1. Regulace otáček asynchronního motoru - skalární řízení

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Regulace otáček asynchronního motoru - skalární řízení"

Transkript

1 1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán rovnicemi v ustáleném stavu (jsou zjednodušené) b) magnetický tok statoru Ψ s je konstantní Existují dva způsoby skalárního řízení: frekvenčně napěťové a frekvenčně proudové. Oba způsoby jsou podobné a vycházejí ze stejných výše uvedených předpokladů. 1.1 Frekvenční a napěťové řízení Při tomto způsobu řízení se vychází z odvozené závislosti statorového napětí na synchronní rychlosti u s = f(ω 1 ) při konstantním magnetickém toku statoru Ψ s viz kapitola o asynchronních motorech. U U s sn f = f ω 1 1. K f =. K f = ν. 1n ω1n K f Tam bylo rovněž ukázáno, že korekční faktor K f prudce roste u velmi malých frekvencí, pro vyšší frekvence je prakticky roven jedné (viz obr. 1.). Obr. 1. Závislost korekčního faktoru K f = f (ν) při frekvenčním řízení Nelineární závislost u s = f(ω 1 ) je díky vlivu korekčního faktoru kromě počáteční části téměř přímková. Při ω 1 =0 je hodnota u s nenulová v důsledku úbytku napětí na statorovém odporu. Struktura skalárního frekvenčně napěťového řízení je na obr.. Veličiny s hvězdičkou vyjadřují žádané hodnoty. Regulátor rychlosti R Ω určuje žádanou hodnotu skluzové frekvence ω a omezení její hodnoty zabrání nadměrnému skluzu a tím i proudu motoru. Součet této skluzové rychlosti a skutečné rychlosti otáčení snímané čidlem otáček ČΩ pak dává žádanou synchronní rychlost motoru (rychlost pole). Následuje zmíněný nelineární blok, z něhož vystupuje žádaná hodnota statorového napětí u s, která vstupuje do regulační smyčky statorového napětí s regulátorem napětí R u. Výstup z tohoto regulátoru žádaná hodnota statorového proudu je zde omezen na dovolenou hodnotu. Podřazený regulátor proudu R i chrání měnič a motor před přetížením. 1

2 3~ u s R u i s R i ~ ~ i s u s Ω Ω R Ω ω ω 1 ČΩ M 3 Obr.. Struktura regulace rychlosti AM se skalárním frekvenčně napěťovým řízením 1.. Frekvenční a proudové řízení Proudové střídače nemají ve stejnosměrném meziobvodu vyjádřené napětí nýbrž proud. V tomto případě k dosažení konstantního magnetického toku je nutno vyjít ze vztahu mezi statorovým proudem a magnetickým tokem Φ, který odvodíme pro ν=f 1 /f 1n = 1 ze vztahu pro statorový proud, v kterém můžeme při malých skluzových frekvencích ω = s ω 1 zanedbat X σ, takže I 1 X = µ I µ 1 j R / s Dosazením za magnetizační proud I µ = Φ/L µ, kde L µ je magnetizační indukčnost, dostaneme pro absolutní hodnotu proudu I 1 = Φ L µ ω1 s L 1 R µ = Φ 1 L µ ω R Tento vztah je nezávislý na statorové frekvenci f a proměnnou veličinou je zde skluzová frekvence ω. Pro konstantní magnetický tok lze pak odvodit z tohoto vztahu závislost I 1 = f(ω ) viz obr. 3. Obr. 3. Závislost statorového proudu na skluzové frekvenci

3 Při tomto způsobu řízení se vychází z odvozené závislosti statorového proudu na skluzové rychlosti I 1 = f(ω ) při konstantním magnetickém toku statoru Φ. Podstatná část této nelineární závislosti je opět téměř přímková. Struktura skalárního frekvenčně proudového řízení je na obr. 4. Regulátor rychlosti R Ω určuje žádanou hodnotu skluzové frekvenceω a omezení její hodnoty zabrání nadměrnému skluzu a tím i proudu motoru. Součet této skluzové rychlosti a skutečné rychlosti otáčení snímané čidlem otáček ČΩ pak dává žádanou synchronní rychlost motoru (rychlost pole), která vstupuje do měniče kmitočtu. Žádaná hodnota statorového proudu se pak určuje ve zmíněném nelineárním bloku I 1 = f(ω ). Výstup z tohoto bloku žádaná hodnota statorového proudu je zde omezena na dovolenou hodnotu. Podřazený regulátor proudu R i chrání měnič a motor před přetížením. 3~ I 1 R i ~ ~ I 1 Ω Ω R Ω ω ω 1 ČΩ M 3 Obr. 4. Struktura regulace rychlosti asynchronního motoru se skalárním frekvenčně proudovým řízením. Regulace otáček asynchronního motoru vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází z úplných (nezjednodušených) rovnic asynchronního motoru, které jsou poměrně složité. Za účelem zjednodušení modelu motoru aplikujeme metodu lineární, Parkovy transformace T 3/ trojfázové soustavy na ekvivalentní dvojfázovou pomocí tzv. prostorových vektorů. Tímto navíc odstraníme závislost koeficientů na úhlu natočení rotoru θ. Prostorový vektor lze vyjádřit i pomocí absolutní hodnoty a úhlu viz obr. 5. (polární souřadnice), pak hovoříme o transformaci /P, resp. zpětné P/: 3

