravidla umístěno na rotoru, musí být napájeno stejnosměrným proudem z řízeného zdroje tohoto proudu. Budicí soustavy mohou být nezávislé a závislé. O nezávislé budicí soustavě hovoříme tehdy, jestliže zdroj budící energii není bezprostředně

5 závislý na stavu sítě, ke které je připojen buzený synchronní stroj. Zdrojem je zde stejnosměrné dynamo - budič, umístěný obvykle na hřídeli buzeného stroje. Závislá je budicí soustava tehdy, jestliže zdroj budicí energie je střídavá síť, ke které je buzený synchronní stroj připojen, případně i jiná síť a buzení je tedy závislé na stavu těchto sítí - za pochopitelného předpokladu usměrnění přiváděného proudu. Podstatné je rozdělení na klasické a současné budicí systémy. Rychlá budicí soustava je taková jejíž odezva napětí T o 0,1 s. Klasická má 1,5 sec. Budicí soustava synchronního stroje je tedy nejenom zdrojem budicího proudu v synchronním chodu, ale plní ještě další funkce, které jsou nutné pro správnou činnost stroje.budicísoustavy se liší * typem zdroje budicího proudu * způsobem přenosu budicího výkonu od zdroje k budicímu vinutí * způsobem řízení velikosti budicího proudu 22.1 Kategorie budičů Točivý budič je točivý stroj, který odebírá mechanickou energii z hřídele. Tento hřídel může být poháněn synchronním strojem nebo jiným strojem. Stejnosměrný budič je točivý budič používající pro dodávání stejnosměrného proudu komutátor a kartáče. Střídavý budič je točivý budič používající pro dodávání stejnosměrného proudu usměrňovače. Usměrňovače mohou být řízené nebo neřízené. Střídavý budič se statickými usměrňovači je střídavý budič s usměrňovači, jejichž výstup je připojen na kartáče sběracích kroužků budicího vinutí synchronního stroje. Střídavý budič s rotačními usměrňovači (bezkartáčový budič) je střídavý budič, které se otáčejí se společnou hřídelí budiče a synchronního stroje, jejichž výstup je připojen bez sběracích kroužků nebo kartáčů přímo na budicí vinutí synchronního stroje(bezkartáčové buzení). Statický budič je budič, který odebírá energii z jednoho nebo více statických zdrojů, používající pro dodávání stejnosměrného proudu statické usměrňovače(stroj je vybaven kroužky a sběrným ústrojím). 22.2. Klasické systémy Do nedávné doby se pro buzení synchronních strojů používaly pouze stejnosměrné točivé budiče umístěné buď na hřídeli synchronního stroje, anebo byly součástí budicího soustrojí,střídavý motor - budič. Schéma zapojení budiče spojeného s hřídelí synchronního stroje je na obr.5-1. Výhodou tohoto způsobu je přívod mechanické energie přímo z rotoru buzeného stroje. Tím je nezávislý na střídavé síti. Budič musí zajistit velký regulační rozsah budicího proudu synchronního stroje. Regulace musí být zajištěna až do 125% jmenovitého napětí plně zatíženého stroje. Dle ČSN 35 0200 musí budicí zdroj zajistit - maximální napětí 1,5 U bn *trvale dodávat 1,1 U bn.

