Poruchy metabolizmu eleza II.

Podobné dokumenty
HEREDITÁRNÍ HEMOCHROMATÓZA

Klinické a molekulární aspekty poruch metabolismu železa seminář Martin Vokurka

ANÉMIE CHRONICKÝCH CHOROB

ÚVOD DO TRANSPLANTAČNÍ IMUNOLOGIE

Anémie u chronických onemocnění

Thomas Plot Olga Bálková, Roche s.r.o., Diagnostics Division SWA pracovní dny, Praha, 24. února 2010

Metabolismus hemu a železa. Alice Skoumalová

Beličková 1, J Veselá 1, E Stará 1, Z Zemanová 2, A Jonášová 2, J Čermák 1

Pohled genetika na racionální vyšetřování v preventivní kardiologii

Genetika kardiomyopatií. Pavol Tomašov Kardiologická klinika 2. LF UK a FN v Motole, Praha

Potřebné genetické testy pro výzkum a jejich dostupnost, spolupráce s neurology Taťána Maříková. Parent projekt. Praha

Atestace z lékařské genetiky inovované otázky pro rok A) Molekulární genetika

Aktivní B12 (Holotranskobalamin) pokrok v diagnostice deficitu vitaminu B12

Ukázka knihy z internetového knihkupectví

,, Cesta ke zdraví mužů

FUNKČNÍ VARIANTA GENU ANXA11 SNIŽUJE RIZIKO ONEMOCNĚNÍ

Úvod do nonhla-dq genetiky celiakie

Sérový hepcidin, regulátor železa: referenční meze a biochemické korelace v populaci.

MUDr Zdeněk Pospíšil

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA

Převzato na základě svolení Macmillan Publishers Ltd: Nat Rev Genet. 2001;2(4):245-55), copyright (2001).

ONKOLOGIE. Laboratorní příručka Příloha č. 3 Seznam vyšetření imunochemie Verze: 05 Strana 23 (celkem 63)

Vrozené trombofilní stavy

Návrh směrnic pro správnou laboratorní diagnostiku Friedreichovy ataxie.

Terapeutické klonování, náhrada tkání a orgánů

Vzácná onemocnění a česká interna. Richard Češka III. Interní klinika 1.LF UK a VFN Praha

Genetický polymorfismus

Mutace genu pro Connexin 26 jako významná příčina nedoslýchavosti

VZTAH MEZI ISCHEMICKÝMI CÉVNÍMI PŘÍHODAMI A ONEMOCNĚNÍM SRDCE Z POHLEDU DIAGNOSTIKY A PREVENCE. MUDr. Michal Král

Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu

MUDr. Helena Šutová Laboratoře Mikrochem a.s.

Studie EHES - výsledky. MUDr. Kristýna Žejglicová

CADASIL. H. Vlášková, M. Boučková Hnízdová, A. Loužecká, M. Hřebíček, R. Matěj, M. Elleder

NEUROGENETICKÁ DIAGNOSTIKA NERVOSVALOVÝCH ONEMOCNĚNÍ

První pilíř PBM. Autoři: doc.mudr. Ivan Čundrle Csc. MUDr. J. Slipac KARIM FN Brno Bohunice, Česká Republika Česká společnost bezkrevní medicíny

Výskyt a význam infekce Borna disease virem u pacientů léčených

Poruchy metabolizmu eleza I. Regulace homeostázy eleza

Genetický screening predispozice k celiakii

IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány

Kapitola III. Poruchy mechanizmů imunity. buňka imunitního systému a infekce

Humorální imunita. Nespecifické složky M. Průcha

5. PORUŠENÁ TOLERANCE S - definována výsledkem orálního glu. testu jde o hodnotu ve 120. minutě 7,7-11,1 mmol/l. Společně s obezitou.

Biochemické vyšetření

Výskyt MHC molekul. RNDr. Ivana Fellnerová, Ph.D. ajor istocompatibility omplex. Funkce MHC glykoproteinů

Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

Program na podporu zdravotnického aplikovaného výzkumu na léta

ProGastrin-Releasing Peptide (ProGRP) u nemocných s malobuněčným karcinomem plic

ANÉMIE Emanuel Nečas 2014

Huntingtonova choroba

Léčba anemie. Prim. MUDr. Jan Straub I. Interní klinika VFN Praha

Bc. PharmDr. Ivana Minarčíková, Ph.D. www. farmakoekonomie.cz

Molekulární hematologie a hematoonkologie

Specifická imunitní odpověd. Veřejné zdravotnictví

Hemofilie. Alena Štambachová, Jitka Šlechtová hematologický úsek ÚKBH FN v Plzni

Registrační číslo projektu: CZ.1.07/1.5.00/ Základy genetiky - geneticky podmíněné nemoci

CDT a další. laboratorní markery. objektivizaci abusu a efektivity léčby. MUDr. Pavla Vodáková, RNDr. Milan Malý

Vztah genotyp fenotyp

Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny

Syndrom fragilního X chromosomu (syndrom Martinův-Bellové) Antonín Bahelka, Tereza Bartošková, Josef Zemek, Patrik Gogol

EUROArray. laboratorní diagnostiku. Praha RNDr. Tereza Gürtlerová. Podtitul, název produktu

Deficit antagonisty IL-1 receptoru (DIRA)

DVĚ NEJČASTĚJŠÍ SMRTELNÉ POTRANSFUZNÍ PŘÍHODY



LÉKAŘSKÁ VYŠETŘENÍ A LABORATORNÍ TESTY

Rekurentní horečka spojená s NRLP21

Genetické aspekty vrozených vad metabolismu

Přínos molekulární genetiky pro diagnostiku a terapii malignit GIT v posledních 10 letech

Dopady změny zpřesnění MKN -11 na vybraná klinická témata

Parvovirus B 19. Renata Procházková

Prokalcitonin ití v dg. septických stavů

GAUCHEROVA CHOROBA A VAŠE RODINA

Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně

Anémie z nezralosti Vybrané parametry metabolismu železa

Glosář - Cestina. Odchylka počtu chromozomů v jádře buňky od normy. Např. 45 nebo 47 chromozomů místo obvyklých 46. Příkladem je trizomie 21

Transplantace jater pro erythropoetickou protoporfýriivýznam adekvátní biliární drenáže

Charakteristika analýzy:

Doporučený postup č. 3. Genetické laboratorní vyšetření v reprodukční genetice

Použití tuků mořských ryb v prevenci vzniku metabolického syndromu. Mgr. Pavel Suchánek IKEM Centrum výzkumu chorob srdce a cév, Praha

Činnost oboru diabetologie, péče o diabetiky v roce Activity of the branch of diabetology, care for diabetics in 2007

Klíčová slova: sideropenie, deficit železa, hypochromní anémie, mikrocytární anémie, sideropenní anémie. Med. Pro Praxi 2007; 4(11):

Úvod do preklinické medicíny PATOFYZIOLOGIE. Kateryna Nohejlová a kol.


u párů s poruchami reprodukce

Seznam vyšetření. Detekce markerů: F2 (protrombin) G20210A, F5 Leiden (G1691A), MTHFR C677T, MTHFR A1298C, PAI-1 4G/5G, F5 Cambridge a Hong Kong

Diagnostika poškození srdce amyloidem

von Willebrandova choroba Mgr. Jaroslava Machálková

Progrese HIV infekce z pohledu laboratorní imunologie

Činnost oboru diabetologie, péče o diabetiky v roce Activity of the branch of diabetology, care for diabetics in 2006

Onemocnění krve. Krvetvorba, základní charakteristiky krve

Novinky v léčbě. Úvod: Srdeční selhání epidemie 21. století. Prof. MUDr. Jindřich Špinar, CSc., FESC Interní kardiologická klinika FN Brno

VNL. Onemocnění bílé krevní řady

a) Sledovaný znak (nemoc) je podmíněn vždy jen jedním genem se dvěma alelami, mezi kterými je vztah úplné dominance.

