BUNĚČ. ěčných makromolekul - mimobuněč. ěčnou. ěčnými adhezemi. U obratlovců jsou hlavními spojovací.

Rozměr: px
Začít zobrazení ze stránky:

Download "BUNĚČ. ěčných makromolekul - mimobuněč. ěčnou. ěčnými adhezemi. U obratlovců jsou hlavními spojovací."

Transkript

1 BUNĚČ ĚČNÉ SPOJE A ADHEZE Většina buněk k v mnohobuněč ěčném m organismu je organizována na do kooperativních spojení - tkání a ty jsou sloučeny v různých r kombinacích ch do většív ších funkčních jednotek - orgánů. Buňky v tkáních jsou obvykle v kontaktu s komplexní sítí sekretovaných mimobuněč ěčných makromolekul - mimobuněč ěčnou matrix (ECM). Ta pomáhá držet buňky v tkáních pohromadě a vytváří prostor, kde mohou buňky migrovat a interagovat.. V mnoha případech p padech jsou buňky v tkáních udržov ovány na místm stě přímými buněč ěčnými adhezemi. U obratlovců jsou hlavními typy tkání nervová,, svalová,, krevní,, lymfatická,, epiteliáln lní a spojovací. V spojovacích ch tkáních je mnoho ECM a buňky jsou v nín volně rozptýleny. Matrix je bohatá na vláknit knité polymery, zejména kolagen a je to matrix (spíš íše e než buňky) která nese většinu v mechanického ho stresu. Buňky jsou napojeny na komponenty matrix a jejich vzájemn jemné spojení není příliš důležité. Naopak v epiteliáln lních tkáních jsou buňky spojeny těsnt sně mezi sebou do vrstev (epitelů) ) a EM tvoří hlavně tenkou basáln lní laminu,, na které leží epiteliáln lní vrstva. Zde jsou to zejména buňky, které nesou většinu v mechanického ho stresu prostřednictv ednictvím m silných vnitrobuněč ěčných proteinových vláken (složek cytoskeletonu), které křižují cytoplasmu každou epiteliáln lní buňku. Pro přenos p mechanického ho stresu z jedné buňky na druhou jsou vlákna přímo p nebo nepřímo na pojena na transmembránov nové proteiny v plasmatické membráně,, kde se tvoří specializované spoje mezi povrchy sousedních buněk k a se spodní bazáln lní laminou. Epiteliáln lní vrstvy vyplňuj ují dutiny a volné povrchy v těle t a specializované spoje mezi buňkami umožň žňují těmto vrstvám m tvořit bariéry ry pro pohyb vody, roztoků a buněk k mezi jednotlivými tělnt lními kompartmenty.

2 Obnova střevní výstelky

3 Příčný řez částí stěny střeva Každá tkáň je organizovaným seskupením buněk držených pohromadě buněčnými adhezemi, ECM nebo oběma. Tkáně jsou spojeny dohromady v různých kombinacích a tvoří funkční jednotky - orgány

4 Mezi buňkami navzájem a buňkami a ECM se tvoří speciáln lní spoje (junctions( junctions) ) zprostředkovan edkované specifickými adhezními molekulami na buněč ěčném m povrchu. ADHEZNÍ INTERAKCE interakce zprostředkované membránovými molekulami. Na základě strukturních vlastností rozlišujeme rodinu: kadherinů (asi 80 typů) imunoglobulinů (přes 700 typů) integrinů selektinů Slouží nejen ke spojení buněk navzájem a k jejich zakotvení v daném kompartmentu, ale jsou spojeny s aktivací buněk, s přenosem signálu do nitra buněk a s komplexní buněčnou odpovědí (regulace buněčného cyklu, indukce diferenciace, apoptózy, atd.). Adhezní interakce jsou klíčové pro zajištění aktivity imunitního systému.

5 Typy vazeb 1) homofilní (homotypická) vazba - váží se stejné molekuly sousedních b. 2) heterofilní (heterotypická) vazba - váží se různr zné molekuly 3) receptory na povrchu buněk jsou spojeny navzájem sekretovanou spojovací molekulou.

6 Mechanizmy, jimiž mohou povrchové molekuly zprostředkovat buněčné adheze

7 Úloha těsných spojení v buněčném transportu

8 Těsná spojení slouží v epitelech jako bariéra difúze rozpuštěných látek

9 Ukotvující (anchoring) vazby (spoje) VAZBA TRANSMEMBRÁNOVÝ EXTRACELULÁRNÍ INTRACELULÁRNÍ INTRACELULÁRNÍ ADHEZNÍ PROTEIN LIGAND CYTOSKELETÁRNÍ KOTEVNÍ PROTEINY UPEVNĚNÍ Buňka-Buňka Adherentní vazba kadherin kadherin aktinová vlákna α- a β-kateniny, (E-kadherin) v sousední buňce vinculin, α-aktinin, plakoglobin (γ-katenin) Desmozóm kadherin (desmoglein, desmogleiny a intermediální vlákna desmoplakiny, desmocollin) desmocolliny plakoglobin (γ-katenin) v sousední buňce Buňka-Matrix Fokální adheze integrin proteiny aktinová vlákna talin, vinculin, extracelulární matrix α-aktinin, filamin Hemidesmozóm integrin α6β4, BP180 proteiny intermediální vlákna plektin, BP230 extracelulární matrix