4 β i i β ϑ i α α Obr. 5. Znázornění prostorového vektoru proudu v souřadné soustavě statoru α, β Prostorové vektory lze obecně vyjádřit i v jiné komplexní rovině, která rotuje zvolenou úhlovou rychlostí ω k vůči statoru. Na základě volby ω k pak hovoříme o různých souřadných soustavách viz následující obr. 6. Pro vektorové řízení je vhodná volba taková, kdy v reálné ose rotující souřadné soustavy bude ležet prostorový vektor rotorového spřaženého magnetického toku ψ. Tuto souřadnou soustavu rotující tedy rychlostí prostor. vektoru spřaženého magnetického toku ω s si označme (x,y). y q β i s i sβ ω s x ψ i sy i sx ω d θ s i sα θ α Obr. 6. Zobrazení prostorového vektoru proudu v souřadných soustavách Princip vektorového řízení vychází z analogie se stejnosměrným motorem, u kterého je moment tvořen součinem magnetického toku buzení a proudu kotvy. Princip vektorového řízení lze nejnázorněji vysvětlit na rovnici pro moment asynchronního motoru. Ten je dán vztahem (který je zajímavý tím, že platí v libovolné souřadné soustavě) M = K(ψ α i sβ ψ β i sα ) = K(ψ x i sy ψ y i sx ) Kde K je konstanta Pokud tedy budeme pohon řídit v souladu s obr. 6., pak ψ y = 0 a moment M = Kψ xi sy Tj. dostaneme obdobný vztah jako pro stejnosměrný motor s cizím buzením, což je záměr. Dalším důležitým vztahem je ten, který nám říká, že ψ x (což je vlastně celkový tok, protože y nová složka toku je nulová) je buzen xvou složkou statorového proudu i sx. 4

5 Při vektorovém řízení se tedy řídí (momentotvorný) proud statoru i sy a magnetický tok rotoru (prostřednictvím budicí složky statorového proudu i sx ). Magnetický tok (jeho velikost a zejména poloha, tj. úhel θ s ) je většinou vyhodnocován a to buď z napětí a proudu nebo z proudu a otáček. Z odvozených rovnic pak plyne algoritmus řízení, který je (pouze pro ukázku bez dalšího vysvětlení) zachycen ve struktuře regulace na obr. 7. Magnetický tok je zde reprezentován magnetizačním proudem i m.vynikající dynamické vlastnosti jsou zřejmé z časových průběhů veličin uvedených na obr. 8. až 11. V současné době se stává toto moderní, vektorové řízení téměř běžným standardem a to nejen u asynchronního, ale i u synchronního motoru. Další vývoj spěje k realizaci bez snímače otáček resp. polohy, čímž se pohon stává spolehlivější a levnější, samozřejmě na úkor větších nároků na řídicí systém, který danou veličinu musí vypočítat z modelu stroje. Pro dokreslení situace je dále uvedena analogie mezi veličinami stejnosměrného motoru s cizím buzením a asynchronního motoru: stejnosměrný motor s cizím buzením asynchronní motor Poznámka I a i sy momentotv. proud cφ = L b i b = L b ( u b / R b )/(1 pτ b ) ψ x = L m i sx /(1 pτ r ) budicí magn. tok M= cφ I a M=Kψ x i sy moment stroje τ b = L b /R b τ r = L r /R r velká čas. konstanta u b i sx budicí veličina 5