*Mléko a mléčné výrobky obsahují řadu bioaktivních

Civilizační choroby. Jaroslav Havlín

VROZENÉ PORUCHY KRVETVORBY A JEJICH MANIFESTACE V DOSPĚLÉM VĚKU

OR (odds ratio, poměr šancí) nebo též relativní riziko RR. Validita vyšetření nádorových markerů. Validita (určuje kvalitu testu)v % = SP/ SP+FP+FN+SN

Léčba anemie u srdečního selhání J.Vítovec, LF MU a FN U sv. Anny


Transkript:

Pøehledný refrát Poruchy metabolizmu eleza II. J. Novotný Oddělení klinické hematologie FN Brno, pracoviště Bohunice, přednosta prof. MUDr. Miroslav Penka, CSc., Transfuzní oddělení a krevní banka FN Brno, pracoviště Bohunice, přednosta prim. MUDr. Eva Tesařová Souhrn: Poruchy metabolizmu železa patří mezi nejčastější patologické stavy v klinice. Různý stupeň sideropenie můžeme nalézt až u 60 % žen v gestačním věku (do menopauzy). Nedostatek železa vznikne, existuje-li v organizmu negativní bilance tohoto prvku důsledkem krevních ztrát, nedostatku železa v potravě a/nebo při poruchách jeho vstřebávání a konečně při zvýšených nárocích na přívod železa v pubertě, v těhotenství a při laktaci. Opačným extrémem jsou stavy přetížení organizmu železem nejčastěji u polytransfundovaných nemocných, u některých hemolytických stavů, při inefektivní erytropoéze, u těžkých hepatopatií a u vrozených stavů se zvýšeným vstřebáváním železa, které dnes označujeme jako hereditární hemochromatóza typu I až V. Klasická hereditární hemochromatóza (typ I) byla popsána v 19. století jako tzv. bronzový diabetes. Šlo o plně vyjádřenou penetraci vrozené dispozice k přetížení železem (iron overload) s postižením parenchymatózních orgánů (především jater), srdce, kloubů, kůže a endokrinního systému. Hlavní kandidátní gen pro hemochromatózu byl popsán až v roce 1996 Federem et al a byl nazván HFE. HFE gen je lokalizován na 6. chromozomu v blízkosti lokusů HLA systému a vykazuje s geny hlavního histokompatibilního komplexu (MHC) jistou homologii. HFE protein je na buněčné membráně asociován s β 2 -mikroglobulinem (β 2 m) a tento komplex váže receptory pro transferin. Vazbou komplexu HFE/β 2 m na receptory pro transferin (TfR) je ne zcela jasným mechanizmem modulována endocytóza transferinového železa; v literatuře není jednoty, zda je tato endocytóza interakcí komplexu HFE/β 2 -m s TfR zvyšována nebo snižována. Bylo popsáno již přes 30 mutací i polymorfizmů HFE genu, z nich nejčastější jsou bodové mutace C282Y, H63D a S65C. Mutace C282Y tvoří nejčastější genetický základ pro hemochromatózu v kavkazské populaci frekvence heterozygotů zde obnáší 5 12 %, homozygotní stav C282Y lze detekovat až u 80 % kavkazoidních pacientů s hereditární hemochromatózou. Klasická HFE hemochromatóza představuje autozomálně recesivní onemocnění s inkompletní penetrací (1 50 %). Byly popsány mutace v dalších genech, kódujících proteiny regulace metabolizmu železa, které zapříčiňují vrozenou dispozici k přetížení organizmu železem pod obrazem tzv. non-hfe hemochromatóz. Klinický obraz non-hfe hemochromatóz se mnohdy liší od klasické HFE hemochromatózy, některé mutace jsou dokonce autozomálně dominantní. V současné době jsou nejdiskutovanějšími tématy mechanizmy, jakými nejrůznější mutace způsobují iron overload, oprávněnost širokého genetického screeningu na HFE C282Y v obecné populaci a vztah poruch metabolizmu železa k rozvoji diabetu, kardiovaskulárních onemocnění a zhoubného bujení. Na tyto otázky se soustřeďuje pozornost řady výzkumných týmů pracujících jak v základním výzkumu, tak i v klinické medicíně, a v blízké budoucnosti budeme nepochybně svědky mnoha dalších objevů a upřesnění odpovědí na závažné otázky vztahu poruch metabolizmu železa a nejfrekventovanějších civilizačních onemocnění. Klíčová slova: železo sideropenie přetížení železem hereditární hemochromatóza Disorders of iron metabolism. Part 2 Summary: Disorders of iron metabolism are very frequently seen in clinical medicine. Up to 60% of women in gestational age suffer from some degree of sideropenia. Sideropenia occurs in situations with the negative bilance of this vital element i.e. in patients with chronic blood loss, in vegetarians or in malaabsorptive syndromes and in states with increasing utilization of iron in gravidity, lactation or in pubescents. The iron overload represents the opposite situation and is found mainly in transfusion dependent patients, in some hemolytic states with inefective erythropoesis, in severe hepatopathias and in patients with congenitaly incerased absorption of iron i.e. in hereditary hemochromatosis type I V. The classical hereditary hemochromatosis (type I) was firstly described in the 19th century as so called bronze diabetes. It was the full penetrance of hereditary iron overload which affected the parenchymatous organs (mainly the liver), heart, joints, skin and endocrine glands. The main candidate gene was firstly described in 1966 by Feder et al. and was called HFE gene. HFE gene maps to the 6th chromosome close to the HLA locuses and reveals with the MHC (main histocompatibility complex) genes some homology. Mature HFE protein is associated with β 2 microglobuline and localized in the cytoplasmatic membrane, where this complex associates with transferrin receptors. This interaction with the transferrin receptors modulates the endocytosis of transferrin iron; there is not consensus in the literature about sense of the modulation (potentiation or inhibition of transferrin iron endocytosis). More than 30 mutations and polymorphisms in the HFE gene were discovered; the most frequent are the point mutations C282Y, H63D, and S65C. The most frequent genetic basis of hereditary hemochromatosis in caucasoids is the C282Y mutation, prevalence of heterozygotes in the Caucasoid populations being from 5 to 12 percent. The C282Y mutation can be revealed in about 80% of Caucasoid patients with the diagnosis of hereditary hemochromatosis. The classic hereditary hemochromatosis represents the autosomal recessive trait with incomplete penetrance, which is estimated in the broad interval from 1 to 50 percent. The mutations in other genes, which code for other proteins of iron metabolism, were revealed. This mutations cause so called non-hfe hemochromatoses. The clinical picture of these deseases may be other than the picture of classic hemochromatosis, some the non-hfe iron overloads may be inherited in the dominant manner. The most frequently disscussed topic today is the exact mechanism/s leading to iron overload in HFE and non HFE hemochromatosis, the genetic screening for HFE mutations in general population at risk and the relation of iron overload to atherosclerosis, diabetes and malignant diseases. These and other problems are under intensive research in many centres and only the future will bring the answers to these important questions. Key words: iron sideropenia iron overload hereditary hemochromatosis www.vnitrnilekarstvi.cz 995