10 BUNĚČNÉ SPOJE, ADHEZE a MIMOBUNĚČNÁ MATRIX (ECM) Buněč ěčné spoje (junctions( junctions) - tři i funkční skupiny: occluding (tight) junctions - těsné spoje (epitel střeva) selektivně propustná bariéra ra - udržuj ují lokáln lní koncentraci tekutin anchoring junctions - ukotvující spoje - mechanicky spojují buňky a jejich cytoslekelet se sousedními buňkami nebo ECM - časté u tkání vystavených mechanickému mu stresu (pokožka) ka) místa připojenp ipojení filament aktinu: spoje buňka ka-buňka (např. adhezívn vní pásy u epitelů) spoje buňka ka-matrix (fokální kontakty nebo adhezivní plaky ) místa připojení intermediárn rních filament: spoje buňka ka-buňka (desmosomy) spoje buňka ka-matrix (hemidesmosomy) communicating junctions - komunikační spoje - zprostředkov edkovávají přenos chem. nebo el. signálů mezi interagujícími buňkami kami. gap junctions - mezerovitá spojení chemické synapse

11 Buňky uvolněné z různých r tkání embrya obratlovců (jsou-li smích chány dohromady) znovu přednostně spojují s buňkami téže t e tkáně. Tento tkáňov ově specifický rozeznávac vací proces u obratlovců je zprostředkov edkován n zejména rodinou na vápníkových iontech závislých z adhezivních proteinů - kadherinů,, které drží buňky pohromadě homofilními mi interakcemi mezi transmembránovými novými kadheriny přiléhajících ch buněk. Aby buňky držely pohromadě,, musí být kadheriny připojeny k cytoskeletonu. Většina živočišných buněk k mám také na vápníku nezávislý adhezívn vní systém buňka ka-buňka, který zahrnuje zejména členy imunoglobulinové nadrodiny,, jako jsou neuráln lní adhezívn vní molekuly (N-CAM, ICAM apod.) Jednotlivé buněč ěčnétypy používaj vají mnohonásobn sobné molekulárn rní mechanismy pro adhezi k jiným buněč ěčným typům m nebo EM,, avšak ak specifita vzájemn jemné buněč ěčné adheze pozorovaná v embryonáln lním m vývoji musí vyústit v integraci řady různých r adhezívn vních systémů,, z nichž některé jsou spojeny se specializovanými buněč ěčnými spojeními a jiné ne.

12 Adherentní spoje buňka ka-buňka - Cell Adhesion Molecules (CAM) závislé na Ca2+ U epitelů často tvoří souvislý adhezivní pás (zonula adherens) kolem každé interagující buňky, lokalizovaný hned pod těsnými t spojením. Homotypické mezibuněč ěčné interakce jsou zprostředkov edkovány transmembránovými novými vazebnými glykoproteiny - kadheriny (E-k. - epitelia, N-k. N - nervové buňky, P-k. P - placenta a epidermis). Na cytoplazm. straně membrány se tvoří komplexy CAC (Cadherine( Associated Complex) spojující přes vazebné proteiny (α, β, γ- katenin, vinkulin, α-aktinin) ) kadherinové molekuly se svazky vláken aktinu. Desmosomy fungují jako nýty epitelia a spojovacích ch tkání.. Uvnitř buněk k fungují jako ukotvení pro intermediárn rní filamenta - keratinová filamenta (epitely), desminová filamenta (srdeční sval) Selektiny (P-,, E-, E, L-) L menší rodina transmembránových nových glykoproteinů vážících ch se na cukerné zbytky na bílkovinách - přechodné vazby buněk k v krevním řečišti - umožň žňují např.. bílým b krvinkám vazbu k endoteliáln lním m b. a tak migrovat z krve do tkání v místech zánětu. z nezávisl vislé na Ca2+ zprostředkovan edkované členy imunoglobulinové superrodiny - zejména na leukocytech, ale i na endotelových, epiteliáln lních a další ších buňkách. ICAM (InterCellular Cell Adhesion Molecules) Heterotypick typické mezibuněč ěčné vazby aktivované u endoteliáln lních buněk, kde se vážív s integriny bílých b krvinek

13 Schéma ukotvujícího spoje ze dvou tříd proteinů

14 Napojení klasických kadherinů k aktinovým filamentům

15 Struktura a funkce selektinů

16 Adherentní spoje buňka - mimobuněč ěčná matrix Specializované oblasti membrány - fokáln lní kontakty nebo adhezívn vní plaky, kde končí svazky aktinových vláken ken. Integriny - transmembránov nové vazebné proteiny - členové velké rodiny povrchových buněč ěčných receptorů pro matrix zprostředkov edkovávají adhezi a slouží jako spoj mezi matrix a svazky aktinu v placích ch. Tvoří heterodimery (řetězce alfa a beta) Hemidesmosomy - podobné morfologicky desmosomům,, ale funkčně a chemicky odlišné - spojují bazáln lní povrch epiteliáln lních buněk s bazáln lní laminou.

17 INTEGRINY Základní receptory pro vazbu k ECM se slabou afinitou k ligandu Alfa a beta podjednotky jsou spojeny nekovalentními vazbami Fungují také jako přenašeče e signálů po aktivaci vazbou na matrix aktivují různé vnitrobuněč ěčné signáln lní dráhy, mohou kooperovat s jinými receptory a regulovat buněč ěčnou proliferaci, přežíváníp i diferenciaci. S cytoskeletem, kinázami a s receptory pro růstovr stové faktory jsou integriny propojeny adaptérovými proteiny. Nahloučen ené integriny tvoří tzv. imunologické rafty.. Vznikají multimolekulové agregáty místa fokáln lní adheze Bez zakotvení přes integriny buňky nemohou přežívat. p Integriny aktivují tyrosin kinázy zy,, např. fokáln lní adhezívn vní kináza (FAK -Focal Adhesion Kinase) ) a kinázy rodiny Src.. FAK je spojena s proteiny talinem a paxilinem. Fosforylací dochází k aktivaci systému. Po ztrátě kontaktu s ECM dochází k tzv. anoikis (detachment induced apoptosis) apoptóze indukované uvolněním m buněk k s fyziologických vazeb.

