Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Podobné dokumenty
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY

TRANSFORMÁTORY. 4. Konstrukce a provedení transformátor 5. Autotransformátory 6. Mící transformátory 7. Speciální transformátory

TRANSFORMÁTORY Ing. Eva Navrátilová

Transformátory. Teorie - přehled

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM TRANSFORMÁTORU.

6 Měření transformátoru naprázdno

Integrovaná střední škola, Sokolnice 496

Ing. Drahomíra Picmausová. Transformátory

Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti transformátoru, zvláštní transformátory

Měření na 3fázovém transformátoru

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, transformátory a jejich vlastnosti

1.1 Měření parametrů transformátorů

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA

7 Měření transformátoru nakrátko

Elektrotechnické znač Elektrotechnické zna k č y k transformátor ů v jednopólových schématech Značky ve schématech El kt e ro kt t h ec ni k c á kká

Základy elektrotechniky

9 Měření na jednofázovém transformátoru při různé činné zátěži

Rozdělení transformátorů

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

Měření transformátoru naprázdno a nakrátko

Interakce ve výuce základů elektrotechniky

21ZEL2 Transformátory

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, Mělník Ing.František Moravec

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann.

Korekční křivka měřícího transformátoru proudu

Pracovní sešit. Školní rok : 2005 / Transformátory

1 primární vinutí 2 sekundární vinutí 3 magnetický obvod (jádro)

Základy elektrotechniky

20ZEKT: přednáška č. 10. Elektrické zdroje a stroje: výpočetní příklady

Transformátor trojfázový

NÁVRH TRANSFORMÁTORU. Postup školního výpočtu distribučního transformátoru

Studijní opory předmětu Elektrotechnika

Energetická bilance elektrických strojů

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

1.1 Měření hodinového úhlu transformátorů

Magnetické pole cívky, transformátor vzorová úloha (SŠ)

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer

Mgr. Ladislav Blahuta

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-4

Vítězslav Stýskala TÉMA 1. Oddíly 1-3. Sylabus tématu

Digitální učební materiál

Trojfázový transformátor

Pracovní list žáka (SŠ)

musí být odolný vůči krátkodobým zkratům při zkratovém přenosu kovu obloukem,

Určeno pro posluchače bakalářských studijních programů FS

ZADÁNÍ: ÚVOD: SCHÉMA: POPIS MĚŘENÍ:

Měření hodinového úhlu transformátoru (Distribuce elektrické energie - BDEE)

Měření výkonu jednofázového proudu

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Autoři textu: doc. Ing. Jaroslava Orságová, Ph.D. Ing.

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu

Zdroje napětí - usměrňovače

Asynchronní stroje. Fakulta elektrotechniky a informatiky VŠB TUO. Ing. Tomáš Mlčák, Ph.D. Katedra elektrotechniky.

Měření indukčnosti. 1. Zadání

3-f Transformátor Laboratorní cvičení č. V-3

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky

Transformátory. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

Pokusy s transformátorem. Věra Koudelková, KDF MFF UK, Praha

ELEKTRICKÉ STROJE. Laboratorní cvičení LS 2013/2014. Měření ztrát 3f transformátoru

Měření a automatizace

C L ~ 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH. 5.1 Vznik neharmonického napětí. Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu:

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

2 Teoretický úvod 3. 4 Schéma zapojení Měření třemi wattmetry (Aronovo zapojení) Tabulka hodnot pro měření dvěmi wattmetry...

E L E K T R I C K Á M Ě Ř E N Í

Stejnosměrné generátory dynama. 1. Princip činnosti

STŘÍDAVÝ PROUD POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

Ele 1 Synchronní stroje, rozdělení, význam, princip činnosti

Měření závislosti indukčnosti cívky (Distribuce elektrické energie - BDEE)

Elektromagnetismus 163

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno

Návrh toroidního generátoru

Elektroenergetika 1. Elektrické části elektrárenských bloků

13 Měření na sériovém rezonančním obvodu

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3

princip činnosti synchronních motorů (generátoru), paralelní provoz synchronních generátorů, kompenzace sítě synchronním generátorem,

Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II. Vítězslav Stýskala, Jan Dudek únor Elektrické stroje

1. Pracovníci poučení dle 4 Vyhlášky 50/1978 (1bod):

Synchronní stroje. Φ f. n 1. I f. tlumicí (rozběhové) vinutí

Stejnosměrný generátor DYNAMO

Transformátory. Mění napětí, frekvence zůstává

A B C. 3-F TRAFO dává z každé fáze stejný výkon, takže každá cívka je dimenzovaná na P sv = 630/3 = 210 kva = VA