Poruchy metabolizmu eleza Poruchy metabolizmu železa patří mezi nejčastější patologické stavy v klinické praxi. V zásadě je můžeme rozdělit na onemocnění zapříčiněná nedostatkem tohoto prvku, na stavy, související s přetížením organizmu železem a na poruchy utilizace železa. Stejně jak platí v klinické medicíně obecně, mohou být tyto poruchy vrozené nebo získané, mnohdy však jde o kombinaci obou příčin. Tab. 1. Nejčastější příčiny sideropenie. zvýšená utilizace Fe zvýšené ztráty Fe poruchy vstřebávání Fe nedostatek Fe v potravě růst, puberta, gravidita, laktace, léčba nefrogenní anémie erytropoetinem hypermenorea, metroragie afekce GIT (ulcus, neoplazie, Rendu-Osler syndrom aj.) opakované epistaxe výraznější hematurie (neoplazie) dárci krve anacidita, stavy po resekci žaludku, malaabsorpční syndromy, zánětlivé střevní afekce (i zvýšené ztráty), hojně fytátů v potravě přísní vegetariáni, podvýživa Sideropenie O sideropenických stavech hovoříme tehdy, existuje-li v organizmu absolutní nebo relativní nedostatek železa. Relativní a posléze absolutní nedostatek železa vzniká zvýšenými nároky na jeho utilizaci např. při růstu a v pubertě, nebo v těhotenství, kdy zásoby železa, které by za jiných okolností zcela dostačovaly, jsou při nezměněném přívodu železa v potravě relativně rychle vyčerpány. Sideropenie představují celosvětový problém, který je zvláště akcentován v zemích tzv. třetího světa, kde je karence železa většinou spojena s karencí jiných biogenních látek i základních živin v důsledku těžké podvýživy většiny tamního obyvatelstva. Obecně se sideropenie vyvíjí při negativní bilanci železa, kdy příjem železa v potravě a/nebo poruchy jeho vstřebávání nestačí k hrazení fyziologických nebo patologických ztrát, nebo při jeho zvýšené utilizaci. V tab. 1 jsou uvedeny nejčastější příčiny sideropenie v klinické praxi. Je jasné, že karence železa se snadněji vyvine u žen v reprodukčním věku, kdy i fyziologické ztráty tohoto prvku v podobě normálních menses a/nebo gravidity vyžadují vyšší příjem železa potravou. Obecně se nejlépe vstřebává železo, vázané na živočišné bílkoviny (maso, vnitřnosti), vysoký příjem fytátů při jednostranně rostlinné dietě může vést k poruše vstřebávání železa tvorbou těžko rozpustných sloučenin železa. Laboratorně nacházíme u pacientů s karencí železa celé spektrum nálezů od latentní sideropenie po manifestní sideropenickou anémii. Snížené až vyčerpané zásoby železa signalizuje pokles feritinu v séru, při dále pokračující depleci klesá i saturace transferinu, současně se zvyšuje koncentrace transferinu v krvi, stoupá i tzv. TIBC (total iron binding capacity) krve. Ve fázi manifestní sideropenické anémie dochází k poklesu koncentrace hemoglobinu, vyvíjí se hypochromie erytrocytů a mikrocytóza. V této fázi většinou již pozorujeme výraznější klinické příznaky sideropenie zvýšenou únavnost, poruchy koncentrace, dušnost při větší či menší námaze, známky tkáňové sideropenie v podobě padání vlasů, snížené kvality nehtů až k obrazu koilonychie, slizniční změny v oblasti jícnu mohou vést až k poruchám polykání, změny v žaludeční sliznici mohou vést k projevům atrofické gastritidy, což dále zhoršuje karenci železa. Časnou laboratorní známkou deplece železa je zvýšení protoporfyrinu v erytrocytech. Nověji lze k diagnostice sideropenie využít i stanovení koncentrace solubilních TfR v séru (stfr), u sideropenie dochází k jejímu zvýšení. Zvláště v kombinaci se stanovením koncentrace feritinu lze uvedená vyšetření využít i k detekci sideropenie u kombinovaných stavů například u nefrogenní anémie na léčbě erytropoetinem. Většina autorů doporučuje vypočítat takzvaný feritinový index, kdy se koncentrace stfr dělí logaritmem koncentrace feritinu, jelikož samotné zvýšení hladiny stfr v séru není specifické pro sideropenii můžeme je nalézt u všech stavů se zvýšenou erytropoézou (např. u hemolytických anémií). Léčebným postupem u sideropenie je jednak snaha o odstranění její příčiny a zároveň zvýšený přívod železa, nejčastěji v podobě perorálních tablet. Jedině v případě výrazné poruchy vstřebávání a/nebo intolerance této léčby (nutno však vyzkoušet více preparátů) jsme nuceni sáhnout k parenterální aplikaci železa v podobě intramuskulárních nebo intravenózních injekcí. V těchto indikacích je však nutno celkovou dávku parenterálního železa přesně vypočítat, abychom eliminovali možnost nežádoucích vedlejších účinků. Pøetí ení organizmu elezem Úvod Přetížení organizmu železem vzniká při pozitivní bilanci tohoto prvku, zapříčiněné zvýšeným vstřebáváním a/nebo přívodem železa, dále při zvýšeném katabolizmu hemoglobinu u hemolýz a inefektivní erytropoézy a konečně při poruchách transportu železa z buněk. Při hemolytických anémiích, zvláště při vrozených hemoglobinopatiích, je prokázáno i zvýšené vstřebávání železa v duodenu, pravděpodobně důsledkem signalizace přes erytropoetický regulátor. Nejčastější příčiny a mechanizmy 996 Vnitø Lék 2005; 51(9)

Tab. 2. Nejčastější příčiny pozitivní bilance železa. Mechanizmus zvýšený přívod Fe parenterálně zvýšený přívod Fe potravou iron loading anemias hereditární hemochromatóza I V poruchy utilizace Fe Výskyt polytransfudovaní pacienti, vzácněji při iatrogenním předávkování parenterálním Fe africká forma hemochromatózy, je zde velmi pravděpodobně i porucha enterálního bloku vstřebávání Fe zvýšené vstřebávání železa při zvýšené (i inefektivní) erytropoéze např. talasémie, jiné hemolýzy mutace v genech, kódujících proteiny regulace metabolizmu Fe anémie chronických onemocnění, sideroblastické anémie. Overload železem zde však, pokud nejsou pacienti polytransfundováni, většinou nevede k výraznějším orgánovým poruchám. zvýšené ukládání Fe v hepatocytech při jaterních afekcích jakékoliv etiologie Tab. 3. Klinická manifestace hemochromatózy (volně dle [55]). hepatopatie: fibróza, cirhóza, karcinom, porfyria cutanea tarda slabost, malátnost, úbytek váhy hypopituitarizmus, hypotyreoza, hyperpigmentace, hypogonadizmus kardiomyopatie dysrytmie, srdeční selhávání diabetes mellitus insuficience nadledvin bolesti břicha atropatie vzniku přetížení organizmu železem jsou uvedeny v tab. 2. V klinické praxi v našich podmínkách jsou daleko nejčastějšími příčinami iron overload, mnohočetné transfuze u nejrůznějších typů anémií, nereagujících na jinou léčbu, a dále hereditární hemochromatóza. V dalším textu se budu věnovat převážně problematice hereditární hemochromatózy. U anémie chronických onemocnění (ACD Anemia of Chronic Diseases) jde o sekundární poruchu utilizace Fe, kdy je železo zadržováno v RES a je obtížněji dostupné pro erytropoézu. Ve většině případů ACD lze detekovat zvýšenou expresi genu pro hepcidin (negativní regulátor transportu železa přes membrány enterocytů a buněk monocytomakrofágového systému viz níže). Lze v tom spatřovat snahu organizmu o obranu proti příčině ACD železo je takto odebráno nejen erytropoéze, ale i neoplastické či infekční buňce. Nejčastějšími příčinami ACD jsou chronické záněty, infekty a neoplazie. Mechanizmus vzniku ACD je však složitější než pouhá porucha utilizace Fe a je často multifaktoriální. Těžké hepatopatie jakékoliv etiologie (alkoholická cirhóza, chronické hepatitidy, Wilsonova nemoc aj) jsou spojeny se zvýšeným ukládáním železa do hepatocytů. Je známou skutečností, že abúzus alkoholu potencuje hypersiderózu jater u pacientů s hereditární hemochromatózou. U sideroblastických anémií nacházíme primárně či sekundárně porušenou utilizaci Fe s typickým nálezem prsténčitých či jinak patologických sideroblastů při barvení na nehemové Fe v kostní dřeni. Sekundární sideroblastické anémie detekujeme nejčastěji u neoplazií, chronických zánětů nebo po některých lécích a chemikáliích. Častěji však jde o tzv. primární nebo idiopatické sideroblastické anémie, které jsou dnes řazeny k tzv. myelodysplastickým syndromům (MDS). Podrobnější rozbor této problematiky však překračuje rámec této práce. Hereditární hemochromatóza Metabolizmus Fe je výrazně pozměněn u osob s hereditární hemochromatózou (HH). Jde o většinou autozomálně recesivní onemocnění, při němž jsou tito jedinci ohroženi nadměrným ukládáním Fe do parenchymatózních orgánů. Sideróza orgánů se klinicky manifestuje širokým spektrem nespecifických symptomů, typický plně vyjádřený obraz v podobě bronzového diabetu, tradovaný v učebnicích, je spíše vzácný. HH představuje model primárního přetížení organizmu železem v důsledku poruchy regulace metabolizmu železa a je ji nutno odlišit od sekundárního iron overload a od stavů zapříčiněných parenterálním přívodem nadměrného množství železa do organizmu [58]. V tab. 3 jsou uvedeny klinické symptomy, spojené s manifestací hereditární hemochromatózy. Patofyziologický mechanizmus HH není přesně znám, jde především o poruchu regulace vstřebávání Fe v gastrointestinálním traktu (vadný tzv. slizniční blok nebo porucha negativních zpětných vazeb rezorpce Fe). Devadesátá léta minulého století byla svědkem intenzivní snahy o identifikaci genů zodpovědných za tuto poruchu. Z dřívějších studií bylo zřejmé, že kandidátní gen nebo geny pro HH budou ležet v blízkosti www.vnitrnilekarstvi.cz 997