18 Indukce buněč ěčné smrti-anoikis a změny adhezívn vních vlastností epiteliáln lních buněk k kolonu ANOIKIS představuje typ buněč ěčné smrti, kterou umíraj rají epiteliáln lní buňky pokud dojde k narušen ení jejich kontaktu s extracelulárn rní matrix. Vznik rezistence buněk k k anoikis představuje jeden z kritických momentů v karcinogenezi tlustého střeva podpora invazivity Pro indukci anoikis v podmínkách in vitro je používán model neadherentní kultivace buněk ANOIKIS

19 Struktura subjednotek integrinového receptoru (buněčný povrch-matrix)

20 Fokální adheze

21 Regulace mimobuněčné vazebné aktivity integrinu zevnitř buňky

22 Desmosomy a hemidesmosomy

23 Regulace komplexu E-kadherinE kadherin/kateninkatenin a mechanismy degradace beta-kateninu u epiteliáln lních buněk Ca2+ stabilizuje dimery E-kadherinu,, ten se váže v cytopl.. doménou na další proteiny. Beta-katenin je normáln lně degradován n nebo se může e akumulovat při p dysregulaci tohoto procesu nebo defektivním E-kadherinu. Pak je translokován n do jádra, j kde se váže v e na LEF/TCF transkripční faktor aktivující transkripci řady genů Katenin se rovněž může e vázat v na APC protein, který spolu s další šími proteiny v makromolekulárn rním m komplexu zajišťuje na proteasomu závislou degradaci.

24

25

26 GAP JUNCTIONS MEZEROVITÁ SPOJENÍ gap junctional intercellular communication (GJIC) mezibuněč ěčné spoje z transmembránových nových proteinů - konexinů (asi 30 typů) Krátký poločas života (několik hodin), rychlá biosyntéza a degradace, reakce na změny fyziologických podmínek 6 molekul konexinů tvoří konexon. Konexony sousedních buněk se spojují v kanálek překlenující mezeru (gap) 2-4nm propustnou jen pro malé molekuly. Permeabilita je regulována na. Otevírání a zavírání závislé např. na ph, konc. divalentních iontů. Aby se tvořily GJ musí buňky adherovat k podkladu a být spojeny kadheriny.

27 Model gap junctions

28

29

30 Gap junctions

31 FYZIOLOGICKÁ ÚLOHA GJIC HOMEOSTÁZA rychlá rovnováha živin, iontů a tekutin ELEKTRICKÁ SPOJENÍ slouží jako el. synapse u neuronů,, buněk k hladkého ho svalstva, srdečních myocytů TKÁŇOV OVÁ ODPOVĚĎ NA HORMONY second messengers (Ca2+, camp, ceramid,, IP3) procházej zejí ze stimulovaných buněk dále - šířen ení signálů v bun. populacích ch REGULACE EMBRYONÁLN LNÍHO VÝVOJE cesta pro chemické a elektrické vývojové signály Homologní a heterologní komunikace - mezi stejnými nebo různými buněč ěčnými typy Změny v GJIC spojeny s kontrolou růstu, r vývoje, diferenciace, apoptózy a adaptivní odpovědi di

32 Model růstové kontroly prostřednictvím gap junctions (GJ) Růstově stimulační signál Růstově stimulační signál difunduje do sousedních buněk přes GJ a dosahuje substimulační úrovně K difúzi signálu nedochází u buněk postrádajících GJ a je zahájeno buněčné dělení

33 Model růstovr stové kontroly prostřednictv ednictvím m gap junctions (GJ) Růstově inhibiční signál Růstově stimulační signál l difunduje do sousedních buněk k přes p GJ a zabraňuje buněč ěčnému dělend lení Signál l se neší šíří do buněk k postrádaj dajících ch GJ a dochází k buněč ěčnému dělení

34

35 EXTRACELULÁRN RNÍ (mimobuněčná)) MATRIX (ECM) ECM můžm ůže e ovlivňovat ovat tvar, přežitp ití a proliferaci buněk. Reciproční interakce mezi ECM a cytoskeletonem.. Většina V buněk k musí být připojena p k ECM, aby mohly růst, r proliferovat a přežívat p závislost na substrátu tu (anchorage( dependence) zprostředkov edkována integriny a jimi vybuzenými vnitrobuněč ěčnými signály. Makromolekuly tvořící ECM jsou produkovány lokáln lně buňkami v matrix,, které také pomáhaj hají její organizaci. Ve většinv ině spojovacích ch tkání jsou makromolekuly matrix sekretovány fibroblasty (chondroblasty ve chrupavce, osteoblasty v kostech apod.) Dvě hlavní třídy molekul tvořících ch matrix: 1) Glykosamylglykany (GAG) polysacharidové řetězce z opakujících ch se disacharidových jednotek většinou kovalentně vázány s proteiny proteoglykany 4 hlavní skupiny - podle typu cukru, vazby mezi cukry a počtu a lokalizace sulfátových skupin: Hyaluronan, chondroitin sulfát t a dermatan sulfát, heparan sulfát t a keratan sulfát 2) Vláknit knité proteiny kolagen, elastin, fibronektin, laminin strukturální a adhezivní funkce Degradace komponent ECM matrix metaloproteázy a serin proteázy Inhibitory metaloproteáz