6 u s R u i m R im i sx R isx u s i m i sx VA Ω m u sx u sy R Ω i sy ω im u xe u i sα sx u sx i m i sy Ω m i sy BZV R isy u ye u sβ u sy BVN1 sin γ cos γ T/3 PWM 6 TMK 3~ sin γ i m cos γ BVOV i sx i sy sin θ BVN cos θ i sα i sβ T 3/ i sa i sb sin θ cos θ sin γ TAB sin, cos cos γ θ Ω m BVPR IČ M 3 Obr. 7. Struktura regulace rychlosti asynchronního motoru s vektorovým řízením BVN 1, blok vektorového natočení BVOV blok výpočtu orientujících veličin (velikost a poloha magnetického toku) BVPR blok výpočtu polohy a rychlosti BZV blok zrušení vazby IČ inkrementální čidlo PWM pulzně šířková modulace R im R isx./ R isy R u R Ω VA regulátor magnetického toku regulátor momentotvorné / budicí složky statorového proudu regulátor napětí regulátor otáček vektorový analyzátor T /3 blok transformace souřadnic z na 3 T 3/ blok transformace souřadnic ze 3 na TMK tranzistorový měnič kmitočtu 6

7 Obr. 8. Žádané otáčky n m [ot/min] Obr. 9. Skutečné otáčky n m [ot/min] Obr. 10. Moment motoru M e [Nm] Obr. 11. Průběh fázového proudu i a [A] 3. Regulace otáček asynchronního motoru přímé řízení momentu Kromě výše uvedeného vektorového řízení se používá v současné době i další perspektivní způsob řízení střídavých pohonů, a tím je tzv. přímé řízení momentu (DTC Direct Torque Control). DTC bylo navrženo v 80tých létech 0. století, ale průmyslová výroba začala asi o 10 let později. Princip metody spočívá na řízení polohy vektoru magnetického toku statoru tak, aby se dosáhli žádané hodnoty toku a momentu. Jejich určení vyžaduje měření (resp. vyhodnocení) statorového napětí, měření statorového proudu a přesný model. Hlavní výhoda této metody je velmi krátká časová odezva v řádu ms. 7

8 Obr. 1. Principielní schéma měniče kmitočtu s napěťovým meziobvodem 0 připojení na záporné napětí 1 připojení na kladné napětí Tab. 1. Fázová napětí při dané spínací kombinaci Absolutní hodnoty prostorových vektorů statorových napětí u 0 = u 7 = 0 u 1 až u 6 = /3 U d Pro úsek 1 platí : u sα = u sa = /3 U d u sβ = / 3 (u sa / u sb ) =/ 3 (1/3 U d 1/3 U d ) = 0 u 1 = u u = /3 U d Napěťové rovnice a z nich určené složky magnetického toku sα sβ u sα = R s i sα dψ sα /dt ( R i ) dt Ψ = sα u sα s sα u sβ = R s i sβ dψ sβ /dt Ψ ( R i )dt = sβ u sβ s sβ 8

9 Obr. 13. Trajektorie statorového toku dle různých metod Absolutní hodnota prostorového vektoru magnetického toku Ψ s = Ψ sα Ψ sβ Elektromagnetický moment stroje M e 3 = p ( Ψ α i Ψ s sβ sβ i sα ) Tok klesá M>0 U 3 Tok roste M>0 U ω U 4 U 1 ψ Tok klesá M<0 U 5 U 6 Tok roste M<0 Obr. 14. Změny polohy vektoru toku statoru 9

10 Poznámka 1: Při nulovém vektoru se tok zastaví (je konstantní) a moment je záporný Poznámka : Vysvětlení znaménka momentu: moment je záporný tehdy, když skluzová rychlost ω = (ω s ω) bude záporná, tj. tehdy, zastavíli se pohyb vektoru magnetického toku, resp. změníli se jeho směr na opačný. Obr. 15. Blokové schéma přímého řízení momentu 10

Mechatronické systémy struktury s asynchronními motory

Mechatronické systémy struktury s asynchronními motory 1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán

Více

i β i α ERP struktury s asynchronními motory

i β i α ERP struktury s asynchronními motory 1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází

Více

Skalární řízení asynchronních motorů

Skalární řízení asynchronních motorů Vlastnosti pohonů s rekvenčním řízením asynchronních motorů Frekvenčním řízením střídavých motorů lze v současné době docílit téměř vlastností stejnosměrných regulačních pohonů a lze očekávat ještě další

Více

Řízení asynchronních motorů

Řízení asynchronních motorů Řízení asynchronních motorů Ing. Jiří Kubín, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická

Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická Digital Control of Electric Drives Vektorové řízení asynchronních motorů České vysoké učení technické Fakulta elektrotechnická B1M14DEP O. Zoubek 1 MOTIVACE Nevýhody skalárního řízení U/f: Velmi nízká