lokusů hlavního histokompatibilního komplexu (MHC maior histocompatibility complex). Posléze byl izolován a identifikován gen, ležící 4,5 Mb telomericky od HLA-A lokusu, který byl nazván nejprve HLA-H a posléze HFE gen [15,51]. Další výzkumy prokázaly, že daleko nejčastější genetickou příčinou HH jsou mutace v HFE genu. V převážné většině případů se jedná o bodovou mutaci G845A, která má za následek záměnu aminokyselin Cys282Tyr = C282Y. Frekvence heterozygotních nosičů mutace HFE C282Y se v kavkazské populaci odhaduje na 5 12 %, frekvence hemochromatózy, diagnostikované na bázi vyšetření parametrů metabolizmu železa, se zde pohybuje mezi 1 : 200 až 1 : 400. Homozygotní stav HFE C282Y lze detekovat u 80 100 % těchto pacientů [25]. Další mutací, spojenou s HH, je záměna H63D v molekule HFE (mutace HFE H63D). Její frekvence u kavkazské populace obnáší až 25 %, u HH je však méně frekventovaná než HFE C282Y. Asi u 5 % pacientů s HH je nalézán smíšený heterozygotní stav C282Y + H63D. Třetí detekovanou mutací HFE genu je S65C, její význam pro rozvoj manifestní HH je však méně jasný, nejspíše i zde půjde o dvojité heterozygoty C282Y + S65C. Vzácně byly identifikovány další mutace v intronových i exonových oblastech HFE genu, jde například o mutaci E168X, detekovanou u heterozygotních C282Y nosičů severského původu [52]. Současný výčet mutací a polymorfizmů, detekovaných v oblasti HFE genu, obnáší více než 30 drobných molekulárních odchylek od sekvence wild type HFE genu, jejich klinický význam je v současnosti nejasný a jejich frekvence nízká [58]. Některé z nich (např. HFE*09 T314C a HFE*10 G277C) se nacházejí v oblasti HFE genu, kódující oblast ovlivňující afinitu HFE proteinu k TfR, jiné (např. HFE*04 v intronu 4) mohou zkreslovat diagnostiku běžných HFE mutací. HFE mutace se nyní nově označují symboly HFE* 01. HFE*25., přičemž nejčastější 3 jsou označeny jako HFE*01 (G845A = C282Y), HFE*02 (C187G = H63D) a HFE*03 (A193T = S65C) [25]. Mechanizmus, jakým porucha funkce HFE zapříčiňuje zvýšenou akumulaci železa, není znám. Nově je však postulována možnost, že HFE protein po vazbě na TfR spíše zvyšuje endocytózu transferinového železa do buněk, včetně prekurzorových buněk duodenálních krypt. Porucha funkce HFE proteinu by zde vedla k sideropenii buněk krypt s rezultujícím předprogramováním enterocytů ve smyslu sníženého množství železa v organizmu [37,56]. Nový pohled na regulaci metabolizmu železa včetně mechanizmu, jakým by deficit funkčního HFE proteinu mohl vést k manifestaci iron overload, přinášejí poznatky o nově objevené regulační molekule zvané hepcidin. Gen HAMP, kódující peptidový hormon hepcidin, leží v oblasti 19q13 a jeho exprese se zvyšuje při zvýšeném přívodu železa v dietě a při zánětech (protein akutní fáze). Přímým produktem exprese HAMP genu je propeptid čítající 84 aminokyselin, který dále podléhá enzymatickému štěpení ve zralé peptidy, dlouhé 20, 22 a 25 aminokyselin. Zralé peptidy jsou syntetizovány v játrech, v enterocytech a monocyto-makrofágovém systému, kde působí jako negativní regulátory transportu železa přes buněčné membrány ven z buněk. V makrofázích navíc zastává funkci antimikrobiálního agens. Při zvýšené expresi hepcidinu klesá transport železa přes bazolaterální membrány enterocytů a dochází k zadržování železa v monocyto-makrofágovém systému. Ukazuje se, že HFE protein může působit jako induktor a/nebo regulátor exprese HAMP genu. Myší modely HFE hemochromatózy a studie u lidí prokázaly, že HFE-deficientní homozygoti vykazují neadekvátně nízkou expresi HAMP genu navzdory přetížení organizmu železem [19]. U HFE hemochromatózy se rovněž železo ukládá převážně v hepatocytech a Kupfferovy buňky vykazují zvýšený loading železem až v pozdějších stadiích rozvoje HH, což je kompatibilní se sníženou funkcí hepcidinu v těchto jaterních makrofázích. Nicolas et al publikovali velmi zajímavou studii na myších modelech HFE hemochromatózy. U myších homozygotů Hfe / (Hfe = nulová alela Hfe genu) byla detekována výrazně nižší exprese Hamp genu ve srovnání s Hfe +/+ linií při zátěži železem v potravě. Linie Hfe / byla poté zkřížena se 3 liniemi myší, konstitutivně zvýšeně exprimujícími Hamp gen. Zkřížené linie Hfe / Hamp ++/++ myší nevykazovaly známky přetížení organizmu železem, jinými slovy konstitutivně zvýšená exprese hepcidinu zabránila u Hfe / linie zvýšené akumulaci železem [43]. Muckenhaler et al vyšetřovali expresi genů u myších modelů lidské hemochromatózy (Hfe / nebo Hfe 845A/845A homozygoti) pomocí mikroarray IronChip, obsahujícího 300 genů, kódujících proteiny přímo či nepřímo zasahující do metabolizmu železa. Exprese byla vyšetřena ve vzorcích duodenální sliznice a jaterní tkáně, byla sledována odpověď na přetížení organizmu železem u Hfe a Hfe 845A homozygotů ve srovnání s normálními Hfe wild type zvířaty. Významné rozdíly byly pozorovány v duodenální expresi Cybrd1 a hefestinu (vyšší exprese u Hfe mutací) a zejména v jaterní expresi Hamp genu, jehož exprese byla snížena, zatímco Hfe wild type pokusná zvířata reagovala na přetížení železem zvýšením exprese genu pro hepcidin. Autoři navíc nepotvrdili zvýšenou expresi DMT1 a feroportinu u Hfe mutovaných myších linií [38]. Pacienti s konstitutivně nebo neoplasticky zvýšenou expresí HAMP vykazují známky na železo refrakterní anémie s defektem vstřebávání železa enterocyty a s re- 998 Vnitø Lék 2005; 51(9)

Tab. 4. Rozdělení HH. Typ HH Mutace, dědičnost Klinický obraz HH typ 1, HFE1 HFE C282Y, H63D, S65C, vzácně penetrace i u homozygotů C282Y variabilní, jiné exonové i intronové mutace současné zprávy udávají pouze 1 2 % autozomálně recesivní (AR) fibróza až cirhóza jater, kardiomyopatie, pankreatopatie, diabetes, artropatie, pigmentace kůže HH typ 2a, HFE2a donedávna mutovaný gen neznám, juvenilní typ HH s manifestací do 30. roku života, jde o oblast 1q21, recentně popsány rozvoj především těžké kardiomyopatie mutace v genu kódujícím hemojuvelin a hypogonadizmu AR plná penetrace HH typ 2b, HFE2b 19q13 klinický obraz shodný s 2a mutace genu HAMP kódující hepcidin AR HH typ 3, HFE3 několik mutací v genu pro TfR2 obraz je podobný typu 1 AR přesná frekvence penetrace není známa HH typ 4, HFE4 několik mutací v genu pro feroportin 1 narozdíl od typu 1 a 3 je vysoká koncentrace Fe autozomálně dominantní! (AD) v makrofázích, je jen lehce zvýšená saturace transferinu železem; orgánová sideróza se liší dle konkrétní mutace AD s plnou penetrací. HH typ 5, HFE5 mutace v genu FTH1 kódujícím AD H-řetězec feritinu tencí železa v monocyto-makrofágovém systému podobně jako pacienti s anémiemi při chronických zánětech [19]. Na druhé straně byly již popsány mutace v HAMP genu, zapříčiňující brzkou klinickou manifestaci juvenilní hemochromatózy typu 2b [50]. Vzhledem k těžkému obrazu přetížení železem, který se navíc u postižených jedinců manifestuje do 30. roku života, hraje velmi pravděpodobně hepcidin jednu z vedoucích rolí v regulaci homeostázy železa. Spekuluje se i o možnosti terapeutického využití hepcidinu v prevenci přetíženín organizmu železem u pacientů s HH [43]. Nově jsou nalézány mutace v dalších genech, kódujících jiné regulační proteiny homeostázy železa. V současnosti se proto HH rozděluje do 5 typů, které se liší nejen lokalizací mutací, ale často i klinickým obrazem. Typ 2 až 5 se někdy označuje jako non-hfe hemochromatóza. Na rozdíl od frekventovaných HFE*01 *03 mutací jsou ostatní HFE i non-hfe mutace vzácné. Současný pohled na genetiku HH shrnuje tab. 4. Juvenilní hemochromatóza, HH 2. typu, HFE2 JH představuje vyhraněnou klinickou jednotku. Muži i ženy jsou postiženi stejnou měrou, klinický obraz závažného přetížení organizmu železem je zřetelný již kolem 20. roku života. V popředí potíží je hypogonadotropní hypogonadizmus a závažná kardiomyopatie, která bez léčby vede k brzké smrti důsledkem kardiálního selhání. Typickým biochemickým nálezem u JH je extrémně zrychlená akumulace Fe, pohybující se kolem 3 4 mg za den. U HFE hemochromatózy obnáší tato akumulace signifikantně méně kolem 1 mg za den. Genetické studie prokazují vazbu JH na chromozomální oblast 1q21 a donedávna nebyl znám gen, jehož mutace je zodpovědná za extrémně zvýšenou akumulaci Fe u JH. Dle zcela recentní publikace Leeové et al se zdá, že alespoň u některých případů JH asociované s chromozomální oblastí 1q lze nalézt mutace v nově objeveném a klonovaném genu pro hemojuvelin [32]. V současnosti Roetto et al popsali rodinu s JH, u níž nebyla zřejmá vazba na 1q21, nýbrž na 19. chromozom. Další analýzou se podařilo identifikovat 2 mutace v genu HAMP, ležícím v oblasti 19q13, který kóduje peptid hepcidin. Ve studiích na zvířatech byl prokázán jasný vztah mezi defekty hepcidinu a fenotypickými projevy, typickými pro HH. JH se proto v současné době rozděluje do 2 skupin, označovaných jako HH 2a a HH 2b viz rovněž tab. 5 [12,42,43,50]. Hereditární hemochromatóza 3. typu, HFE3 Jedná se o vzácné autozomálně recesivní onemocnění, zapříčiněné mutacemi v genu pro TfR2. TfR2 patří spolu s TfR a PSMA (Prostate Specific Membrane Antigen) do TfR proteinové rodiny. TfR2 je exprimován ve 2 formách, označených jako alfa a beta. Analýzy pomocí nothern blot- www.vnitrnilekarstvi.cz 999