36 Tři způsoby organizace bazální laminy

37 Souhrn spojovacích a nespojovacích adhezívních mechanizmů vazby savčích buněk navzájem a s ECM

38 Souhrn různých buněčných spojení nalezených u epiteliálních buněk obratlovců

oběma.tkáně jsou spojeny dohromady v různých kombinacích a tvoří funkční jednotky - orgány

oběma.tkáně jsou spojeny dohromady v různých kombinacích a tvoří funkční jednotky - orgány BUNĚČNÉ SPOJE A ADHEZE Většina buněk v mnohobuněčném organismu je organizována do kooperativních spojení - tkání a ty jsou sloučeny v různých kombinacích do větších funkčních jednotek - orgánů. Buňky v

Více

Interakce mezi buňkami a okolím

Interakce mezi buňkami a okolím Interakce mezi buňkami a okolím Struktury mezibuněčného prostoru: buněčný plášť ( glycocalyx ) mimobuněčná matrix ( extracellular matrix ) Buněčný plášť ( glycocalyx ) Struktura: uhlovodíkové řetězce složek

Více

MEZIBUNĚČNÉ SPOJE ŽIVOČIŠNÝCH BUNĚK. Karel Souček

MEZIBUNĚČNÉ SPOJE ŽIVOČIŠNÝCH BUNĚK. Karel Souček MEZIBUNĚČNÉ SPOJE ŽIVOČIŠNÝCH BUNĚK Karel Souček Mezibuněčné spoje a extracelulární matrix sociální interakce buněk v mnohobuněčných organismech nejdůležitější jsou ty, které společně udržují buňky v tkáních

Více

Epitely a jejich variace

Epitely a jejich variace Epitely a jejich variace 141 Definice Avaskulární tkáň Buňky jsou k sobě těsně připojeny pomocí mezibuněčných spojení Jsou funkčně a morfologicky polarizovány Jsou připojeny k bazální lamině Rozdělení

Více

Interakce buněk s mezibuněčnou hmotou. B. Dvořánková

Interakce buněk s mezibuněčnou hmotou. B. Dvořánková Interakce buněk s mezibuněčnou hmotou B. Dvořánková Obsah přednášky Buňka a její organely Extracelulární matrix Interakce buněk s ECM i navzájem Kultivace buněk in vitro Buněčné jádro Alberts: Molecular

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce

Více

Bunka a bunecné interakce v patogeneze tkánového poškození

Bunka a bunecné interakce v patogeneze tkánového poškození Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce

Více

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE

Více

8. Polysacharidy, glykoproteiny a proteoglykany

8. Polysacharidy, glykoproteiny a proteoglykany Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a

Více

Přehled tkání. Pojivová tkáň, složky pojivové tkáně, mezibuněčná hmota

Přehled tkání. Pojivová tkáň, složky pojivové tkáně, mezibuněčná hmota Přehled tkání. Pojivová tkáň, složky pojivové tkáně, mezibuněčná hmota Ústav pro histologii a embryologii Předmět: Histologie a embryologie 1, B01131, obor Zubní lékařství Datum přednášky: 15.10.2013 K

Více

PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU

PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU Podstata prezentace antigenu (MHC restrikce) byla objevena v roce 1974 V současnosti je zřejmé, že to je jeden z klíčových

Více

Základní morfogenetické procesy

Základní morfogenetické procesy Základní morfogenetické procesy 502 Základní morfogenetické procesy Mechanismy, které se uplatňují v ontogenesi, tedy při vývoji jedince od zygoty k mnohobuněčnému organismu Buněčná úroveň diferenciace

Více

Univerzita Karlova v Praze, 1. lékařská fakulta

Univerzita Karlova v Praze, 1. lékařská fakulta Univerzita Karlova v Praze, 1. lékařská fakulta Tkáň svalová. Obecná charakteristika hladké a příčně pruhované svaloviny (kosterní a srdeční). Funkční morfologie myofibrily. Mechanismus kontrakce. Stavba

Více

STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL

STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL - INTEGRINY LIGANDY) - SELEKTINY (SACHARIDOVÉ LIGANDY) - ADHEZIVNÍ MOLEKULY IMUNOGLOBULINOVÉ SKUPINY - MUCINY (LIGANDY SELEKTIN - (CD5, CD44, SKUPINA TNF-R AJ.) AKTIVACE

Více

Charakteristika epitelů. Epitelová tkáň. Bazální membrána. Bazální lamina. Polarita. Funkce basální laminy. buňky. Textus epithelialis

Charakteristika epitelů. Epitelová tkáň. Bazální membrána. Bazální lamina. Polarita. Funkce basální laminy. buňky. Textus epithelialis Charakteristika epitelů Epitelová tkáň Textus epithelialis buňky podkladem je bazální lamina těsně nahloučené s minimem mezibuněčné hmoty množství pevných mezibuněčných spojů různé tvary určující pro klasifikaci

Více

VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ

VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů

Více

- je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného dělení)

- je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného dělení) FYZIOLOGIE BUŇKY Buňka -základní stavební a funkční jednotka těla - je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného

Více

Vazivo. Chrupavka. Kost

Vazivo. Chrupavka. Kost Pojivová tkáň Vazivo Chrupavka Kost Mezenchym Mezenchym Vazivo Chrupavka Kost Původ a funkce Původ mezenchym Funkce: - nutritivní (krevní cévy, difuze živin) - protektivní imunocompetentní buňky a produkce

Více

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I. Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický

Více

Specifická imunitní odpověd. Veřejné zdravotnictví

Specifická imunitní odpověd. Veřejné zdravotnictví Specifická imunitní odpověd Veřejné zdravotnictví MHC molekuly glykoproteiny exprimovány na všech jaderných buňkách (MHC I) nebo jenom na antigen prezentujících buňkách (MHC II) u lidí označovány jako