Více

Mechatronické systémy se spínanými reluktančními motory

Mechatronické systémy se spínanými reluktančními motory Mechatronické systémy se spínanými reluktančními motory 1. SRM Mechatronické systémy se spínaným reluktančním motorem (Switched Reluctance Motor = SRM) mají několik předností ve srovnání s jinými typy

Více

1. Regulace proudu kotvy DC motoru

1. Regulace proudu kotvy DC motoru 1. Regulace proudu kotvy DC motoru Regulace proudu kotvy u stejnosměrných pohonů se užívá ze dvou zásadních důvodů: 1) zajištění časově optimálního průběhu přechodných dějů v regulaci otáček 2) možnost

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

Elektrické stroje. Jejich použití v automobilech. Použité podklady: Doc. Ing. Pavel Rydlo, Ph.D., TU Liberec

Elektrické stroje. Jejich použití v automobilech. Použité podklady: Doc. Ing. Pavel Rydlo, Ph.D., TU Liberec Elektrické stroje Jejich použití v automobilech Použité podklady: Doc. Ing. Pavel Rydlo, Ph.D., TU Liberec Stejnosměrné motory (konstrukční uspořádání motoru s cizím buzením) Pozor! Počet pólů nemá vliv

Více

Elektrické stroje pro hybridní pohony. Indukční stroje asynchronní motory. Doc.Ing.Pavel Mindl,CSc. ČVUT FEL Praha

Elektrické stroje pro hybridní pohony. Indukční stroje asynchronní motory. Doc.Ing.Pavel Mindl,CSc. ČVUT FEL Praha Indukční stroje asynchronní motory Doc.Ing.Pavel Mindl,CSc. ČVUT FEL Praha 1 Indukční stroj je nejpoužívanější a nejrozšířenější elektrický točivý stroj a jeho význam neustále roste. Rozdělení podle toku

Více

MODERNÍ STRUKTURY ŘÍZENÍ SERVOSYSTÉMŮ SE STŘÍDAVÝMI POHONY

MODERNÍ STRUKTURY ŘÍZENÍ SERVOSYSTÉMŮ SE STŘÍDAVÝMI POHONY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Synchronní stroje. Φ f. n 1. I f. tlumicí (rozběhové) vinutí

Synchronní stroje. Φ f. n 1. I f. tlumicí (rozběhové) vinutí Synchronní stroje Synchronní stroje n 1 Φ f n 1 Φ f I f I f I f tlumicí (rozběhové) vinutí Stator: jako u asynchronního stroje ( 3 fáz vinutí, vytvářející kruhové pole ) n 1 = 60.f 1 / p Rotor: I f ss.

Více

Přímá regulace momentu

Přímá regulace momentu Přímá regulace momentu Metoda přímé regulace momentu podle Depenbrocka - poprvé publikována M. Depenbrockem z TU Bochum v roce 1985 - v aplikacích využívá firma ABB (lokomotivy, pohony všeobecného užití)

Více

5. POLOVODIČOVÉ MĚNIČE

5. POLOVODIČOVÉ MĚNIČE 5. POLOVODIČOVÉ MĚNIČE Měniče mění parametry elektrické energie (vstupní na výstupní). Myslí se tím zejména napětí (střední hodnota) a u střídavých i kmitočet. Obr. 5.1. Základní dělení měničů 1 Obr. 5.2.

Více

Střídavé měniče. Přednášky výkonová elektronika

Střídavé měniče. Přednášky výkonová elektronika Přednášky výkonová elektronika Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Vstupní a výstupní proud střídavý Rozdělení střídavých měničů f vst

Více

MS - polovodičové měniče POLOVODIČOVÉ MĚNIČE

MS - polovodičové měniče POLOVODIČOVÉ MĚNIČE POLOVODIČOVÉ MĚNIČE Měniče mění parametry elektrické energie (vstupní na výstupní). Myslí se tím zejména napětí (u stejnosměrných střední hodnota) a u střídavých efektivní hodnota napětí a kmitočet. Obr.