Tab. 5. Juvenilní hemochromatóza. Lokalizace defektů Gen Mutace Dědičnost HH 2a 1q21 donedávna neznám, recentně G320V, I222N, AR s plnou penetrací popsán gen pro hemojuvelin C80R, L101P HH 2b 19q13 HAMP, kódující hepcidin 93delG = frameshift AR s plnou penetrací C166T = R56X Tab. 6. Mutace a polymorfizmy TfR2. mutace s fenoty- Y250X nonsense pickým projevem E60X frameshift, premature stop codon HH III. typu M172K missense AVAQ 594 597del delece 12 bp = 4 AK Q690P missense polymorfizmy A75V (nebyl prokázán I238M vztah k přetížení A376D organizmu Fe) R455Q R752H, 2355-3 UTR ting prokázaly expresi alfa transkriptu především v játrech a méně v sliznici gastroduodena, beta forma je exprimována v nízké koncentraci ve všech tkáních a je detekovatelná pouze RT-PCR (reverse transcriptase PCR) [27]. Vysoká exprese TfR2alfa byla prokázána rovněž v erytroidních progenitorových buňkách, kde podléhá down-regulaci při erytropoetinem navozené diferenciaci in vitro. Mechanizmus regulace exprese TfR2 na transkripční a translační úrovni je nejasný, protože na rozdíl od genu pro TfR neobsahuje mrna pro TfR2 IRE, a není tak pod vlivem IRPs. TRF2 je schopen vázat transferin, avšak s nižší afinitou než TfR. TfR2 na rozdíl od TfR neváže HFE protein in vitro a hraje velmi pravděpodobně v metabolizmu železa odlišnou, i když závažnou roli. Exprese TfR a TfR2 byla studována například na K562 buněčné linii a byl prokázán opačný vliv železem nasyceného transferinu zatímco exprese TfR byla potlačena, exprese TfR2 byla zvýšena. Navíc nebyl prokázán vliv nedostatku nebo nadbytku železa na expresi TfR2 [48]. Bylo již popsáno několik mutací v genu pro TfR2, spojených s klinickým obrazem HH [11,22,35,48]. Na myším modelu lidské hemochromatózy, kdy byla insercí myšího homologu lidské Y250X mutace (tfr Y245X) vytvořena tfr2 / (tfr knock out) myš, byla prokázána kauzální souvislost defektu TFR2 s fenotypem přetížení organizmu železem [17]. Nově objevená mutace R105X (nonsense mutation) zapříčiňuje v homozygotním stavu obraz HH s manifestací v adolescentním věku [30]. Lze shrnout, že TfR2 hraje významnou regulační roli v metabolizmu železa a že jeho mutace zodpovídají za vzácnou formu HH 3. typu. Některé mutace a polymorfizmy TfR2 jsou uvedeny v tab. 6. Hereditární hemochromatóza 4. typu, HFE4, ferroportin disease Jde o skupinu autozomálně dominantních onemocnění, u nichž v důsledku parciální insuficience feroportinu vázne export železa z buněk RES. Navzdory poruše funkce feroportinu není porušen transport Fe přes enterocytovou bariéru, u některých typů navíc dochází i k časnějšímu ukládání Fe v buňkách parenchymatózních orgánů pro vadný transport Fe i z těchto buněk. Poměrně typickým nálezem je normální, nebo i lehce snížená saturace transferinu železem, sérové železo může být i sníženo. Nacházíme zde izolovanou hyperferitinemii, obrážející hypersiderózu RES. Je již popsáno několik mutací feroportinového genu, zatím však není jasné, proč u části pacientů dochází k přetížení převážně buněk RES-u a u jiných jsou zároveň postiženy i parenchymatózní buňky. Gen pro feroportin leží v oblasti 2q32 a nazývá se rovněž SLC11A3 (solute carrier family 11, member A3). Všechny dosud popsané mutace SLC11A3 genu leží buď v oblasti kódující transmembránové domény feroportinu 1 a 3, nebo extracelulární kličku (konec helixu 3). Zajímavá je delece 485-487del TTG, která má za následek deleci valinu Val162del v oblasti 3 valinových repeticí (160 162) v transmembránové doméně feroportinu s následnou poruchou jeho funkce. Uvádí se, že vzhledem k tomu, že tato mutace vzniká nejspíše mechanizmem slipped strand mispairing, bude velmi pravděpodobně nejčastější ze všech mutací SLC11A3 genu a možná bude tvořit i genetický podklad většiny non-hfe hemochromatóz [4,12,47, 49,57]. Tab. 7 shrnuje nejčastější mutace genu pro feroportin. HFE5 Japonští autoři detekovali bodovou mutaci v 5 UTR IRE oblasti genu FTH1, kódujícím syntézu těžkého řetězce feritinu. Jde o autozomálně 1000 Vnitø Lék 2005; 51(9)

Tab. 7. Mutace feroportinového genu (SLC11A3 gen). 485 487delTTG = Val162del T190C = Tyr64Asp (Y64N) missense transmembránová doména hypersideróza RES i hepatocytů A430C = N144H missense transmembránová doména gain of function? hypersideróza RES i hepatocytů A431C = N144T missense transmembránová doména loss of function hypersideróza RES i hepatocytů transmembránová doména feroportinu rekurentní mutace hypersideróza RES, parenchymatózní buňky postiženy až v pozdních stádiích A77D missense oblast blízko transmembránové domény loss of function časná sideróza makrofágů dominantní mutaci A49T. Tato mutace zvyšuje vazebnou afinitu IRE pro IRP1 a IRP2, což vede ke snížené translaci mrna pro H-feritinový řetězec s rezultující sníženou feroxidázovou aktivitou a zvýšeným influxem železa do buněk [26]. Zatím nedořešena je problematika etiopatogeneze tzv. africké formy hemochromatózy. Tato choroba se často vyskytuje u určitých černošských populací v subsaharské oblasti Afriky. V těchto komunitách se hojně konzumuje pivo, vařené v železných nádobách, což vede ke zvýšenému výskytu hepatálních lézí, pravděpodobně v důsledku velmi vysokého příjmu železa spolu s alkoholem. Pátrání po genetickém podkladu hemochromatózy u těchto nemocných bylo však zatím neúspěšné, rodinné studie však naznačují podíl genetických faktorů na manifestaci této formy přetížení železem. Na rozdíl od klasické HH zde nacházíme akumulaci železa primárně v Kuppferových buňkách, zajímavá je i skutečnost, že africká forma hemochromatózy byla detekována i u Afroameričanů žijících v USA v naprosto rozdílných podmínkách ve srovnání se subsaharskou oblastí Afriky [23]. Lze dále předpokládat, že v blízké budoucnosti budou jednak objeveny další regulátory metabolizmu Fe, a jednak budou detekovány další patogenní mutace v kandidátních i nekandidátních genech a oblastech DNA, mající za následek přetížení organizmu železem. Z hlediska selekce nejfrekventovanějších mutací zapříčiňujících HH je vzhledem k jejich vysoké frekvenci v kavkazské populaci pravděpodobné, že v minulosti přinášely svým nositelům určitou výhodu. Situace je zde analogická s výskytem jiné frekventované kavkazské mutace totiž mutace R506Q v genu pro koagulační faktor V (FV Leiden), která zapříčiňuje mírný hyperkoagulační stav. Obě mutace jsou nejvíce detekovány v populacích severských zemí. Lze si představit, že mírně zvýšená srážlivost krve a zvýšené vstřebávání Fe z potravy zvýhodňovalo své nositele ve tvrdých severských podmínkách boje o potravu, teritorium a přežití. V současnosti se však podmínky zevního prostředí v průmyslově rozvinutých zemích dramaticky změnily ve smyslu nadbytku potravy a nedostatku přímého boje a pohybu, a původně výhodné mutace se tak staly spíše nevýhodnými, jelikož ohrožují své nositele hyperkoagulací a přetížením orgánů železem. Přes výrazné pokroky ve výzkumu HH zůstává nedořešena a nezodpovězena řada závažných otázek týkajících se přesného mechanizmu vzniku, penetrace a možností prevence HH. V době prvých popisů případů HH v 19. století se HH považovala za vzácnou chorobnou jednotku. Ve světle výrazně vysoké frekvence HFE mutací v kavkazské populaci se objevila v odborné literatuře tvrzení, že jde o vůbec nejčastější vrozenou metabolickou poruchu s vysokou morbiditou i mortalitou. Další výzkumy však ukázaly, že klinická penetrace u homozygotních nositelů HFE mutace C282Y není vysoká apravděpodobně nepřesahuje 5 %. Současné studie se však liší jak populačním složením vyšetřených souborů, tak i kritérii pro diagnózu iron overload a pro klinickou manifestaci, tj. skutečnou klinickou penetraci nejčastějších HFE mutací. Lze si představit kontinuum od pouhého homozygotního nosičství C282Y mutace přes prokázané odchylky v metabolizmu železa až ke klinické manifestaci hereditární hemochromatózy v podobě poškození parenchymatózních orgánů železem. Intermediální fenotyp HH představují parametry metabolizmu železa saturace transferinu železem a koncentrace feritinu v séru. Cutoff hladiny pro saturaci transferinu (TS transferrin saturation) se pohybují od 45 do 62 %, cutoff hodnoty pro sérový feritin od 125 µg/l po 200 µg/l pro ženy a od 250 µg/l po 325 µg/l pro muže. Je však nutno latentní přetížení organizmu železem potvrdit nejméně 1krát opakovaným vyšetření TS a feritinu, jelikož například až u 45 85 % vyšetřených osob se při 2. vyšetření nedaří prokázat zvýšenou TS [23]. Je rovněž zřejmé, že i u větší- www.vnitrnilekarstvi.cz 1001