Více

Monitorování léků. RNDr. Bohuslava Trnková, ÚKBLD 1. LF UK. ls 1

Monitorování léků. RNDr. Bohuslava Trnková, ÚKBLD 1. LF UK. ls 1 Monitorování léků RNDr. Bohuslava Trnková, ÚKBLD 1. LF UK ls 1 Mechanismus působení léčiv co látka dělá s organismem sledování účinku léčiva na: - orgánové úrovni -tkáňové úrovni - molekulární úrovni (receptory)

Více

Kosterní svalstvo tlustých a tenkých filament

Kosterní svalstvo tlustých a tenkých filament Kosterní svalstvo Základní pojmy: Sarkoplazmatické retikulum zásobárna iontů vápníku - depolarizace membrány uvolnění vápníku v blízkosti kontraktilního aparátu vazba na proteiny zajišťující kontrakci

Více

Buněčný cyklus. Replikace DNA a dělení buňky

Buněčný cyklus. Replikace DNA a dělení buňky Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných

Více

INTRACELULÁRNÍ SIGNALIZACE II

INTRACELULÁRNÍ SIGNALIZACE II INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády

Více

Živočišné tkáně. Vznik - histogeneze diferenciace proliferace

Živočišné tkáně. Vznik - histogeneze diferenciace proliferace Živočišné tkáně Vznik - histogeneze diferenciace proliferace Soudržnost, adhezivita. Mezibuněčná hmota!! - vláknitá kolagen, elastin amorfní voda, anorg, ionty, glykosoaminoglykany a strukturální glykoproteiny

Více

ší šířen FYZIOLOGIE BUŇKY Buňka - základní stavební a funkční jednotka těla

ší šířen FYZIOLOGIE BUŇKY Buňka - základní stavební a funkční jednotka těla Buňka (buňky tkáně orgány organismus) - funkce a struktura jsou vzájemně propojené vlastnosti - v průběhu evoluce specializace buněk - odlišná funkce podle množství organel, charakterem cytoplasmy a vlastnostmi

Více

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů

Více

BUŇEČNÝ CYKLUS A JEHO KONTROLA

BUŇEČNÝ CYKLUS A JEHO KONTROLA BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené

Více

PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY

PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování

Více

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly NEMEMBRÁNOVÉ ORGANELY Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly RIBOSOMY Částice složené z rrna a proteinů, skládají se z velké kulovité

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

Seminář pro maturanty

Seminář pro maturanty Úvod do biologie člověka Seminář pro maturanty 2006 Organismy mají hierarchickou strukturu Buňka - tkáň - orgán - orgánová soustava celkem asi 216 typů buněk v lidském těle tkáň = skupina buněk stejné

Více

Mendělejevova tabulka prvků

Mendělejevova tabulka prvků Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých

Více

Chrupavka a kost. Osifikace 605

Chrupavka a kost. Osifikace 605 Chrupavka a kost Osifikace 605 Pojiva Pojiva jsou tkáň, která je složena z buněk a mezibuněčné hmoty. Rozdělení: Vazivo Chrupavka Kost Tuková tkáň Chrupavka Buňky: Chondroblasty Chondrocyty (Chondroklasty)

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU. Jana Novotná

RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU. Jana Novotná RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU Jana Novotná Co jsou to cytokiny? Skupina proteinů a peptidů (glykopeptidů( glykopeptidů), vylučovaných živočišnými buňkami a ovlivňujících buněčný růst (též růstové

Více

II. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní

II. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní II. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní základní stavební jednotkou svalové vlákno, představující mnohojaderný útvar (soubuní) syncytiálního charakteru; vykazuje příčné pruhování;

Více

Imunitní systém člověka. Historie oboru Terminologie Členění IS

Imunitní systém člověka. Historie oboru Terminologie Členění IS Imunitní systém člověka Historie oboru Terminologie Členění IS Principy fungování imunitního systému Orchestrace, tj. kooperace buněk imunitního systému (IS) Tolerance Redundance, tj. nadbytečnost, nahraditelnost

Více

Bp1252 Biochemie. #11 Biochemie svalů

Bp1252 Biochemie. #11 Biochemie svalů Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické

Více

B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY

B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY CYTOSKELETÁLNÍ PRINCIP BUŇKY mikrotubuly střední filamenta aktinová vlákna CYTOSKELETÁLNÍ PRINCIP BUŇKY funkce cytoskeletu - udržovat

Více

Dělení buněk a jeho poruchy

Dělení buněk a jeho poruchy Buňka a buněčné interakce v patogeneze tkáňového poškození Stavba buňky lidské tělo je složeno z ~ 3.5 10 13 buněk všechny buňky jsou odvozeny od jediné (oplozené vajíčko) jediná skutečně omnipotentní

Více

CYTOKINY, ADHESIVNÍ MOLEKULY - klíčové molekuly pro mezibuněčnou komunikaci, buněčná migrace a mezibuněčná signalizace. Ústav imunologie LF UP

CYTOKINY, ADHESIVNÍ MOLEKULY - klíčové molekuly pro mezibuněčnou komunikaci, buněčná migrace a mezibuněčná signalizace. Ústav imunologie LF UP CYTOKINY, ADHESIVNÍ MOLEKULY - klíčové molekuly pro mezibuněčnou komunikaci, buněčná migrace a mezibuněčná signalizace Ústav imunologie LF UP Mezibuněčná komunikace základ fungování organizmů K zajištění

Více

Úvod do předmětu fyziologie

Úvod do předmětu fyziologie Úvod do předmětu fyziologie Kontakty vyučujících MUDr. Kateřina Jandová, Ph.D. katerina.jandova@lf1.cuni.cz tel.: 224968443 RNDr. Martina Nedbalová, Ph.D. martina.nedbalova@lf1.cuni.cz tel.: 224968418