ZÁKLADY ELEKTROTECHNIKY

Elektroenergetika 1. Elektrické části elektrárenských bloků

Ele 1 asynchronní stroje, rozdělení, princip činnosti, trojfázový a jednofázový asynchronní motor

Převod mezi kelviny a Celsiovými stupni se počítá podle vztahu:

1 Zdroj napětí náhradní obvod

Integrovaná střední škola, Sokolnice 496

Učební osnova předmětu ELEKTRICKÁ MĚŘENÍ. studijního oboru M/01 ELEKTROTECHNIKA (silnoproud)

5. POLOVODIČOVÉ MĚNIČE

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady

Rozvod elektrické energie v průmyslových a administrativních budovách. Sítě se zálohovaným a nepřetržitým napájením. A 5 M 14 RPI Min.

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Výkon střídavého proudu, účiník

Střídavý proud, trojfázový proud, transformátory

Karel Hlava. Klíčová slova: dvanáctipulzní usměrňovač, harmonické primárního proudu, harmonické usměrněného napětí, dělení usměrněného proudu.

Transkript:

atedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 9. TRASFORMÁTORY. Princip činnosti ideálního transformátoru. Princip činnosti skutečného transformátoru 3. Pracovní stavy transformátoru Transformátor naprázdno Transformátor nakrátko Transformátor při zatížení 4. onstrukce a provedení transformátorů 5. Autotransformátory 6. Měřící transformátory 7. Speciální transformátory Leden 006 Ing. Tomáš Mlčák, Ph.D. Doc. Ing. Václav Vrána, CSc.

Definice: j sou elektrické netočivé stroje, které umožňují z měnu velikosti (transformaci) střídavého napětí při konstantním kmitočtu Podle počtu fází je rozdělujeme na jednofázové a trojfázové. Princip činnosti ideálního transformátoru Vysvětlíme si ho na nákresu ideálního jednofázového transformátoru. Z Magnetický obvod obvod I I Pro ideální transformátor platí zjednodušení reálného stavu :. Σ P = 0, R = 0, R = 0, tj. celkové ztráty a činné odpory obou jsou nulové.. Rozptyl je nulový ( Φ σ + Φ σ = 0 ). 3. Celý magnetický tok Φ h prochází všemi závity primárního a sekundárního. Střídavý proud v primárním I vybudí střídavý magnetický Φ, který svou změnou indukuje ve ch transformátoru indukovaná napětí ind, závislé na velikosti kmitočtu primárního napětí f a magnetického toku Φ m. ind = 4,44. f. Φ m., ind = 4,44. f. Φ m. kde,... počty závitů primárního () a sekundámího () Φ m... maximální hodnota střídavého magnetického toku Poměr indukovaných napětí je převod transformátoru. Φ σ Φ σ primární Obr. - ákres jednofázového transformátoru s železným jádrem Φ n sekundární ind ind = = = () Z předchozího vztahu pro ideální transformátor vyplývá, že velikosti indukovaných napětí jsou přímo úměrné počtům závitů jednotlivých a odpovídají poměru napětí a na svorkách transformátoru Při předpokladu rovnosti příkonu P a výkonu P ( cos ϕ =, ztráty P = 0) platí: I P = P. I =. I = = = I Ideální transformátor je charakterizován jediným parametrem - převodem.

. Princip činnosti skutečného transformátoru Skutečný transformátor vychází z ideálního transformátoru, doplněného o vedlejší obvodové prvky. Primární napětí je harmonické a magnetický obvod není nasycen (pracovní oblast v lineární části charakteristiky). Připojením napětí na primární jím začne protékat proud I., jehož magnetizační složka vytvoří střídavý hlavní magnetický tok Φ h, který se uzavírá jádrem a rozptylové toky Φ σ a Φ σ, které se uzavírají vzduchem. Časovou změnou hlavního magnetického toku se indukuje do závitů nutí (primárního i sekundárního) indukované napětí u ind dφ/dt a jehož velikost je přímo úměrná počtům závitů, jednotlivých, viz. kapitola.. Připojením zátěžné impedance Z na svorky sekundárního (- ) začne sekundárním obvodem protékat proud I a do zátěže je dodáván výkon P.. Skutečný transformátor vykazuje při své činnosti činné ztráty ( P > 0) a má také rozptyl kolem (Φ σ +Φ σ > 0). 3. Pracovní stavy transformátoru Transformátor naprázdno 0 I o primární sekundární Je to takový provozní stav, kdy primární je připojeno k jmenovitému napětí a svorky sekundárního jsou rozpojeny ( Z = I = 0 ), transformátor nedodává výkon ( P = 0 ). I = I 0 Příkon, který transformátor odebírá ze sítě, slouží ke krytí ztrát naprázdno, které jsou v železném jádře a ve. Měřením napětí při stavu naprázdno se určuje převod transformátoru = 0 Transformátor nakrátko I k Sekundární je spojeno nakrátko bezimpedanční spojku ( Z = 0 = 0,. Zkratový proud je omezen pouze impedancí obvodu - impedancí nakrátko. =0 I k primární sekundární I Z Z =0 =0 Obr, áhradní schéma Velikost impedance nakrátko Z : 3