ho počtu osob, jejichž laboratorní hodnoty se pohybují nad arbitrárně stanovenými cut-off limity, nemusí dojít ke klinické manifestaci HH. Odhaduje se, že klinické příznaky HH vykazuje asi 1/3 až 1/2 pacientů s prokázaným iron overload. Studií, které prospektivně sledovaly soubory osob s pozitivními testy metabolizmu železa, je překvapivě málo. Navíc jen málo studií objektivně prokazovalo stav přetížení organizmu železem buď jaterní biopsií, nebo kvantitativní flebotomií. Bradley et al shrnuli poznatky ze studií, které prokazovaly iron overload výše jmenovanými vyšetřeními a konstatují, že u 58 % mužů a 44 % žen s objektivně prokázaným iron overload byl detekován 1 nebo více z následujících příznaků klinické manifestace HH: jaterní fibróza nebo cirhóza, hepatomegalie, kardiomyopatie, artropatie, diabetes, nitrobřišní bolest. Základním nedostatkem všech těchto studií je však vcelku překvapivá neexistence kontrolního souboru, což dosti komplikuje konečnou interpretaci výše uvedených nálezů [8,23]. Beutler et al vyšetřili v roce 2002 v rámci zdravotní studie v San Diegu v Kalifornii 41 038 osob. Bylo odhaleno 0,4 % (152/41 038) C282Y homozygotů, u nichž byla studována klinická penetrace ve srovnání s kontrolní skupinou s normálním 282 HFE genotypem. Byl zjištěn 2krát vyšší výskyt elevace AST (8 % versus 4 %) a elevace plazmatického kolagenu typu IV jako markeru jaterní fibrózy (26 % versus 11 %). U C282Y homozygotů nebyl shledán statisticky významný zvýšený výskyt příznaků ve smyslu slabosti, atralgií, impotence, hyperpigmentace kůže nebo diabetu [6]. Při bližším rozboru studie však lze konstatovat, že 75 % mužských a 40 % ženských homozygotů vykazovalo TS nad 50 %, zvýšená hladina feritinu (nad 250 µg/l u mužů a nad 200 µg/l u žen) byla detekována u 76 % mužských a 54 % ženských homozygotů. U 25 % C282Y homozygotů byla navíc detekována zvýšená hladina kolagenu typu IV. Autoři odhadli klinickou penetraci u C282Y homozygotů na asi 1 % s tím, že jak laboratorní známky iron overload, tak nepřímé známky hepatopatie (jaterní biopsie nebyly provedeny) dle jejich názoru neměly větší vliv ( little or no effect ) na přežití, což je diskutabilní. Navíc 45 z 152 homozygotů bylo již léčeno venepunkcemi pro laboratorně prokázané přetížení železem [41]. Olynyk et al vyšetřili v roce 1999 v rámci populační studie 3011 osob a nalezli 16 (0,5 %) C282Y homozygotů.všech 16 homozygotů vykazovalo laboratorní známky iron overload ve smyslu hladiny feritinu nad 300 µg/l, u 15 se saturace transferinu pohybovala nad 45 %. U 11 těchto homozygotů byla provedena jaterní biopsie a u všech byl nalezen zvýšený jaterní index železa [44]. Několik studií nenalezlo sníženou frekvenci C282Y u seniorských populací, což hovoří proti tvrzení o vysoké morbiditě i mortalitě homozygotů. Zajímavá z tohoto pohledu je i francouzská studie Coppinové et al, prokazující vysokou frekvenci HFE mutací u 100letých probandů [6,14, 59]. Rodinné studie dále prokázaly různou klinickou penetranci u homozygotních nosičů C282Y mutace někteří homozygotní příbuzní probandů s HFE hemochromatózou zůstávají asymptomatičtí do vysokého věku, zatímco u jiných se genetická dispozice klinicky manifestovala [1]. Lze shrnout, že penetrace HFE genotypu u homozygotů je velmi pravděpodobně pod vlivem dalších genetických i zevních faktorů a je nižší, než se původně předpokládalo, i když často není přesně definováno, co se pojmem penetrace myslí (laboratorní známky iron overload?, hepatopatie?, plně vyjádřený klasický obraz bronzového diabetu?). Analýzou všech dostupných dat se proto penetrace HFE hemochromatózy v současnosti odhaduje v širokém intervalu mezi 1 50 % [23]. Ve světle výše uvedených skutečností byly revidovány návrhy na všeobecné genetické testování populace na nejčastější HFE mutace. V současnosti se nepovažuje za přesvědčivě prokázané, že by toto testování přineslo výraznější užitek, avšak problematika není definitivně uzavřena s tím, že nové klinické studie by měly vnést více jasna do závažných otázek benefitu obecného populačního screeningu na HH [23]. Definitivně není uzavřena ani problematika testování v rámci rodinných příslušníků probandů s klinickou manifestací HH. Zcela jistě nelze stanovit diagnózu HH pouze na základě vyšetření HFE genotypu, je nutno zohlednit i opakované vyšetření parametrů metabolizmu železa, eventuálně i dalších faktorů, jelikož homozygotní rodinní příslušníci probandů s manifestní HH vykazují různou míru a frekvenci klinické penetrace C282Y genotypu [1]. Penetrace jiných než C282Y HFE genotypů se odhaduje ještě níže než 1 % a genetické poradenství u takto stigmatizovaných osob je proto ještě obtížnější. Stanovování HFE genotypu u dětí z postižených rodin není dle současných poznatků o klinické manifestaci HFE hemochromatózy ve středním a vyšším věku indikováno [2,9]. Další závažnou nedořešenou otázkou zůstávají mechanizmy, jakými se liší jednotlivé typy HH co do orgánové lokalizace iron overload. Velmi zajímavý je rovněž vliv HFE mutací na manifestaci kardiální i extrakardiální aterosklerózy. Data shromážděná řadou klinických studií nejsou jednoznačná, ale zdá se, že převažují informace negující vliv HFE mutací a poruch metabolizmu železa na manifestaci vaskulárních onemocnění, i když poslední dobou byly publikovány práce, podporující vliv přetížení organizmu železem na rozvoj aterosklerózy [3,5,7,10,13,18, 28,29,34,36,45,46,54,55,60]. Kancerogenní vliv přetížení organizmu železem je jednoznačně pro- 1002 Vnitø Lék 2005; 51(9)