Více

Schéma epitelu a jeho základní složky

Schéma epitelu a jeho základní složky Schéma epitelu a jeho základní složky Těsný spoj Bazální membrána Transcelulární tok Paracelulární tok LIS - Laterální intercelulární prostor Spojovací komplexy epiteliálních buněk Spojovací komplexy epiteliálních

Více

ZÁKLADY FUNKČNÍ ANATOMIE

ZÁKLADY FUNKČNÍ ANATOMIE OBSAH Úvod do studia 11 1 Základní jednotky živé hmoty 13 1.1 Lékařské vědy 13 1.2 Buňka - buněčné organely 18 1.2.1 Biomembrány 20 1.2.2 Vláknité a hrudkovité struktury 21 1.2.3 Buněčná membrána 22 1.2.4

Více

DMPK (ZNF9) V DIFERENCOVANÝCH. Z, Kroupová I, Falk M* M

DMPK (ZNF9) V DIFERENCOVANÝCH. Z, Kroupová I, Falk M* M FISH ANALÝZA m-rna DMPK (ZNF9) V DIFERENCOVANÝCH TKÁNÍCH PACIENT IENTŮ S MYOTONICKOU DYSTROFI FIÍ Lukáš Z, Kroupová I, Falk M* M Ústav patologie FN Brno *Biofyzikáln lní ústav AVČR R Brno Definice MD Myotonická

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

Specializace buněčných povrchů Spojení buněk Molekulární koncepce biologického motoru

Specializace buněčných povrchů Spojení buněk Molekulární koncepce biologického motoru Specializace buněčných povrchů Spojení buněk Molekulární koncepce biologického motoru Ústav histologie a embryologie Doc. MUDr. Zuzana Jirsová, CSc. Předmět: Obecná histologie a obecná embryologie B02241

Více

IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány

IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým

Více

Systém HLA a prezentace antigenu. Ústav imunologie UK 2.LF a FN Motol

Systém HLA a prezentace antigenu. Ústav imunologie UK 2.LF a FN Motol Systém HLA a prezentace antigenu Ústav imunologie UK 2.LF a FN Motol Struktura a funkce HLA historie struktura HLA genů a molekul funkce HLA molekul nomenklatura HLA systému HLA asociace s nemocemi prezentace

Více

Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard)

Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard) Fyziologie svalstva Svalstvo patří ke vzrušivým tkáním schopnost kontrakce a relaxace veškerá aktivní tenze a aktivní pohyb (cirkulace krve, transport tráveniny, řeč, mimika, lidská práce) 40% tělesné

Více

Stavba dřeva. Základy cytologie. přednáška

Stavba dřeva. Základy cytologie. přednáška Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Prameny Určeno pro 8. třída (pro 3. 9. třídy) Sekce Základní / Nemocní /

Více

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

BIOLOGIE ČLOVĚKA BUŇKA TKÁŇ ORGÁN

BIOLOGIE ČLOVĚKA BUŇKA TKÁŇ ORGÁN BIOLOGIE ČLOVĚKA BUŇKA TKÁŇ ORGÁN Živočišná buňka lysozóm jádro cytoplazma plazmatická membrána centrozom Golgiho aparát ribozomy na drsném endoplazmatickém retikulu mitochondrie Živočišná tkáň soubor

Více

TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA

TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA 1 VÝZNAM TRANSPORTU PŘES MEMBRÁNY V MEDICÍNĚ Příklad: Membránový transportér: CFTR (cystic fibrosis transmembrane regulator) Onemocnění: cystická fibróza

Více

Epitely jako bariery 142

Epitely jako bariery 142 Epitely jako bariery 142 Difuzní bariera Epitely umožňují kompartmentizaci extracelulárního prostoru Příklady: střevo, ledviny, exokrinní žlázy, kapiláry mozku (hematoencefalická bariera), plexus choroideus

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

PŘEHLED OBECNÉ HISTOLOGIE

PŘEHLED OBECNÉ HISTOLOGIE PŘEDMLUVA 8 1. ZÁKLADY HISTOLOGICKÉ TECHNIKY 9 1.1 Světelný mikroskop a příprava vzorků pro vyšetření (D. Horký) 9 1.1.1 Světelný mikroskop 9 1.1.2 Zásady správného mikroskopování 10 1.1.3 Nejčastější

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních. 1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné

Více

Buněčný cyklus a molekulární mechanismy onkogeneze

Buněčný cyklus a molekulární mechanismy onkogeneze Buněčný cyklus a molekulární mechanismy onkogeneze Imunofluorescence DAPI Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny s homologními oblastmi; jejich

Více

Tělesné kompartmenty tekutin. Tělesné kompartmenty tekutin. Obecná patofyziologie hospodaření s vodou a elektrolyty.

