přechodná forma ] n práškový polyetylen CH 2

Podobné dokumenty
Struktura polymerů. Příprava (výroba).struktura vlastnosti. Materiálové inženýrství (Nauka o materiálu) Základní představy: přírodní vs.

Opakování

Skupenské stavy látek. Mezimolekulární síly

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MECHANICKÉ VLASTNOSTI PLASTŮ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ BAKALÁŘSKÁ PRÁCE

Polymery lze rozdělit podle několika kritérií. Podle původu rozlišujeme polymery přírodní a syntetické. Přírodní polymery jsou:

Nauka o materiálu. Přednáška č.14 Kompozity

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

Celosvětová produkce plastů

Polymery struktura. Vlastnosti polymerů určeny jejich fyzikální a chemickou strukturou

Plasty. Základy materiálového inženýrství. Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010

Typy molekul, látek a jejich vazeb v organismech

Nauka o materiálu. Přednáška č.13 Polymery

12. Struktura a vlastnosti pevných látek

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:


Ţijeme v době plastové

Podstata plastů [1] Polymery

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

18MTY 1. Ing. Jaroslav Valach, Ph.D.

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Polymery: minimum, které bychom si měli pamatovat. Lukáš Horný

Adhezní síly v kompozitech

Termické chování polymerů

Nekovalentní interakce

Nekovalentní interakce

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22

Struktura makromolekul

TECHNOLOGIE VSTŘIKOVÁNÍ

Kompozity s termoplastovou matricí

Makromolekulární látky

02 Nevazebné interakce

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Poruchy krystalové struktury

ZÁKLADY REOLOGIE. Reologie - nauka o tokových a deformačních vlastnostech makromolekulárních

2. Molekulová stavba pevných látek

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Test vlastnosti látek a periodická tabulka

Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

LOGO. Struktura a vlastnosti pevných látek

Vlastnosti a zkoušení materiálu. Přednáška č.13 Část 1: Polymery

ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin

Titanic Costa Concordia

Reologické modely technických materiálů při prostém tahu a tlaku

Adhezní síly v kompozitních materiálech

BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA

Matrice. Inženýrský pohled. Josef Křena Letov letecká výroba, s.r.o. Praha 9

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY MECHANICKÉ VLASTNOSTI PLASTŮ DIPLOMOVÁ PRÁCE MASTER'S THESIS

Plasty A syntetická vlákna

8 Elasticita kaučukových sítí

9 Viskoelastické modely

Vlastnosti a zkoušení materiálů. Přednáška č.1 Konstrukční materiály

Amorfní a krystalické polymery, termické analýzy DSC, TGA,TMA

HLINÍK A JEHO SLITINY

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

Struktura a vlastnosti kovů I.

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE

tuhost, elasticita, tvrdost, relaxace a creep, únava materiálu, reologické modely, zátěž a namáhání

ÚVOD DO MODELOVÁNÍ V MECHANICE

6. Viskoelasticita materiálů

Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny

PMC - kompozity s plastovou matricí

LETECKÉ MATERIÁLY. Úvod do předmětu

ztuhnutím pyrosolu taveniny, v níž je dispergován plyn, kapalina nebo tuhá látka fotochemickým rozkladem krystalů některých solí

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

2.3 CHEMICKÁ VAZBA. Molekula bílého fosforu P 4 a kyseliny sírové H 2 SO 4. Předpona piko p je dílčí jednotkou a udává velikost m.

MATERIÁLOVÁ PROBLEMATIKA PŘI SEPARACI PLYNŮ A PAR

Polymery struktura. Vlastnosti polymerů určeny jejich fyzikální a chemickou strukturou

VII.6.4 Polykondenzace Lineární polymery. H. Schejbalová & I. Stibor, str I. Prokopová, str D. Lukáš 2013

Primární (kovalentní) Sekundární (stereochemická Terciální (konformační) Kvartérní (nadmolekulární)

Základy vakuové techniky

Netkané textilie. Materiály

Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence)

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.

Molekulární krystal vazebné poměry. Bohumil Kratochvíl

Mol. fyz. a termodynamika

METALOGRAFIE II. Oceli a litiny

Výroba tablet. Lisovací nástroje. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. Horní trn (razidlo) Lisovací matrice (forma, lisovnice)

2 Stanovení teploty tání semikrystalických polymerů v práškové formě

Autor: Tomáš Galbička Téma: Alkany a cykloalkany Ročník: 2.