kázán u hepatocelulárního karcinomu, který představuje nejzávažnější komplikaci siderogenní jaterní cirhózy. Uvádí se, že riziko vzniku hepatocelulárního karcinomu je u pacientů s cirhózou na bázi hemochromatózy u mužů starších 55 let až 200krát vyšší oproti kontrolní populaci [58]. O hemochromatózou podmíněné kancerogeneze v jiných orgánech a lokalizacích není dostatek důkazů. Vzhledem k vlivu Fe na proliferaci a diferenciaci buněk však studie kancerogenního efektu přetížení organizmu Fe dále pokračují [21]. Nejasnou oblastí je i vliv přetížení organizmu železem manifestací diabetes mellitus. Zatím není jednoznačně prokázána oprávněnost genetického screeningu na HH u pacientů s cukrovkou, byly však nalezeny korelace mezi parametry přetížení železa a inzulinovou rezistencí [16,20]. Důležitou problematikou je co nejpřesnější kvantifikace stupně přetížení organizmu železem. Jaterní biopsie přináší informace nejen o stupni a typu postižení jaterního parenchymu (u HH vidíme železo nejvíce v hepatocytech a tíže siderózy klesá centrilobulárně, u sekundárních přetížení jsou více postiženy elementy RES), ale i o doprovodné fibróze, cirhóze, alkoholickém postižení apod. Siderózu lze kvantifikovat vyjádřením tzv. jaterního indexu železa hepatic iron index (HII). HII vypočítáme, dělíme-li množství železa v jaterní sušině, vyjádřené v mikromolech na gram sušiny (LIC liver iron concentration) věkem pacienta. Je prokázáno, že HII nad 1,9 nacházíme u pacientů s významným přetížením organizmu železem, vyžadujícím neodkladnou léčbu [40]. Jaterní biopsie je však invazivním vyšetřením, a proto jsou zkoumány možnosti neinvazivního stanovení stupně přetížení. Koncentrace feritinu v séru jen volně koreluje se stupněm iron overload, protože je pod vlivem řady dalších faktorů (zánět, stupeň poškození jater, neoplazie a další), a je proto méně spolehlivým nástrojem kvantifikace přetížení a hodí se nejlépe pro sledování terapie viz níže. V současnosti je nejpřesnější metodikou kvantifikace jaterního iron overload měření magnetické vnímavosti parenchymu na principu stanovení paramagnetické odpovědi tkáně, evokované aplikací konstantního magnetického pole na oblast jater. Paramagnetická odpověď je měřena pomocí SQUID (superconducting quantum interference device) apřístroj se nazývá susceptometr (susceptibility = vnímavost). Validační experimenty prokázaly excelentní shodu mezi stanovením LIC z jaterní biopsie a SQUID metodikou. Nevýhodou je vysoká cena a omezená dostupnost vyšetření (v současnosti pouze 4 susceptometry na celém světě), přístrojem navíc nelze měřit obsah železa v myokardu. Magnetická rezonance je méně přesná než susceptometrie, je však dobře dostupná a lze jí kvantifikovat i siderózu myokardu. CT je jen málo spolehlivou metodou stanovení obsahu železa v tkáních, a v současnosti se proto v této indikaci nedoporučuje [24]. Léčbou volby HH jsou pravidelné flebotomie se snahou dosáhnout redukce zásob železa až k dolní hranici normy. Doporučuje se takzvaná kvantitativní flebotomie, kdy je množství železa odebrané flebotomií korelováno s hladinou feritinu v séru. Poměr mezi stavem zásob železa a koncentrací feritinu v séru je totiž individuální a může se u různých pacientů dost lišit. Zpočátku je nutné provádět flebotomie nejméně každý týden, udržovací flebotomie po snížení koncentrace feritinu jsou vhodné několikrát ročně za kontrol parametrů metabolizmu železa, přičemž by koncentrace feritinu v séru měla být udržována pod 50 µg/l. Léčba desferioxaminem a jinými chelátory železa není u naprosté většiny pacientů s HH indikována, ale nachází své uplatnění u jiných typů iron overload, zvláště u vrozených hemoglobinopatií provázených hemolýzou (například u pacientů s talasemií). Leitmanová et al publikovali v roce 2003 studii skupiny 130 pacientů s HH, zařazených do programu pravidelných flebotomií v Department of Transfusion Medicine, W. G. Magnuson Clinical Center v Bethesdě. 76 % probandů bylo homozygotních pro mutaci HFE C282Y, u zbytku byla HH diagnostikována na bázi vyšetření intermediálního fenotypu (tj. opakovaně patologických biochemických parametrů metabolizmu železa), jiné HFE i non-hfe mutace nebyly vyšetřovány. Jediným kritériem zařazení pacientů do flebotomického programu byla genotypicky a/nebo fenotypicky prokázaná hereditární hemochromatóza, výběr nebyl ovlivněn požadavky na vhodnost pacientů k dárcovství krve. Někteří pacienti byli již v minulosti léčebně flebotomizováni nebo pravidelně darovali krev. Medián počtu flebotomií, nutných k dosažení endpointu v podobě snížení středního objemu erytrocytů (MCV) o 3 % pod bazální hodnotu, obnášel 22 (rozsah 7 99). Flebotomie byly realizovány 1 nebo 2krát týdně. Pacientům, dojíždějícím ze vzdálenějších oblastí, byla nabídnuta možnost dvojité přístrojové erytrocytaferézy. V momentě dosažení endpointu byly hodnoty feritinu všech pacientů pod hranicí 30 µg/l a saturace transferinu byla menší než 30 %. 76 % pacientů z celého souboru splňovalo kritéria pro dárcovství a odebraná krev byla proto použita k transfuzním účelům. 1402 donací erytrocytárních transfuzních přípravků získaných touto cestou proběhlo bez jakýchkoliv komplikací. Dárci s HH byli ve srovnání s běžnými dárci lépe motivováni k opakovaným donacím, a navíc někteří udávali i větší komfort odběrů v transfuzním centru oproti flebotomiím prováděným dříve mimo toto centrum. Dva roky po zahájení flebotomického programu přispívali www.vnitrnilekarstvi.cz 1003

Tab. 8. Vzácné vrozené poruchy metabolizmu železa. hyperferitinemie mutace v IRE oblasti genu pro L-feritin hyperferitinemie, bilaterální nukleární s autozomálně dominantní 19q katarakta; kongenitální kataraktou Není orgánové přetížení Fe atransferinemie mutace v genu pro transferin sideropenická anémie, retardace růstu, 3q21 depozice Fe v játrech a srdci, krátké přežívání, není Fe v kostní dřeni a slezině dystransferinemie G829S = G277S snížená vazebná kapacita transferinu pro Fe rizikový faktor sideropenie aceruloplazminemie mutace v genu pro ceruloplazmin výrazná akumulace Fe v bazálních 3q21 24 gangliích, játrech a pankreatu, progresivní neurodegenerace, cukrovka Friedreichova ataxie mutace v genu pro frataxin spinorereberální ataxie, 9q13 depozice Fe v myokardu mitochondriální protein, modulující s kardiomyopatií homeostázu Fe a respirační reakce na X chromozóm vázaná mutace v genu pro ABC7 depozice Fe v mitochondriích erytronu sideroblastická anémie s ataxií (ATP-Binding Casette-7) a neuronů mitochondriální protein, spinocereberální ataxie transportující hem? s lehkou sideroblastickou anémií Xq13 dárci s HH 14 % všech donací významným způsobem k výrobě erytrocytárních transfuzních přípravků. Autoři uzavírají, že centralizací flebotomické léčby HH do transfuzních center získá transfuzní služba cenný pool pozitivně motivovaných dárců, všichni pacienti s HH pak mohou profitovat z profesionálně prováděných manuálních i přístrojových flebotomií vycvičeným personálem transfuzní služby [33]. Nemalou výhodou je i možnost provádění přístrojových aferéz, které mohou oproti manuálním flebotomiím odčerpat přibližně 2násobné množství železa a jsou navíc vhodné i u pacientů, kteří manuální flebotomie špatně tolerují [39]. Vzácné poruchy Vzácně se vyskytující mutace a jejich fenotypická exprese jsou shrnuty v tab. 8 [31,53]. Podrobnější rozbor těchto poruch překračuje rámec této práce. Závìr Poruchy metabolizmu železa se v současnosti nacházejí v centru zájmu řady výzkumných týmů, pracujících jak v základním výzkumu, tak i v klinické medicíně. Vzhledem k ubikvitárnímu výskytu tohoto důležitého biogenního prvku nepřekvapí možná asociace poruch metabolizmu železa s rozvojem kardiovaskulárních onemocnění, diabetu, zhoubného bujení i poruch imunity, možnost ovlivnění vyšší nervové činnosti apod. Závažnou otázkou je oprávněnost genetického screeningu na nejfrekventovanější mutace HFE genu, zvláště v kavkazoidních populacích; hlavní překážkou zavedení tohoto finančně náročného vyšetření je nejednotnost panující v písemnictví v otázce penetrace HFE genotypu. Na druhé straně se ukazuje, že pacienti s prokázanou HH mohou být s výhodou léčeni pravidelnými venepunkcemi na transfuzních odděleních. Na řadu výše položených otázek se dočkáme odpovědi jen díky soustředěné práci vědeckých týmů, mnohdy založené na široké interdisciplinární spolupráci. Literatura 1. Adams P, Brissot P, Powell LW. EASL International Consensus Conference on Haemochromatosis. J Hepatol 2000; 33: 485 504. 2. American Society of Human Genetics Board of Directors. Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. Am J Hum Genet 1995; 57: 1233 1241. 3. Annichino-Bizzacchi JM, Saad STO, Arruda VR et al. C282Y mutation in the HLA-H gene is not a risk factor for patients with myocardial infarction. J Cardiovasc Risk 2000; 7: 37 40. 4. Arden KE, Wallace DF, Dixon JL et al. A novel mutation in ferroportin 1 is associated with haemochromatosis in a Solomon Islands patient. Gut 2003; 52: 1215 1217. 5. Battiloro E, Ombres D, Pascale E et al. Haemochromatosis gene mutations and risk of coronary artery disease. Eur J Hum Genet 2000; 8: 389 392. 6. Beutler E, Felitti VJ, Koziol JA. Penetrance of 845 G A (C282Y) HFE hereditary hemochromatosis in the USA. Lancet 2002; 359: 211 218. 7. Bozzini C, Girelli D, Tinazzi E et al. Biochemical and genetic markers of iron status and the risk of coronary artery disease: An angiography-based study. Clin Chem 2002; 48: 4. 8. Bradley LA, Haddow JE, Palomaki GE. Population screening for haemochromatosis: a unifying analysis of published 1004 Vnitø Lék 2005; 51(9)