Tělesné kompartmenty tekutin. Tělesné kompartmenty tekutin. Obecná patofyziologie hospodaření s vodou a elektrolyty. Obecná patofyziologie hospodaření s vodou a elektrolyty. 2. 4. 2008 Tělesné kompartmenty tekutin Voda je v organismu kompartmentalizovaná do několika oddílů. Intracelulární tekutina (ICF) zahrnuje 2/3

Více

Tkáně- rozdělení, základní stavba a funkce Pojiva-obecná charakteristika Mezibuněčná hmota, její tvorba a složení Stavba chrupavky

Tkáně- rozdělení, základní stavba a funkce Pojiva-obecná charakteristika Mezibuněčná hmota, její tvorba a složení Stavba chrupavky Tkáně- rozdělení, základní stavba a funkce Pojiva-obecná charakteristika Mezibuněčná hmota, její tvorba a složení Stavba chrupavky Junqueira C. a Carneiro J., Gartner L.P. a spol., Lüllmann- Rauch R.,

Více

Intracelulární Ca 2+ signalizace

Intracelulární Ca 2+ signalizace Intracelulární Ca 2+ signalizace Vytášek 2009 Ca 2+ je universální intracelulární signalizační molekula (secondary messenger), která kontroluje řadu buměčných metabolických a vývojových cest intracelulární

Více

Hematologie. Nauka o krvi Klinická hematologie Laboratorní hematologie. -Transfuzní lékařství - imunohematologie. Vladimír Divoký

Hematologie. Nauka o krvi Klinická hematologie Laboratorní hematologie. -Transfuzní lékařství - imunohematologie. Vladimír Divoký Hematologie Nauka o krvi Klinická hematologie Laboratorní hematologie -Transfuzní lékařství - imunohematologie Vladimír Divoký Fyzikální vlastnosti krve 3-4 X více viskózní než voda ph : 7.35 7.45 4-6

Více

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc* Prezentace navazuje na základní znalosti Biochemie, stavby a transportu přes y Doplňující prezentace: Proteiny, Sacharidy, Stavba, Membránový transport, Symboly označující animaci resp. video (dynamická

Více

Nádorová progrese. Invazivita a vznik metastáz Angiogeneze

Nádorová progrese. Invazivita a vznik metastáz Angiogeneze Nádorová progrese Invazivita a vznik metastáz Angiogeneze 1 Invazivita vznik metastáz Metastázy - tvorba progresívně rostoucích sekundárních nádorových fokusů v místech nespojených s primárním nádorem.

Více

Apoptóza Onkogeny. Srbová Martina

Apoptóza Onkogeny. Srbová Martina Apoptóza Onkogeny Srbová Martina Buněčný cyklus Regulace buněčného cyklu 1. Cyklin-dependentní kináza (Cdk) cyclin Regulace buněčného cyklu 2. Retinoblastomový protein (prb) E2F Regulace buněčného cyklu

Více

USPOŘÁDEJTE HESLA PODLE PRAVDIVOSTI DO ŘÁDKŮ

USPOŘÁDEJTE HESLA PODLE PRAVDIVOSTI DO ŘÁDKŮ Proteiny funkce Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 22.7.2012 3. ročník čtyřletého G Procvičování struktury a funkcí proteinů

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

Autophagie a imunitní odpověd. Miroslav Průcha Klinická imunologie Nemocnice Na Homolce, Praha

Autophagie a imunitní odpověd. Miroslav Průcha Klinická imunologie Nemocnice Na Homolce, Praha Autophagie a imunitní odpověd Miroslav Průcha Klinická imunologie Nemocnice Na Homolce, Praha Ostrava, 29. ledna 2019 Historie Nobel Prize 2016 Yoshinori Ōsumi https:p//nobeltpizrog/utplodss/2l018//06/ohsuiillchtul

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 3. Enzymy a proteinové motory Ivo Frébort Enzymová katalýza Mechanismy enzymové katalýzy o Ztráta entropie při tvorbě komplexu ES odestabilizace komplexu ES

Více

EPITELOVÁ TKÁŇ. šita. guru. sthira. ušna. mridu višada. drva. laghu. čala. Epitelová tkáň potní žlázy. Vše co cítíme na rukou, je epitelová tkáň

EPITELOVÁ TKÁŇ. šita. guru. sthira. ušna. mridu višada. drva. laghu. čala. Epitelová tkáň potní žlázy. Vše co cítíme na rukou, je epitelová tkáň EPITELOVÁ TKÁŇ Epitelová tkáň potní žlázy Vše co cítíme na rukou, je epitelová tkáň Epitel tvoří vrstvy buněk, které kryjí vnější a vnitřní povrchy Epitel, kterým cítíme, je běžně nazýván kůže Sekrece

Více

Regulace enzymové aktivity

Regulace enzymové aktivity Regulace enzymové aktivity MUDr. Martin Vejražka, PhD. Tato prezentace je přístupnp stupná on-line CHE1.LF1.CUNI.CZ Prezentace Regulace enzymové aktivity Organismus NENÍ rovnovážná soustava Rovnováha =

Více

Druhy tkání. Autor: Mgr. Vlasta Hlobilová. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: přírodopis

Druhy tkání. Autor: Mgr. Vlasta Hlobilová. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: přírodopis Druhy tkání Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 23. 10. 2012 Ročník: osmý Vzdělávací oblast: přírodopis Anotace: Žáci si rozšíří znalosti o tkáních, z kterých se pak vytváří větší celky

Více

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících

Více

Antigeny. Hlavní histokompatibilitní komplex a prezentace antigenu

Antigeny. Hlavní histokompatibilitní komplex a prezentace antigenu Antigeny Hlavní histokompatibilitní komplex a prezentace antigenu Antigeny Antigeny: kompletní (imunogen) - imunogennost - specificita nekompletní (hapten) - specificita antigenní determinanty (epitopy)

Více

Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl

Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk Aleš Hampl Tkáně Orgány Živé buňky, které plní různé funkce (podpora struktury, přijímání živin, lokomoce,

Více

Popis anatomie srdce: (skot, člověk) Srdeční cyklus. Proudění krve, činnost chlopní. Demonstrace srdce skotu

Popis anatomie srdce: (skot, člověk) Srdeční cyklus. Proudění krve, činnost chlopní. Demonstrace srdce skotu Katedra zoologie PřF UP Olomouc http://www.zoologie. upol.cz/zam.htm Prezentace navazuje na základní znalosti z cytologie a anatomie. Doplňující prezentace: Dynamika membrán, Řízení srdeční činnosti, EKG,