Více

PRAKTICKÁ REALIZACE A VÝSLEDKY

PRAKTICKÁ REALIZACE A VÝSLEDKY 8 PRAKTICKÁ REALIZACE A VÝSLEDKY Celý pohon byl realizován v laboratoři H26 Katedry elektrických pohonů a trakce v Praze Dejvicích. Laboratoř umožňuje snadnou instalaci elektrických motorů na testovací

Více

Vítězslav Stýskala TÉMA 1. Oddíly 1-3. Sylabus tématu

Vítězslav Stýskala TÉMA 1. Oddíly 1-3. Sylabus tématu Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala TÉMA 1 Oddíly 1-3 Sylabus tématu 1. Zařazení a rozdělení DC strojů dle ČSN EN 2. Základní zákony, idukovaná ems, podmínky, vztahy

Více

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C 26. března 2015 1 Elektro-motor AC DC Asynchronní Synchronní Ostatní DC motory AC brushed Univerzální Vícefázové Jednofázové Sinusové Krokové Brushless Reluktanční Klecový stroj Trvale připojeny C Pomocná

Více

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C 5. října 2015 1 Elektro-motor AC DC Asynchronní Synchronní Ostatní DC motory AC brushed Univerzální Vícefázové Jednofázové Sinusové Krokové Brushless Reluktanční Klecový stroj Trvale připojeny C Pomocná

Více

Elektromechanické akční členy (2-0-2)

Elektromechanické akční členy (2-0-2) Přednášky: Elektromechanické akční členy (2-0-2) 1. Řízený pohyb v mechanických soustavách Všeobecně, motiv, princip. Zdroje zobecněných sil v mechanických soustavách. Přehled, typové a výkonové rozdělení

Více

Srovnání kvality snímání analogových veličin řídících desek se signálovým procesorem Motorola DSP56F805. Úvod. Testované desky

Srovnání kvality snímání analogových veličin řídících desek se signálovým procesorem Motorola DSP56F805. Úvod. Testované desky Srovnání kvality snímání analogových veličin řídících desek se signálovým procesorem Motorola DSP56F805 Anotace: Tento dokument vznikl pro interní účely Výzkumného centra spalovacích motorů a automobilů

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY DIPLOMOVÁ PRÁCE

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY DIPLOMOVÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY DIPLOMOVÁ PRÁCE Přímé řízení momentu synchronního motoru s permanentními magnety simulační studie

Více

Rozběh a reverzace asynchronního motoru řízeného metodou U/f

Rozběh a reverzace asynchronního motoru řízeného metodou U/f Rozběh a reverzace asynchronního motoru řízeného metodou U/f Anotace: Tento dokument vznikl pro interní účely Výzkumného centra spalovacích motorů a automobilů Josefa Božka. Měl by sloužit jako podkladový

Více

Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II. Vítězslav Stýskala, Jan Dudek únor Elektrické stroje

Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II. Vítězslav Stýskala, Jan Dudek únor Elektrické stroje Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II Vítězslav Stýskala, Jan Dudek únor 2007 Elektrické stroje jsou zařízení, která

Více

Část pohony a výkonová elektronika 1.Regulace otáček asynchronních motorů

Část pohony a výkonová elektronika 1.Regulace otáček asynchronních motorů 1. Regulace otáček asynchronních motorů 2. Regulace otáček stejnosměrných cize buzených motorů 3. Regulace otáček krokových motorů 4. Jednopulzní usměrňovač 5. Jednofázový můstek 6. Trojpulzní usměrňovač

Více

E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt

E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt SIMULAČNÍ MODEL ASYNCHRONNÍHO STROJE E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Asynchronní motor je pro svou jednoduchost a nízkou cenu nejčastěji používaný typ elektromotoru,

Více

Pohonné systémy OS. 1.Technické principy 2.Hlavní pohonný systém

Pohonné systémy OS. 1.Technické principy 2.Hlavní pohonný systém Pohonné systémy OS 1.Technické principy 2.Hlavní pohonný systém 1 Pohonný systém OS Hlavní pohonný systém Vedlejší pohonný systém Zabezpečuje hlavní řezný pohyb Rotační Přímočarý Zabezpečuje vedlejší řezný

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky Přednáška Asynchronní motory 1 Elektrické stroje Elektrické stroje jsou vždy měniče energie jejichž rozdělení a provedení je závislé na: druhu použitého proudu a výstupní formě

Více

ELEKTRICKÉ STROJE ÚVOD

ELEKTRICKÉ STROJE ÚVOD ELEKTRICKÉ STROJE ÚVOD URČENO PRO STUDENTY BAKALÁŘSKÝCH STUDIJNÍCH PROGRAMŮ NA FBI OBSAH: 1. Úvod teoretický rozbor dějů 2. Elektrické stroje točivé (EST) 3. Provedení a označování elektrických strojů

Více

VYSOKORYCHLOSTNÍ SYNCHRONNÍ STROJE S PERMANENTNÍMI MAGNETY REGULACE MOMENTU High-speed Permanent Magnet Synchronous Motors Torque Control