Vazby v pevných látkách

Netkané textilie. Materiály 2

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů

nomenklatura Procesní názvy Strukturní názvy

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Mezimolekulové interakce

MATERIÁLOVÉ INŽENÝRSTVÍ II PLASTY

Uhlík Ch_025_Uhlovodíky_Uhlík Autor: Ing. Mariana Mrázková

Transkript:

Autor: Ing. Eva Molliková, Ph.D.VYMEZENÍ POJMU: Polymer = chemicky definovaná makromolekulární látka Plast = polymer + plniva + barviva + stabilizátory + další přísady Konstrukční plasty = jistá úroveň vlastností; advanced plastics. 2.CO UŽ ZNÁME Základ polymerů: atom uhlíku C, 4 kovalentní vazby svírající v prostoru úhel 09,5º jednoduchá (nasycené uhlovodíky) nebo násobná dvojná či trojná vazba (nenasycené uhlovodíky). nejjednodušší organické sloučeniny na nevyužité vazby se váží atomy H (uhlovodíky, karbohydráty). 3. VÝROBA POLYMERŮ Z jednoduchých organických látek tzv. polyreakcemi (polymerací, polyadicí, polykondenzací). monomer vstupní nízkomolekulární organická sloučenina, mer přechodná forma vzniklá během polyreakce, polymer vzniká vzájemnou vazbou vysoce reaktivních konců rozštěpených vazeb; je v něm n -krát zapojena merová jednotka. polymerační stupeň n počet merů v řetězci; určuje délku polymerního řetězce další vlastnosti materiálu (čím delší jsou řetězce, tím pevnější a houževnatější je výsledný materiál). Příklad: monomer: CH 2 = CH 2 plynný eten (etylen) mer: polymer CH 2 CH 2 [ CH 2 CH 2 ] n přechodná forma práškový polyetylen 4. O JEDNOM POLYMERNÍM RĚTĚZCI 4.Primární vazebné síly Atomy C jsou v řetězci mezi sebou vázány tzv. primárními vazbami (intramolekulárními), které mají kovalentní charakter. 4.2Složení řetězce homopolymer má v řetězci mery pouze jednoho typu:

kopolymer má v řetězci zapojeny mery dvou typů. statistický náhodné střídání merů typu A a B : alternující pravidelné střídání merů typu A a B: blokový střídají se bloky merů A a bloky merů B: roubovaný na páteř tvořenou mery A jsou navázány boční větve tvořené mery typu B. terpolymer má v řetězci mery tří typů. 4.3 Struktura (stavba) řetězce lineární rozvětvený zesítěný 3D síť 4.4Konfigurace (takticita, stereoizomerie) řetězce popisuje uložení bočních skupin atomů kolem základního řetězce. ataktický boční skupiny uloženy náhodně izotaktický boční skupiny po jedné straně syndiotaktický boční skupiny pravidelně střídavě Přímý dopad na vlastnosti materiálu pravidelně uspořádané řetězce je možno poskládat blíže k sobě pevnější materiál. Změna konfigurace je možná pouze chemickým zásahem. 4.5Konformace řetězce Jednoduché vazby jsou schopné rotace třetí atom C může ležet v kterémkoliv bodě obvodu podstavy kužele daného úhlem a délkou vazby. Každé poloze přísluší určitá energie přednostně jsou obsazovány polohy s minimální energií. Lineární řetězce (např. PE) se formují do postavení trans trans tvar cik cak. Řetězce s malou boční skupinou (izotaktický PP) zaujímají polohu trans gauche pravá šroubovice s boční skupinou v úhlu 20. Schopnost rotace závisí na: struktuře meru rotaci brání násobné vazby v základním řetězci nebo rozměrné boční skupiny (např. benzenové jádro C 6H 6 v polystyrenu PS)