Více

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER)

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER) BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY Buněčné jádro- v něm genetická informace Úkoly jádra-1) regulace dělení, zrání a funkce buňky; -2) přenos genetické informace do nové buňky; -3) syntéza informační RNA (messenger

Více

Ivana FELLNEROVÁ PřF UP Olomouc

Ivana FELLNEROVÁ PřF UP Olomouc SRDCE Orgán tvořen specializovaným typem hladké svaloviny, tzv. srdeční svalovinou = MYOKARD Srdce se na základě elektrických impulsů rytmicky smršťuje a uvolňuje: DIASTOLA = ochabnutí SYSTOLA = kontrakce,

Více

CZ.1.07/1.5.00/ Člověk a příroda

CZ.1.07/1.5.00/ Člověk a příroda GYMNÁZIUM TÝN NAD VLTAVOU, HAVLÍČKOVA 13 Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0437 III/2- Inovace a zkvalitnění výuky prostřednictvím IVT Člověk a příroda

Více

Promoční fáze karcinogeneze

Promoční fáze karcinogeneze Promoční fáze karcinogeneze Negenetické mechanizmy Buněčné komunikace a interakce Stimulační a inhibiční signály Rovnováha proliferace, diferenciace a apoptózy Hormonální karcinogeneze Všechny formy rakoviny

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Biosyntéza a degradace proteinů. Bruno Sopko

Biosyntéza a degradace proteinů. Bruno Sopko Biosyntéza a degradace proteinů Bruno Sopko Obsah Proteosyntéza Post-translační modifikace Degradace proteinů Proteosyntéza Tvorba aminoacyl-trna Iniciace Elongace Terminace Tvorba aminoacyl-trna Aminokyselina

Více

tky proti annexinu V Protilátky u trombofilních stavů u opakovaných těhotenských ztrát 2003 By Default! Slide 1

tky proti annexinu V Protilátky u trombofilních stavů u opakovaných těhotenských ztrát 2003 By Default! Slide 1 Slide 1 Protilátky tky proti annexinu V u systémových onemocnění pojiva u trombofilních stavů u opakovaných těhotenských ztrát VFN 24.4.2007 Slide 2 ANNEXINY Annexiny jsou proteiny, společnou vlastností

Více

Biologie buňky. systém schopný udržovat se a rozmnožovat

Biologie buňky. systém schopný udržovat se a rozmnožovat Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický

Více

VÝZNAM FYZIOLOGICKÉ OBNOVY BUNĚK V MEDICÍNĚ

VÝZNAM FYZIOLOGICKÉ OBNOVY BUNĚK V MEDICÍNĚ OBNOVA A REPARACE 1 VÝZNAM FYZIOLOGICKÉ OBNOVY BUNĚK V MEDICÍNĚ Příklad: Fyziologická obnova buněk: obnova erytrocytů Rychlost obnovy: 2 miliony nových erytrocytů/s (při průměrné době života erytrocytu

Více

EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY

EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY 1 VÝZNAM EXTRACELULÁRNÍCH SIGNÁLNÍCH MOLEKUL V MEDICÍNĚ Příklad: Extracelulární signální molekula: NO Funkce: regulace vazodilatace (nitroglycerin, viagra) 2 3 EXTRACELULÁRNÍ

Více

Glykoproteiny a Muciny. B.Sopko

Glykoproteiny a Muciny. B.Sopko Glykoproteiny a Muciny B.Sopko Obsah Glykoproteiny: Struktura a vazby Vzájemná konverze a aktivace potravních sacharidů Další dráhy v metabolismu sacharidů vázaných na nukleotid Biosyntéza oligosacharidů

Více

Autofagie a výživa u kriticky nemocného pacienta

Autofagie a výživa u kriticky nemocného pacienta Autofagie a výživa u kriticky nemocného pacienta Igor Satinský Nemocnice Havířov Mezioborová JIP Colours of Sepsis, Ostrava, 28.1.2015 Autofagie a výživa u kriticky nemocného pacienta Igor Satinský Nemocnice

Více

Prvotní organizmy byly jednobuněčné. Rostla složitost uspořádání jednobuněčných komplikované uspořádání uvnitř buňky (nálevníci).

Prvotní organizmy byly jednobuněčné. Rostla složitost uspořádání jednobuněčných komplikované uspořádání uvnitř buňky (nálevníci). Prvotní organizmy byly jednobuněčné. Rostla složitost uspořádání jednobuněčných komplikované uspořádání uvnitř buňky (nálevníci). Byla dosažena hranice, kdy jedna buňka už nestačila zajistit všechny nároky

Více

Chrupavka a kost. Osifikace BST-30

Chrupavka a kost. Osifikace BST-30 Chrupavka a kost Osifikace BST-30 Pojiva Pojiva jsou tkáň, která je složena z buněk a mezibuněčné hmoty. Rozdělení: Vazivo Chrupavka Kost Tuková tkáň Chrupavka Chondroblasty Chondrocyty (Chondroklasty)

Více

(Vývojová biologie) Embryologie. Jiří Pacherník

(Vývojová biologie) Embryologie. Jiří Pacherník (Vývojová biologie) Embryologie Jiří Pacherník jipa@sci.muni.cz Podpořeno projektem FRVŠ 524/2011 buňka -> tkáně -> orgány -> organismus / jedinec Základní procesy na buněčné úrovni dělení buněk proliferace

Více

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D. Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé

Více

Prokaryota x Eukaryota. Vibrio cholerae

Prokaryota x Eukaryota. Vibrio cholerae Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky

Více