a je tvořena: Z Z u = = I (Ω) u Z = R + j Xο = R + R + j( Xο + Xο ) Poznámka: Parametry sekundárního se musí přepočítat na primární stranu (na stejný počet závitů), což se provádí pomocí napěťového převodu transformátoru. Hodnota impedance nakrátko Z je malá, neboť je tvořena malými hodnotami parametrů R, R, X σ a X σ. Proud I je mnohonásobně větší než I (7 až 35 krát) a je pro transformátor velice nebezpečný. Celý odebíraný příkon nakrátko P, se mění v činné ztráty P (Jouleovy ztráty ve ), přičemž ztráty v železe jsou zanedbatelné. J e t o n e j n e příznivější stav transformátoru!! Poměrné napětí nakrátko u, u % Při jeho zjišťování měřením se postupuje tak, že při stavu transformátoru nakrátko se sníží primární napětí na hodnotu, při niž proud odebíraný ze sítě má hodnotu I = I ( transformátor se nepoškodí). Z I Z Z u = = = (-) ; u % = 00 = 00 (%) Z I Z Z Pomocí u % určíme velikost skutečného ustáleného zkratového proudu. I I = 00 (A) u % Jouleovy ztráty rostou s druhou mocninou proudu, proto trvalý zkratový proud působí na transformátor destruktivními účinky, kterým zabraňujeme rychlým odpojením transformátoru od sítě. Transformátor při zatížení Jsou teoreticky všechny ostatní stavy, vyjma stavu naprázdno a Z nakrátko. I. - Z.. Obr, Zjednodušené náhradní schéma Vzájemné fázové poměry napětí a proudů lze zobrazit v tzv. fázorových diagramech a přibližně závisí na charakteru a velikosti zatěžovací impedance Z, ( 0 < Z < ) a parametrech R a X obou. Zatěžovací charakteristika transformátoru Je grafická závislost = f (I ) při cosϕ = konst, a je velmi důležitá a udává velikost vnitřního úbytku napětí na transformátoru a velikost zkratového proudu na sekundární straně. 4

napětí naprázdno 0 rozptylové transformátory síťové transformátory I I I Obr.8 - Srovnání zatěžovacích charakteristik rozptylových a síťových transformátorů. Tvrdost (sklon) charakteristiky závisí na velikosti napětí (impedance) nakrátko u % a účiníku cosϕ. Čárkovaně je zakreslena zatěžovací charakteristika rozptylového transformátoru, jako zdroje konstantního proudu, používaného pro obloukové svařování nebo k napájení výbojek. Proud nakrátko I je zde pouze nepatrně vyšší než I oproti běžnému transformátoru, kde tvoří několikanásobek. Účinnost transformátorů dává se vztahem P P P P η = = = 00 ( %) P P P kde P = P Fe + P Cu (W)... ztráty v transformátoru P =. I. cosϕ (W)... činný příkon transformátoru P =. I. cosϕ (W)... činný výkon transformátoru V technické praxi se dosahuje u běžných transformátorů účinnosti 85 až 99 % ( transformátory větších výkonů mají vyšší účinnost). Účinnost je závislá na velikosti zatížení a klesá úměrně s velikostí zatížení. 4. onstrukce a provedení transformátorů Základními funkčními částmi jsou magnetický obvod (jádro), a systém chlazení. Jádro bývá složeno z transformátorových plechů, tloušťky 0,5 a 0,35 mm (pro f = 50 Hz), k zamezení ztrát vířivými proudy jsou plechy navzájem izolovány lakem nebo nevodivou oxidační vrstvou. Chlazení transformátorů se zpravidla provádí vzduchem nebo olejem, u větších a velkých výkonů s nucenou cirkulací. V energetických soustavách se pro rozvod elektrické energie používají trojfázové transformátory, které bývají často z hlediska konstrukčního, bezpečnostního a ekonomického rozděleny do několik výkonových jednotek (např. místo jednoho transformátoru se použijí dva s polovičním výkonem, a 5

při poruše jednoho z nich, druhý zajišťuje provoz). Transformátorové jednotky jsou často zapojovány paralelně, což je podmíněno stejnými parametry (napěťový převod, napětí nakrátko, výkon). 6