vnitřní energii systému, kterou je možno ovlivnit fyzikálně (ohřevem); rostoucí teplota snadnější konformační pohyby. Rotací kolem jednoduchých vazeb může řetězec reagovat na vnější zatížení ohnutím a natočením. 4.6Molekulová hmotnost M = n m, n je polymerační stupeň, m je hmotnost základního meru. 5. POLYMER JAKO Σ ŘETĚZCŮ Polymerní materiál = soubor řetězců, které na sebe působí. 5.Sekundární vazebné (van der Waalsovy) síly Sekundární (intermolekulární) vazebné síly působí mezi řetězci, drží je pohromadě a umožňují tak vznik polymerního materiálu jako celku. Jsou slabé, vazebná energie je řádově pouze 0 kj.mol -. disperzní (Londonovy) síly vyvolány nepatrnou polarizací způsobenou pohybem elektronů. Jsou slabé, nezávislé na teplotě. permanentní dipól tvoří je molekuly obsahující polární vazby. Dipóly mají tendenci se vzájemně orientovat, tato snaha je však narušována tepelným pohybem molekul. Proto se koheze způsobená permanentními dipóly s rostoucí teplotou snižuje. indukovaný dipól vzniká v blízkosti permanentních dipólů, které polarizují okolní původně neutrální vazby. vodíkové můstky jsou nejsilnějším typem sekundární vazby, tvoří přechod k primárním vazbám. 5.2Molekulová hmotnost polymeru Při polyreakcích vznikají řetězce různé délky molekulová hmotnost výsledného polymeru má proto nutně statistický charakter. číselně střední molekulová hmotnost M = n ( xi M i ) i=, kde x i je číselný podíl n řetězců o hmotnosti M i v materiálu; x i = i= hmotnostně střední molekulová hmotnost M w ( wi M i ) = n i= hmotnostní podíl řetězců o hmotnost M i v materiálu; w =. n i= i, kde w i je

5.3Krystalizace Krystalové struktury polymerů jsou složitější než u kovů; na obrázku je znázorněno uspořádání řetězců PE do ortorombické mřížky. Tvar a složitá stavba způsobuje, že jsou polymerní makromolekuly jen částečně krystalické semikrystalické. Je-li materiál ochoten krystalizovat, potom: při krystalizaci ve zředěném roztoku vznikne lamela, tj. destička o tloušťce 0 až 20 nm a délce řádově 0 µm, v níž je za sebou naskládaný určitý počet řetězců, při krystalizaci ovlivněné smykovým zatížením (prouděním) vznikají fibrily tvořené napřímenými řetězci, při krystalizaci z taveniny vzniká sferolit skládající se z lamel radiálně rostoucích z krystalizačního zárodku a oddělených amorfním podílem, při krystalizaci v klidu střídané prouděním taveniny vzniká struktura šiš-kebab. lamela sferolit šiš kebab Krystalické polymery jsou obvykle pevnější a odolnější vůči měknutí a rozpadu vlivem tepla. Naskládání lineárních řetězců brání jejich přísnému uspořádání vyššího stupně organizace je dosaženo např. tažením za studena (T < T m ), při kterém může být krystalinita až 95 %. amorfní klubko materiál není ochoten krystalizovat a zůstává v amorfním stavu. 5.4Tranzitní teploty krystalický podíl semikrystalického polymeru teplota tání T m (melt) jako teplota, při níž atomy či ionty látky opouštějí svá místa v přesně organizované krystalové mřížce. amorfní podíl teplota skelného přechodu T g (glass). T > T g možné konformační změny, polymer je schopný deformace. T = T g řetězce se ustaví do stabilní konformace. T < T g polymer je sklovitý, tvrdý a křehký. Teplota T g stoupá s rostoucí mezimolekulovou soudržností a s klesající ohebností řetězců.

2 3 Obvykle platí, že T g Tm. 5.5 Reologické modely ideálně pružný materiál popisuje elastické chování izotropních těles (kovů): reologický model: pružina o tuhosti G při smyku platí pro rovnováhu mezi napětím σ a deformací γ σ = G γ pruž ideálně viskózní materiál jednoduché kapaliny při ustáleném toku: reologický model: hydraulický válec s kapalinou o viskozitě η při ustáleném toku je smyková rychlost Newtonova zákona σ = η γ visk Hookův zákon dγ γ = úměrná smykovému napětí σ podle d t Hokeovská elasticita ideálně pružného materiálu a newtonovský tok ideálně viskózního materiálu představují dva mezní případy reologického chování. Někde mezi nimi jsou polymery, jejichž odezva na působení vnějších sil je obecně kombinací elastických a viskózních projevů. Jejich chování se nazývá viskoelastické. Hook Kelvin Maxweell Tuckett Newton ideálně pružný materiál viskoelastický materiál ideálně viskozní materiál viskoelastický materiál Kelvinův (Voightův) model spojuje pružinu o tuhosti G a hydraulický válec s kapalinou o viskozitě η paralelně do rámu. Používá se pro modelování creepu materiálů. Deformace materiálu je dána vztahem σ ε = E exp E t η,