6 Roztočením generátoru turbínou se budič i generátor postupně samy nabudí. U pomaluběžných strojů vychází budič robustní a jeho výroba je neekonomická. Takovýto budič má také velké časové konstanty a tudíž pomalou odezvu, což je poměr velikosti budicího napětí za dobu 0,5 s k budicímu napětí synchronního stroje při jeho jmenovitém zatížení. Z uvedených důvodů je výhodnější rychloběžný budič poháněný asynchronním motorem. Asynchronní motor může být připojen ke stejné třífázové síti, do níž pracuje synchronní generátor. Příklad je na obr.5-2. 22.3 Současné budicí systémy Jestliže vlastní synchronní stroj doznal v průběhu let poměrně málo zásadních změn, prošly budicí soustavy rozsáhlým vývojem. K příčinám patří: * rozvoj silové elektroniky a její aplikace v budicích soustavách * rozvoj regulační techniky * zvětšování výkonů energetických sítí a tím zvýší výkonu jednotek v těchto případech již budicí příkon synchronního stroje (i přes 500 kw při 3000 ot/min) přesahuje mezní výkony stejnosměrných budičů. Výkony budičů v závislosti na výkonu turboalternátorů znázorňuje obr.5-3. * stroje s komutátorem se snažíme nepoužívat. Vývoj nových budicích systémů se ubírá několika směry: * budicí soustavy se statickými usměrňovači * budicí soustavy s rotujícími usměrňovači

7 * buzení permanentními magnety. V prvních dvou případech pak může jít buď o neřízený diodový nebo řízený tyristorový usměrňovač. Na obr. 5-4 je schéma buzení synchronního alternátoru SA s diodovým usměrňovačem U, s hlavním budičem HB, což je synchronní generátor a dále pomocným malým synchronním generátorem, jako pomocným budičem PB, který má buzení permanentními magnety na rotoru. U těchto soustav je možno také použít automatickou regulaci napětí či účiníku. V našem obrázku je naznačen regulátor R. Do tohoto regulátoru vstupují informace o napětí generátoru z měniče NT a proudu generátoru PT. Tyto skutečné hodnoty se pak srovnávají s hodnotami žádanými - U a cos a regulační odchylka pak způsobí přibuzení či odbuzení hlavního budiče HB. Budicí systémy odebírající energii ze střídavé sítě je možno podstatně zdokonalit použitím řízených tyristorových usměrňovačů. Schematicky je to znázorněno na obr. 5-5. Budicí proud je řízen tyristorovým měničem napájeným z transformátoru. Na obr... je znázorněn budicí systém generátoru s pomocným (PG) a hlavním budičem (BG). Statorové vinutí je připojeno k diodovému usměrňovači, z něhož je napájeno budicí vinutí přes kroužky. Oba budiče i diodový usměrňovač jsou na společné hřídeli s generátorem. Konstrukce rotoru je náročná na mechanické provedení s ohledem na vysoké namáhání odstředivými silami. U výše popsaných systémů se budicí proud převádí do budicího vinutí přes kartáče a kroužky. Aby se odstranil tento kluzný kontakt, použijí se budicí soustavy, které mají usměrňovač umístěný přímo na rotoru. Na obr.5-6 střídavý synchronní stroj 1 pohání střídavý budič 2, který je v tomto případě rotační transformátor. Střídavý budicí proud je usměrňován v neřízeném usměrňovači 3, který je umístěn na hřídeli střídavého budiče. Změna budicího proudu synchronního stroje se děje řízením tyristorového měniče 4.

8 Snaha po zlepšení energetické účinnosti, zvláště u velkých generátorů nutí výrobce těchto strojů k dalšímu vývoji nových budicích systémů. Z tohoto pohledu je největší naděje vkládána do použití vysokoteplotních supravodičů pro budicí vinutí synchronních generátorů. Takový generátor by měl o 0,5-1,5 % vyšší účinnost, menší rozměry při stejném výkonu, až pětkrát menší reaktanci, atd. Koncepce nového budicího vinutí předpokládá, že toto vinutí z vysokoteplotního supravodivého materiálu (vysokoteplotní znamená, že nové supravodivé materiály jsou supravodivými při teplotách vyšších než 77K) bude schopno vytvořit mg. pole asi 2 T. Proudová hustota supravodivého drátu by měla dosahovat hodnot 10 5 A.cm -1. Synchronní motory pro regulační pohony do výkonu 50-100 kw se s výhodou navrhují se stálým buzením permanentními magnety zabudovanými v rotoru. Rotor prakticky nemá v ustáleném stavu ztráty, nevyžaduje chlazení, atd.