VYSOKORYCHLOSTNÍ SYNCHRONNÍ STROJE S PERMANENTNÍMI MAGNETY REGULACE MOMENTU High-speed Permanent Magnet Synchronous Motors Torque Control VYSOKORYCHLOSTNÍ SYNCHRONNÍ STROJE S PERMANENTNÍMI MAGNETY REGULACE MOMENTU High-speed Permanent Magnet Synchronous Motors Torque Control Martin Novák, Marek Čambál, Jaroslav Novák Abstrakt: Příspěvek

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_H.3.19 Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník

Více

1 JEDNOFÁZOVÝ INDUKČNÍ MOTOR

1 JEDNOFÁZOVÝ INDUKČNÍ MOTOR 1 JEDNOFÁZOVÝ INDUKČNÍ MOTOR V této kapitole se dozvíte: jak pracují jednofázové indukční motory a jakým způsobem se u různých typů vytváří točivé elektromagnetické pole, jak se vypočítají otáčky jednofázových

Více

VEKTOROVÉ ŘÍZENÍ VYSOKOOTÁČKOVÉHO SYNCHRONNÍHO STROJE Vector Control of High-Speed Synchronous Motor

VEKTOROVÉ ŘÍZENÍ VYSOKOOTÁČKOVÉHO SYNCHRONNÍHO STROJE Vector Control of High-Speed Synchronous Motor odborný seminář Jindřichův Hradec, 8. až 9. května 9 VEKTOROVÉ ŘÍZENÍ VYSOKOOTÁČKOVÉHO SYNCHRONNÍHO STROJE Vector Control of High-Speed Synchronous Motor Martin Novák Abstrakt: Paper deals with torque

Více

1. Obecná struktura pohonu s napěťovým střídačem

1. Obecná struktura pohonu s napěťovým střídačem 1. Obecná struktura pohonu s napěťovým střídačem Topologicky můžeme pohonný systém s asynchronním motorem, který je napájen z napěťového střídače, rozdělit podle funkce a účelu do následujících částí:

Více

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer Laboratorní úloha č. Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon Max Šauer 14. prosince 003 Obsah 1 Popis úlohy Úkol měření 3 Postup měření 4 Teoretický rozbor

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Základy elektrotechniky 2 (21ZEL2)

Základy elektrotechniky 2 (21ZEL2) Základy elektrotechniky 2 (21ZEL2) Přednáška 7-8 Jindřich Sadil Generátory střídavého proudu osnova Indukované napětí vodiče a závitu Mg obvody Úvod do strojů na střídavý proud Synchronní stroje princip,

Více

Energetická bilance elektrických strojů

Energetická bilance elektrických strojů Energetická bilance elektrických strojů Jiří Kubín TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky Přednáška Stejnosměrné stroje 1 Konstrukční uspořádání stejnosměrného stroje 1 - hlavní póly 5 - vinutí rotoru 2 - magnetický obvod statoru 6 - drážky rotoru 3 - pomocné póly 7

Více

Aplikace měničů frekvence u malých větrných elektráren

Aplikace měničů frekvence u malých větrných elektráren Aplikace měničů frekvence u malých větrných elektráren Václav Sládeček VŠB-TU Ostrava, FEI, Katedra elektroniky, 17. listopadu 15, 708 33 Ostrava - Poruba Abstract: Příspěvek se zabývá možnostmi využití

Více

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bakalářská práce 2012 Lukáš Navrátil

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bakalářská práce 2012 Lukáš Navrátil VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bakalářská práce 212 Lukáš Navrátil Prohlášení: Prohlašuji, že jsem bakalářskou práci vypracoval samostatně. Uvedl jsem všechny literární

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

Mechatronické systémy

Mechatronické systémy Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Mechatronické systémy pro kombinované a distanční studium Ivo Neborák Ostrava 2009 Ivo Neborák, 2009 Fakulta elektrotechniky

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

9. Harmonické proudy pulzních usměrňovačů

9. Harmonické proudy pulzních usměrňovačů Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Stejnosměrné generátory dynama. 1. Princip činnosti

Stejnosměrné generátory dynama. 1. Princip činnosti Stejnosměrné generátory dynama 1. Princip činnosti stator dynama vytváří budící magnetické pole v tomto poli se otáčí vinutí rotoru s jedním závitem v závitech rotoru se indukuje napětí změnou velikosti

Více

Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty

Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty stejnosměrného napětí U dav Užití v pohonech: řízení stejnosměrných

Více

Ele 1 Synchronní stroje, rozdělení, význam, princip činnosti

Ele 1 Synchronní stroje, rozdělení, význam, princip činnosti Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL 31. 1. 2014 Název zpracovaného celku: Ele 1 Synchronní stroje, rozdělení, význam, princip činnosti 10. SYNCHRONNÍ STROJE Synchronní

