Interakce buněk s mezibuněčnou hmotou B. Dvořánková
Obsah přednášky Buňka a její organely Extracelulární matrix Interakce buněk s ECM i navzájem Kultivace buněk in vitro
Buněčné jádro Alberts: Molecular Biology of the Cell Buněčná membrána fosfolipidová dvouvrstva s póry Chromatin všechny chromozomy DNA řídí veškerou činnost buňky - RNA Jadérko sestavují se ribosomy, pak průchod do cytoplazmy
Jadérko kompartment v jádře, kde se sestavuji ribosomy ribosomy pak procházejí do cytoplazmy póry v jaderné membráně stejně jako RNA ribosomy a RNA pak spolupracují vně jádra a vytvářejí veškeré proteiny, potřebné pro život buňky
Vlastní DNA Základní zdroj energie Mitochondrie Probíhá oxidativní fosforylace - štěpení cukrů na oxid uhličitý a vodu - zdroj ATP Alberts: Molecular Biology of the Cell
Ribozomy Volně v cytoplazmě produkce proteinů pro potřeby v buňce Uchycené na ER produkce proteinů na export a pro bun. membránu Nemají vlastní membránu Syntéza proteinů Jsou to komplexy RNA bílkovina, složené ze dvou jednotek Připojují se k mrna Alberts: Molecular Biology of the Cell
Endoplazmatické retikulum Syntéza strukturálních i enzymatických bílkovin a jejich transport Drsné ER x hladké ER Největší orgán buňky, systém kanálků a cisteren Zvětšuje vnitřní povrch buňky- význam pro její metabolizmus Napojeno na jádro a Golgiho aparát Alberts: Molecular Biology of the Cell
Golgiho komplex Soustava buněčných váčků, které slouží k přechovávání, úpravě a transportu bílkovin Probíhají zde posttranslační úpravy proteolytický rozklad, ostraňování a navazování nebílkovinných složek Alberts: Molecular Biology of the Cell
Cytoskelet Síť proteinových vláken a tubulů Opora buňky- udržení tvaru Ukotvení buněčných organel Transport látek Účast při buněčném dělení Mikrofilamenta Intermediární filament Mikrotubuly
Cytoskelet Krátká, pružná vytvářejí stresová vlákna; spolupůsobí s myosinem Silná vlákna, nejsou schopná kontrakce; mechanická pevnost buňky Diagnostika tumorů Transport struktur a látek po buňce; dutá vlákna z tubulinů, ukotvena v centrozómu Alberts: Molecular Biology of the Cell
Cytoplazmatická membrána Dvě vrstvy fosfolipidů Fosfolipidové molekuly jsou bipolární hydrofilní konce jsou na povrchu dvojvrstvy, hydrofobní směřují dovnitř Proteiny, cholesterol Alberts: Molecular Biology of the Cell
Extracelulární matrix Tkáně jsou tvořeny nejenom buňkami, velký podíl mezibuněčného prostoru extracelulární matrix Složena z celé řady proteinů a polysacharidů, které jsou lokálně sekretovány buňkami a následně uspořádány do sítí Úzce spojena s povrchem produkujících buněk, ovlivňují jejich vývoj, polaritu i chování Určuje fyzikální vlastnosti tkání Škála komponent i jejich uspořádání umožňuje velkou variabilitu ECM podle funkčních potřeb tkáně (kost, rohovka, šlacha) ECM je vytvářena a orientována buňkami v ní obsaženými
Glykosaminoglykany Nerozvětvené polysacharidové řetězce disacharidová jednotka aminocukr + kyselina uronová negativně nabité silně hydrofilní vytváří porézní hydrogely Méně než 10 w%, ale vyplňují téměř veškerý prostor Hyaluronan, chondroitin sulfát, heparan sulfát, keratan sulfát
Proteoglykany GAG vázané na bílkovinné jádro (většinou glykoprotein) Proteoglykany x glykoproteiny 95 w% cukrů x 1-60 w% cukrů Vázáné na plazmatické membráně mohou fungovat jako ko-receptory
Proteiny ECM Kolageny hlavní proteiny ECM Pojivová tkáň - I,II,III, XI - kolagenní vlákna Bazální lamina IV sítě Elastin pružnost tkání Fibronectin adhezivní protein vazba buněk na ECM Glykoproteiny migrace buněk, migrační dráhy při vývoji embrya Laminin bazální lamina
Extracelulární matrix Alberts: Molecular Biology of the Cell
Bazální lamina Na rozhraní mezi epitelovými buňkami a pojivovou tkání vytváří matrix bazální laminu tenkou, ale pevnou vrstvu, která významně ovlivňuje chování buněk Alberts: Molecular Biology of the Cell
Bazální lamina 40-120 nm Kolagen IV tvoří rošt Heparansulfátproteoglykan Laminin Entakti Alberts: Molecular Biology of the Cell
Integriny Vazba buněk k ECM Transmembránové heterodimery nekovalentně vázané glykoproteiny, α + β Vazba na cytoskelet Umožňují komunikaci cytoskeletu a ECM přes buněčnou membránu Buňky mohou regulovat aktivitu svých integrinových receptorů Alberts: Molecular Biology of the Cell
Interakce buňka - ECM Integriny Mnoho typů Vždy 2 různé řetězce Ukotveny na aktin Na intermediární filamenta α6β4 hemidesmosomy Transmembránové proteoglykany - syndekany Alberts: Molecular Biology of the Cell
Kultivace buněk in vitro Nepřirozené podmínky Studium buněčné stavby, chování buněk, vývojová biologie Medicínský výzkum studium nádorových buněk i dalších chorob Možnost využít in vitro namnožených buněk či vytvořených transplantátů v léčbě pacientů
Zdroje buněk Kultivace buněk in vitro Vzorky tkání nebo izolace z krve, exudátu Buněčné linie Adheze buněk Sklo Plastik PS úprava Potahování kolagen, fibronecti, želatina 3-D kultury bio- nebo biosyntetické sítě
Cultured keratinocyte grafting Absorbance (%) 800 700 600 500 400 300 200 100 0 BSA PBS Man-BSA Hep Fuc-BSA 24 H 72 H 144 H Time (Hours) Growth of human keratinocytes on polystyrene with preadsorbed neoglycoligand containing mannose clusters, influence of presence of Ca cations Num ber of keratino cytes Absorbance (%) 600 500 400 300 200 Man-BSA Man-BSA (-Ca) Epidermal cells without feeders cultured on α-d-man-bsa 100 0 24 H 72 H Time (Hours)
Cultured keratinocyte grafting ConA binding 160 Fkuorescence inten nsity 140 120 100 80 60 40 20 0 phema Polymer phema-ma-(ch2)5-aman
Cultured keratinocyte grafting Migration of cultured keratonocytes from discs with mannose clusters to dishes precolonized with 3T3 cells