σ [MPa] je působící napětí, E [MPa] je modul pružnosti materiálu, t [s] je doba zatížení, η [Pa.s] je viskozita materiálu. Maxwellův model zapojuje pružinu o tuhosti G a hydraulický válec s kapalinou o viskozitě η seriově. Používá se pro modelování relaxace materiálů. E. t Napětí σ t = σ i exp, kde σ t [MPa] je napětí v materiálu dosažené v čase t [s η σ [MPa] je původní zatížení, E [MPa] je modul pružnosti zvoleného materiálu, η [Pa.s] ], i je viskozita materiálu při dané teplotě. Tuckettův model zapojuje seriově pružinu o tuhosti G, Kelvinův model s pružinou o tuhosti G 2 a hydraulickým válcem s kapalinou o viskozitě η 2, a hydraulický válec s kapalinou o viskozitě η 3. Model je schopen kvalitativně předpovědět viskoelastické chování lineárního amorfního polymeru, jehož deformace je určována: ideálně elastickou okamžitou deformací valenčních úhlů, vazeb a mezimolekulárních vzdáleností (reologickým modelem je první člen řetězce pružina o tuhosti G ), zpožděnou elastickou deformací polymerních klubek (druhý člen řetězce Kelvinův model s pružinou o tuhosti G 2 a hydraulickým válcem s kapalinou o viskozitě η 2 ), nevratnými přesuny klubek (třetí člen hydraulický válec s kapalinou o viskozitě η 3 ). Deformace materiálu σ ε = E σ + exp E 2 E t 2 + η2 σ η 3 t 5.6 Modul E jako funkce teploty a času Konstrukce jsou projektovány na tuhost, tj. schopnost materiálu odolat elastické deformaci. Elastická deformace polymerů je časově a teplotně závislá; podle Hookova zákona ε (t, T) = σ /E E = f (t, T). Modul E polymeru závisí na jeho molekulové hmotnosti a na teplotě okolí T, přesněji na tom, jak blízko je tato teplota k teplotě skelného přechodu T g daného polymeru výhodné je vyjadřovat vlastnosti polymeru vzhledem k tzv. normalizované teplotě T/T g ; oblast skelného režimu s vysokou hodnotou E (kolem 3GPa): Zatížením jsou napínány jak primární tak i sekundární vazby, celková deformace polymeru je dána součtem deformací obou druhů vazeb;

Při velmi nízkých teplotách je modul polymeru dán napínáním vazeb a je nezávislý na teplotě. Uspořádání řetězců v polymerních materiálech však zanechává místa nespojitosti boční skupiny nebo segmenty řetězců, které s přispěním malého množství tepelné energie změní svou polohu a způsobí tím dodatečnou deformaci. Tato sekundární relaxace může snížit modul E až na polovinu, takže by neměla být zcela ignorována. Její přispění k poklesu E je zanedbatelné ve srovnání s účinkem oblasti skelného přechodu. oblast skelného přechodu - dochází k poklesu E až o tři řády (z 3 GPa na asi 3 MPa). Porušují se sekundární vazby značný pokles hodnoty E Zachované elastické oblasti po odlehčení vrátí materiál zpět do původního tvaru. Polymer v této oblasti vykazuje tzv. kožovité (leathery) vlastnosti. pryžové (rubbery) plató s nízkou hodnotou E (kolem 3 MPa) u materiálů s krátkými řetězci (stupeň polymerace n < 0 3 ) je vzájemné klouzání segmentů řetězců jednodušší a materiál se může stát až lepkavou (přilnavou) tekutinou. Dlouhé řetězce se v materiálu kvůli své délce a ohebnosti zaplétají. Při zatížení se mohou napínat segmenty řetězců mezi zapletenými uzly, samotné uzly však ne Nahradíme-li zapleteniny malým počtem příčných kovalentních vazeb (slabé zesítění, jedna příčná vazba na několik málo stovek merů), stane se z materiálu při T > T g elastomer (např. přírodní pryž polyisopren) schopný elastického prodloužení o 300%. Jejich pracovní teplota je vysoko nad hodnotou T g. Při T < T g se u těchto pryží dochází k nárůstu modulu E a stávají tvrdými a křehkými podobně jako PMMA. viskózní oblast při T >,4 T g jsou porušeny sekundární vazby a dochází k pokluzu zapletených uzlů. Lineární polymery viskózní kapaliny, zesítěné polymery dekompozice. oblast dekompozice porušení a likvidace materiálu depolymerací či tepelnou degradací. 6.KOMPOZITY Plniva jsou do matrice přidávána kvůli získání nových vlastností, které čistá polymerní matrice. Struktura, morfologie a výsledné vlastnosti kompozitu závisí na: povaze polymerní matrice, chemickém složení (materiálu) plniva, fyzikálních charakteristikách (tvaru, velikosti) plniva, orientaci částic plniva, množství plniva, složení hraniční fáze polymeru, která je interakcí s plnivem více či méně modifikována, vnějších podmínkách, zvláště teplotě a rychlosti zatěžování. 6. Rozdělení plniv materiál: minerální plniva plniva, která mají přímo minerální původ (např. jemně mletý vápenec CaCO 3) nebo jsou průmyslově vyráběna z přírodních materiálů (např. hydroxid hořečnatý Mg(OH) 2); obvykle jsou přidávány za účelem zlepšení tuhosti. elastická plniva (nejčastěji kaučukové kuličky) použití elastomerních částic zlepšuje houževnatost kompozitu. tvar částic plniva: částicová plniva krátká vlákna kontinuální vlákna