Více

STABILITA SYNCHRONNÍHO HO STROJE PRACUJÍCÍHO

STABILITA SYNCHRONNÍHO HO STROJE PRACUJÍCÍHO STABILITA SYNCHRONNÍHO HO STROJE PRACUJÍCÍHO DO TVRDÉ SÍTĚ Ing. Karel Noháč, Ph.D. Západočeská Univerzita v Plzni Fakulta elektrotechnická Katedra elektroenergetiky a ekologie Analyzovaný ý systém: Dále

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra elektromechaniky a výkonové elektroniky DIPLOMOVÁ PRÁCE Optimální vektorové řízení reluktančního synchronního motoru Přemysl Pospíšil 2018

Více

Spojité řízení Řídící úhly tyristorů se mění spojitě. Řízení je sloţitější, ale napětí má výhodnější průběh. I tak obsahuje vyšší harmonické.

Spojité řízení Řídící úhly tyristorů se mění spojitě. Řízení je sloţitější, ale napětí má výhodnější průběh. I tak obsahuje vyšší harmonické. Frekvenční měniče Tyristorové měniče (klasické): o přímé frekvenční měniče cyklokonvertory o podsynchronní kaskády Nepřímé frekvenční měniče Přímé frekvenční měniče (cyklokonvertory) Jsou to přímé frekvenční

Více

Porovnání způsobů vektorového řízení asynchronního stroje

Porovnání způsobů vektorového řízení asynchronního stroje ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ Katedra elektrických pohonů a trakce Obor: Elektrické stroje, přístroje a pohony Porovnání způsobů vektorového řízení asynchronního stroje

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

1. Pracovníci poučení dle 4 Vyhlášky 50/1978 (1bod):

1. Pracovníci poučení dle 4 Vyhlášky 50/1978 (1bod): 1. Pracovníci poučení dle 4 Vyhlášky 50/1978 (1bod): a. Mohou pracovat na částech elektrických zařízení nn bez napětí, v blízkosti nekrytých pod napětím ve vzdálenosti větší než 1m s dohledem, na částech

Více

princip činnosti synchronních motorů (generátoru), paralelní provoz synchronních generátorů, kompenzace sítě synchronním generátorem,

princip činnosti synchronních motorů (generátoru), paralelní provoz synchronních generátorů, kompenzace sítě synchronním generátorem, 1 SYNCHRONNÍ INDUKČNÍ STROJE 1.1 Synchronní generátor V této kapitole se dozvíte: princip činnosti synchronních motorů (generátoru), paralelní provoz synchronních generátorů, kompenzace sítě synchronním

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

ÚVOD. Obr.2-1: Srovnání světové produkce elektromotorů v letech 1996 a 2001

ÚVOD. Obr.2-1: Srovnání světové produkce elektromotorů v letech 1996 a 2001 2 ÚVOD Elektrické pohony mají jakožto řízené elektromechanické měniče energie velký význam ve většině technologických a výrobních procesů. Tyto systémy se používají zejména v oblastech jako jsou: obráběcí

Více

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz . STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete

Více

Název: Autor: Číslo: Únor 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Autor: Číslo: Únor 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Střídavé motory Synchronní motor Ing. Radovan

Více

Elektroenergetika 1. Elektrické části elektrárenských bloků

Elektroenergetika 1. Elektrické části elektrárenských bloků Elektrické části elektrárenských bloků Elektrická část elektrárny Hlavním úkolem elektrické části elektráren je: Vyvedení výkonu z elektrárny - zprostředkování spojení alternátoru s elektrizační soustavou

Více

Pohony šicích strojů

Pohony šicích strojů Pohony šicích strojů Obrázek 1:Motor šicího stroje Charakteristika Podle druhu použitého pohonu lze rozdělit šicí stroje na stroje a pohonem: ručním, nožním, elektrickým pohonem. Motor šicího stroje se

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

C L ~ 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH. 5.1 Vznik neharmonického napětí. Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu:

C L ~ 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH. 5.1 Vznik neharmonického napětí. Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu: 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH 5.1 Vznik neharmonického napětí Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu: C L ~ Přístrojová technika: generátory Příčiny neharmonického napětí

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Asynchronní motor s klecí nakrátko

Asynchronní motor s klecí nakrátko Aynchronní troje Aynchronní motor klecí nakrátko Řez aynchronním motorem Princip funkce aynchronního motoru Točivé magnetické pole lze imulovat polem permanentního magnetu, otáčejícího e kontantní rychlotí

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, synchronní stroje. Pracovní list - příklad vytvořil: Ing.