intervention trials. J Med Screen 1996; 3: 178 184. 9. Burke W, Imperatore G, McDonell SM et al. Contribution of different HFE genotypes to iron overload disease: a pooled analysis. Genet Med 2000; 2: 271 277. 10. Calado RT, Franco RF, Pazin Filho A et al. HFE gene mutations in coronary atherothrombotic disease. Brazil J Med Biol Res 2000; 33: 301 306. 11. Camaschella C, Roetto A, Cali A et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet 2000; 25: 14 15. 12. Cazzola M. Genetic disorders of iron overload and the novel ferroportin disease. Haematologica 2003; 88: 721 724. 13. Claeys D, Walting M, Julmy F et al. Haemochromatosis mutations and ferritin in myocardial infarction: a case-control study. Eur J Clin Invest 2002; 32(Suppl 1): 3 8. 14. Coppin H, Bensaid M, Fruchon S et al. Longevity and carrying the C282Y nutation for haemochromatosis on the HFE gene: case control study of 492 French centenarians. Brit Med J 2003; 327: 132 133. 15. Feder JN, Gnirke A, Thomas W et al. A novel MHC class I like gene is mutated in patients with hereditary hemochromatosis. Nat Genet 1996; 13: 399 408. 16. Fernandez-Real JM, Penarroja G, Castro A et al. Blood letting in high-ferritin type 2 diabetes. Effects on insulin sensitivity and β-cell function. Diabetes 2002; 51: 1000 1004. 17. Fleming RE, Ahmann JR, Migas MC et al. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc Natl Acad Sci USA 2002; 99: 10653 10658. 18. Franco RF, Zago MA, Trip MD. Prevalence of hereditary hemochromatosis in premature atherosclerotic vascular disease. Brit J Haematol 1998; 102: 1172 1175. 19. Gehrke SG, Kulaksiz H, Herrmann T et al. Expression of hepcidin in hereditary hemochromatosis: evidence for a regulation in response to the serum transferrin saturation and to non-transferrin-bound iron. Blood 2003; 102(1): 371 376. 20. Guillygomarc h A, Mendler MH, Moirand R et al. Venesection therapy of insulin resistance-associated hepatic iron overload. J Hepatol 2001; 35: 344 349. 21. Hann HWL, Stahlhut MW, Menduke H. Iron enhances tumor growth. Cancer 1991; 68: 2407 2410. 22. Hoffmann WK, Tong XJ, Ajioka RS et al. Mutation analysis of transferrin receptor 2 in patients with atypical hemochromatosis. Blood 2002; 100: 1099 1100. 23. Imperatore G, Pinsky LE, Motulsky A et al. Hereditary hemochromatosis: perspectives of public health, medical genetics, and primary care. Genetics in Medicine 2003; 5: 1 8. 24. Jensen PD. Evaluation of iron overload. Brit J Haematol 2004; 124: 697 711. 25. Jones DC, Young NT, Pigott C et al. Comprehensive hereditary hemochromatosis testing. Tissue Antigens 2002; 60: 481 488. 26. Kato J, Fujikawa K, Kanda M et al. A mutation in the iron-responsive element of H ferritin mrna, causing autosomal dominant iron overload. Am J Hum Genet 2001; 69: 191 197. 27. Kawabata H, Yang R, Hirama T et al. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor like family. J Biol Chem 1999; 274: 20826 20832. 28. Klipstein-Grobusch K, Koster JF, Grobbee DE et al. Serum ferritin and risk of myocardial infarction in the elderly: the Rotterdam Study. Am J Clin Nutr 1999; 69: 1231 1236. 29. Kraml P, Potočková J, Kopřivová H et al. Feritin, oxidační stres a koronární ateroskleróza. Vnitř Lék 2004; 50(3): 197 202. 30. Le Gac G, Mons F, Jacolot S et al. Early onset hereditary hemochromatosis resulting from a novel TFR2 gene nonsense mutation (R105X) in two siblings of north French descent. Brit J Haematol 2004; 125: 674 678. 31. Lee PL, Halloran C, Trevino R et al. Human transferrin G277S mutation. A risk factor for iron deficiency anemia. Brit J Haematol 2001; 115: 329 333. 32. Lee PL, Beutler E, Rao SV et al. Genetic abnormalities and juvenile hemochromatosis: mutation of the HJV gene encoding hemojuvelin. Blood 2004; 103: 4669 4671. 33. Leitman SF, Browning NJ, Yau YY et al. Hemochromatosis subjects as allogeneic blood donors: a prospective study. Transfusion 2003; 43: 1538 1544. 34. Magnusson MK, Sigfusson N, Sigvaldasson H et al. Low iron-binding capacity as a risk factor for myocardial infarction. Circulation 1994; 89: 102 108. 35. Mattman A, Huntsman D, Lockitch G et al. Transferrin receptor 2 (TfR2) and HFE mutational analysis in non-c282y iron overload: identification of a novel TfR2 mutation. Blood 2002; 100: 1075 1077. 36. Meyers DG. The iron hypothesis: does iron play a role in atherosclerosis? Transfusion 2000; 40: 1023 1029. 37. Montosi G, Paglia P, Garuti C et al. Wild-type HFE protein normalizes transferrin iron accumulation in macrophages from subjects with hereditary hemochromatosis. Blood 2000; 96: 125 1129. 38. Muckenthaler M, Roy CN, Custodio AO et al. Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hermochromatosis. Nature Genetics 2003; 34: 102 107. 39. Muncunill J, Vaquer P, Galmés A et al. In hereditary hemochromatosis, red cell apheresis removes excess iron twice as fast as manual whole blood phlebotomy. J Clin Apheresis 2002; 17: 88 92. 40. Nash S, Morconi S, Sikorska K et al. Role of liver biopsy in the diagnosis of hepatic iron overload in the era of genetic testing. Am J Clin Pathol 2002; 118: 73 81. 41. Neff LM. Current directions in hemochromatosis research: towards an understanding of the role of iron overload and the HFE gene mutations in the development of clinical disease. Nutrition Rev 2003; 61, 1: 38 42. 42. Nicolas G, Bennoun M, Devaux I et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci. USA 2001; 98: 8780 8785. 43. Nicolas G, Viatte L, Lou DQ et al. Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nature Genetics 2003; 34: 97 101. 44. Olynyk J, Cullen D, Aquilia S et al. A population-based study of the clinical expression of the hemochromatosis gene. N Engl J Med 1999; 341: 718 724. 45. Racek J. Železo, volné radikály a ateroskleróza (Editorial). Vnitr Lek 2004; 50(3): 181 183. 46. Ramakrishnan U, Kuklina E, Stein AD. Iron stores and cardiovascular disease risk factors in women of reproductive www.vnitrnilekarstvi.cz 1005