Na tvaru částic závisí intenzita vyztužení kompozitu (kulové částice < destičkové plnivo < skleněná vlákna) zpevnění roste se zvyšující se anizotropií částic. množství plniva zvyšující se množství plniva zesiluje jeho účinek, při překročení určité hranice však dochází ke ztrátě mechanických vlastností. Je proto nutná optimalizace složení kompozitu jak z hlediska použité matrice a plniva, tak z hlediska plánovaného použití materiálu (tailor made materials materiály šité na míru k danému účelu). 6.2 Retardéry hoření Pro použití ve stavebnictví, elektrotechnice, nábytkářském i automobilovém průmyslu je aktuální vývoj polymerních kompozitů se sníženou hořlavostí, resp. materiálů samozhášivých. Podmínkou hoření je současný výskyt hořlavé látky, kyslíku a dostatečně vysoké teploty. Snížení hořlavosti materiálu spočívá v omezení vlivu alespoň některé z uvedených podmínek hoření, což je možno provést přidáním látek označovaných jako retardéry hoření. Jsou to sloučeniny, které přívodu kyslíku buďto zabraňují, nebo při teplotě hoření produkují látky, které vstupují do vlastních reakcí tepelného rozkladu materiálů a zabraňují tak dalšímu hoření. Z hlediska vzniku toxických nebo korozivních zplodin hoření se retardéry hoření dělí na: klasické, které pracují na bázi sloučenin chloru a bromu; nevýhodou jsou jedovaté zplodiny hoření, bezhalogenové, mezi než patří: intumescentní látky, které při hoření vypěňují a jejichž zuhelnatělý zbytek tvoří tenkou vrstvu, která zabraňuje přístupu kyslíku, minerální plniva, která již svou přítomností v polymeru zvyšují jeho tepelnou vodivost a tím posouvají hranici zápalnosti k vyšším teplotám. Velká pozornost je přitom věnována netoxické retardérům hoření, jako je: hydroxid hlinitý Al(OH) 3 rozkládá při asi 80 C; je tedy nepoužitelný pro termoplasty (např. PP), jejichž teplota zpracování leží nad 200 C. hydroxid hořečnatý Mg(OH) 2 začíná se rozkládat při asi 340 C, rozklad dosahuje vrcholu při 430 C a končí při asi 490 C. Nevýhodou je špatná dispergovatelnost způsobená malou velikostí částic (tvaru šesterečných destiček nebo jehlic se šesterečným průřezem a tvarovým faktorem přibližně 0) a vysokým sklonem těchto částic ke tvorbě aglomerátů. Čím lépe je však Mg(OH) 2 v polymeru dispergován, tím homogenněji je teplo hoření matrice absorbováno jeho endotermickým rozpadem, při němž vzniká voda a oxid hořečnatý MgO. Použití Al(OH) 3 i Mg(OH) 2 jako retardérů hoření vyžaduje, aby jejich koncentrace v polymeru byla vyšší než 60 hm.%, což vede k výrazné změně mechanických a tepelných vlastností a k obtížím při samotné výrobě kompozitu (zapracování částic do natavené matrice) i při jeho dalším zpracování.