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, synchronní stroje. Pracovní list - příklad vytvořil: Ing. Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, synchronní stroje Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: září 2013 Klíčová slova: synchronní

Více

Vektorové řízení asynchronního motoru pomocí DSP

Vektorové řízení asynchronního motoru pomocí DSP Diplomová práce F3 České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektrických pohonů a trakce Vektorové řízení asynchronního motoru pomocí DSP Field Oriented Control of Induction

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Vznik trojfázového napětí Průběh naznačený na obrázku je jednofázový,

Více

Model elektrického vozidla s vektorově řízeným asynchronním motorem

Model elektrického vozidla s vektorově řízeným asynchronním motorem Cíl cvičení Model elektrického vozidla s vektorově řízeným asynchronním motorem Cvičení seznamuje s aplikací pohonu s vektorově řízeným asynchronním motorem k trakčním účelům v elektrických vozidlech.

Více

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY 2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový

Více

Klasické pokročilé techniky automatického řízení

Klasické pokročilé techniky automatického řízení Klasické pokročilé techniky automatického řízení Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Zásady regulace - proudová, rychlostní, polohová smyčka

Zásady regulace - proudová, rychlostní, polohová smyčka Zásady regulace - proudová, rychlostní, polohová smyčka 23.4.2014 Schématické znázornění Posuvová osa s rotačním motorem 3 regulační smyčky Proudová smyčka Rychlostní smyčka Polohová smyčka Blokové schéma

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Ústav automatizace a měřicí techniky. Ing. Petr Blaha, Ph.D.

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Ústav automatizace a měřicí techniky. Ing. Petr Blaha, Ph.D. VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Ústav automatizace a měřicí techniky Ing. Petr Blaha, Ph.D. ALGORITMY PRO BEZSNÍMAČOVÉ ŘÍZENÍ ASYNCHRONNÍCH MOTORŮ THE

Více

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2 Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Střídavé motory. Název: Téma:

Inovace a zkvalitnění výuky prostřednictvím ICT Střídavé motory. Název: Téma: Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Střídavé motory Asynchronní motor, měření momentových

Více

Merkur perfekt Challenge Studijní materiály

Merkur perfekt Challenge Studijní materiály Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 11 Název úlohy: Krokový motor a jeho řízení Anotace: Úkolem

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS SYNCHRONNÍ STROJE Určeno pro posluchače bakalářských studijních programů FS Obsah Význam a použití 1. Konstrukce synchronních strojů 2. Princip činnosti synchronního generátoru 3. Paralelní chod synchronního

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1). III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce

Více

Konstrukce stejnosměrného stroje

Konstrukce stejnosměrného stroje Stejnosměrné stroje Konstrukce stejnosměrného stroje póly pól. nástavce stator rotor s vinutím v drážkách geometrická neutrála konstantní vzduchová mezera δ budicí vinutí magnetická osa stejnosměrný budicí

Více

Elektrárny A1M15ENY. přednáška č. 5. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, Praha 6

Elektrárny A1M15ENY. přednáška č. 5. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, Praha 6 Elektrárny AM5ENY přednáška č 5 Jan Špetlík spetlj@felcvutcz -v předmětu emalu ENY Katedra elektroenergetky, Fakulta elektrotechnky ČVUT, Techncká 2, 66 27 Praha 6 Nárazový proud bude: F κ 2 I,7 225 59,9

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

ZÁKLADY POLOVODIČOVÉ TECHNIKY. Doc.Ing.Václav Vrána,CSc. 03/2008

ZÁKLADY POLOVODIČOVÉ TECHNIKY. Doc.Ing.Václav Vrána,CSc. 03/2008 ZÁKLADY POLOVODIČOVÉ TECHNIKY Doc.Ing.Václav Vrána,CSc. 3/28 Obsah 1. Úvod 2. Polovodičové prvky 2.1. Polovodičové diody 2.2. Tyristory 2.3. Triaky 2.4. Tranzistory 3. Polovodičové měniče 3.1. Usměrňovače

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS

Více

Elektrický výkon v obvodu se střídavým proudem. Účinnost, účinník, činný a jalový proud

Elektrický výkon v obvodu se střídavým proudem. Účinnost, účinník, činný a jalový proud Elektrický výkon v obvodu se střídavým proudem Účinnost, účinník, činný a jalový proud U obvodu s odporem je U a I ve fázi. Za předpokladu, že se rovnají hodnoty U,I : 1. U(efektivní)= U(stejnosměrnému)

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více