5. Autotransformátory I b b I I. - I I I. a II. I + I a II. I + I c c a) pro snižování napětí b) pro zvyšování napětí Obr.9 - Zapojení autotransformátoru Mají pouze jedno, jehož část je společná pro primární i sekundární obvod. Oba obvody, na rozdíl od běžných transformátorů, jsou spojeny nejen magnetickou, ale i elektrickou vazbou. Proto se autotransformátor nesmí použít k oddělení obvodu mezi vysokým a nízkým napětím, nebo nízkým a malým napětím (při přerušení na sekundární straně je na výstupu primární napětí) Používají se často jako regulační (svorka je připojena pomocí kluzného kontaktu na obnažené ) k řízení velikosti napětí a to obvykle jako snižovací (obr. 9a) nebo i zvyšovací (obr. 9b) v jednofázovém i trojfázovém provedení. 6. Měřící (přístrojové) transformátory Patří k příslušenství k měřících přístrojů. Převádějí velká střídavá napětí a velké střídavé proudy na hodnoty, vhodné pro měřící přístroje, při současném galvanickém oddělení obvodu měřícího přístroje od měřeného obvodu. Měřící přístroje se do obvodu nezapojují přímo, ale přes měřící transformátory - měřící transformátor napětí (MT) - u něj je primární (velký počet závitů) paralelně připojeno k měřenému obvodu s vysokým napětím (nebo i jiným) a sekundární (malý počet závitů) k voltmetru s velkým vnitřním odporem R V, aby MT pracoval jako při stavu naprázdno. 7

Měřené napětí (např. vn) Pomocí MT měřené napětí určíme : m M primár sekundár n = = > V R iv >> 0 Jmenovité sekundární napětí transformátoru (na straně voltmetru) bývá obvykle 00 V. Obr. 0 - MT - měřící transformátor proudu ( MTP) - primární (malý počet závitů, zpravidla jeden) je zapojeno do série s měřeným obvodem a sekundární (velký počet závitů) je připojeno k ampérmetru s co nejmenším vnitřním odporem R i, aby MTP pracoval ve stavu nakrátko. I L k I A R i 0 Obr. Zapojení MTP l zkratovač I I I = = = I > Jmenovitý sekundární proud transformátoru (na straně ampérmetru ) I je 5, resp. A. MTP mohou mít několik výstupů i pro jistící přístroje. MTP bývá doplněn zkratovačem, neboť se výstupní svorky nesmí nikdy rozpojit! MT a MTP lze použít i pro měření činného výkonu wattmetrem, MT v napěťovém a MTP v proudovém obvodu wattmetru. Změřený činný výkon se pak určí : P =. I. P (W) 7. Speciální transformátory romě transformátorů s popsanými vlastnostmi se konstruují i takové transformátory, které mají odlišné vlastnosti. Pecní transformátory slouží k vytápění tavících, žíhacích, kalících, smaltovacích a sušících pecí. Dělíme je na a) odporové - topné odporové články jsou připojeny na řízené napětí sekundárního, 8

b) obloukové - transformují vysoké napětí na nízké o velikosti desítek voltů, potřebné k zapálení a k hoření elektrického oblouku. a straně nízkého napětí jsou proudy až statisíců ampér, proto se řízení napětí provádí na primární straně c) indukční - sekundárním m je tekutý prstenec zahřívané látky - kovu. Primární je podobné jako u běžného transformátoru. Pro menší ohřívané předměty se používají kmitočty 0 khz Svařovací transformátory jsou určeny ke svařování kovů.pro obloukové svařování se používá tzv. rozptylový transformátor s uměle zvětšeným rozptylem pomocí jader vložených do rozptylových drah, nebo vzduchových mezer v magnetickém obvodě.. zapálení oblouku je třeba sekundární napětí 80 V až 00 V a pro hoření jen 0 V až 30 V. Transformátor se tomu musí rychle přizpůsobit, přičemž se nesmí příliš měnit svařovací proud. Zvětšeným rozptylem vzroste reaktanční úbytek, výstupní napětí klesne a proud se jen málo změní viz.obr.8. Odporové svařování na tupo, bodové nebo švové spočívá v tom, že na svařované místo působíme krátkodobě zkratovým proudem ka až 00 ka. dosažení těchto vysokých proudů (i když krátkodobých) je nutná co nejmenší reaktance transformátoru i přívodů. a sekundární straně bývá zpravidla pouze jeden závit. Velikost svařovacího proudu se mění přepínáním odboček na primární straně. Použitá literatura: Stýskala V.: - učební texty pro inženýrské studium, Ostrava 998 9