Základním praktikum z laserové techniky

Podobné dokumenty
Základní praktikum laserové techniky

Základním praktikum z optiky

Charakteristiky laseru vytvářejícího světelné impulsy o délce několika pikosekund

2 Nd:YAG laser buzený laserovou diodou

Základním praktikum z optiky

Studium ultrazvukových vln

Fyzikální praktikum 1

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne

Světlo jako elektromagnetické záření

Fyzikální praktikum FJFI ČVUT v Praze

Úloha 10: Interference a ohyb světla

Akustooptický modulátor s postupnou a stojatou akustickou vlnou

Abstrakt. fotodioda a fototranzistor) a s jejich základními charakteristikami.

Akustooptický modulátor s postupnou a stojatou akustickou vlnou

Měření příčného profilu gaussovského svazku metodou ostré hrany

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

Zadání. Pracovní úkol. Pomůcky

MĚŘENÍ Laboratorní cvičení z měření. Měření magnetických veličin, část 3-9-3

Podle studijních textů k úloze [1] se divergence laserového svaku definuje jako

Grafické řešení: obvod s fotodiodou

Operační zesilovač, jeho vlastnosti a využití:

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Základní experimenty akustiky. Abstrakt

Vypracoval. Jakub Kákona Datum Hodnocení

Fyzikální praktikum FJFI ČVUT v Praze

Měření momentu setrvačnosti prstence dynamickou metodou

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické

Fyzikální praktikum FJFI ČVUT v Praze

Teoretický úvod: [%] (1)

Úloha 3: Mřížkový spektrometr

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.III. Název: Mřížkový spektrometr

PRAKTIKUM II Elektřina a magnetismus

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 8 : Studium ultrazvukových vln

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny

Tabulka I Měření tloušťky tenké vrstvy

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:...

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.5 Název: Měření osciloskopem. Pracoval: Lukáš Ledvina

Elektronické praktikum EPR1

4. Z modové struktury emisního spektra laseru určete délku aktivní oblasti rezonátoru. Diskutujte,

PRAKTIKUM II Elektřina a magnetismus

Jméno a příjmení. Ročník. Měřeno dne. Marek Teuchner Příprava Opravy Učitel Hodnocení. 1 c p. = (ε r

Fyzikální praktikum 3 Operační zesilovač

Měření charakteristik pevnolátkového infračerveného Er:Yag laseru

Praktikum III - Optika

Základní praktikum laserové techniky

Po stopách Alberta Michelsona, Marina Mersenna a dalších

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

2. Změřte a nakreslete časové průběhy napětí u 1 (t) a u 2 (t). 3. Nakreslete převodní charakteristiku komparátoru

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.

Teplota, [ C] I th, [ma] a, [V/mA] 7 33,1 0, ,3 0, ,5 0, ,5 0, ,7 0, ,9 0,15

Úloha 15: Studium polovodičového GaAs/GaAlAs laseru

SMĚŠOVAČ 104-4R

Fyzikální praktikum...

Základní experimenty akustiky

Úloha 1: Zapojení integrovaného obvodu MA 7805 jako zdroje napětí a zdroje proudu

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

PRAKTIKUM II Elektřina a magnetismus

Relativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+:

Fyzikální praktikum 1

Mechanické kmitání a vlnění, Pohlovo kyvadlo

rezonančního obvodu 6. března 2010 Fyzikální praktikum FJFI ČVUT v Praze

Laboratorní cvičení č.11

2. Pomocí Hg výbojky okalibrujte stupnici monochromátoru SPM 2.

Fyzikální praktikum 1

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 3

Fyzikální praktikum FJFI ČVUT v Praze

Praktikum II Elektřina a magnetismus

galvanometrem a její zobrazení na osciloskopu

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16.

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Fyzikální praktikum FJFI ČVUT v Praze

Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser

Úloha 8: Studium ultrazvukových vln

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

ETC Embedded Technology Club setkání 6, 3B zahájení třetího ročníku

Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC

Fyzikální praktikum FJFI ČVUT v Praze

Měření šířky zakázaného pásu polovodičů

ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení

Úloha 21: Studium rentgenových spekter

Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 22. prosince Katedra fyzikální elektroniky.

Datum měření: , skupina: 9. v pondělí 13:30, klasifikace: Abstrakt

- + C 2 A B V 1 V 2 - U cc

Experimentální realizace Buquoyovy úlohy

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

Dynamika rotačního pohybu

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 8: Mikrovlny. Abstrakt

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 7: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze

Spektrální charakteristiky fotodetektorů

Fyzikální praktikum III

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Transkript:

Úloha: Základním praktikum z laserové techniky FJFI ČVUT v Praze #6 Nelineární transmise saturovatelných absorbérů Jméno: Ondřej Finke Datum měření: 30.3.016 Spolupracoval: Obor / Skupina: 1. Úvod Alexandr Špaček FE / E Klasifikace: Způsobu jak dosáhnout pulzního režimu je několik druhů. Jedním z nich, kterým se budeme zabývat v této úloze, je použití saturovaných absorbérů v rezonátoru. Saturovaný absorbér je látka, která má nelineární závislost transmise na intenzitě dopadajícího světla takovou, že vysokoenergetické signály propouští mnohem lépe.. Měření a výsledky Při příchodu jsme zkontrolovali, jestli je aparatura zapojená podle obrázku (Obr. 1) a provedli drobné úpravy. Obr. 1 Schéma zapojení aparatury Použitý laser k této úloze byl mikročipový laser Nanolase NP-001-100. Aktivní prostření tohoto laseru je Nd:YAG s vlnovou délkou záření λ = 1064 nm. Q-spínání laseru je dosaženo díky obsaženému saturovanému absorbentu Cr:YAG, jak je vidět na přiloženém schématu laseru překreslenému podle technické dokumentace (Obr. ). Svazek vycházející z Nanolase laseru považujeme za gaussovský svazek s módem TEM 00. Pro jeho profil platí důležité vztahy 0 w (z)=w 1+( z ) z R ;b=z R = π w 0 λ, (1) kde w 0 je poloměr svazku v krčku, w poloměr svazku ve vzdálenosti z od polohy krčku, λ vlnová délka, z R je Rayleighova vzdálenost a b konfokální parametr. Znalost těchto vzorců můžeme využít - 1 -

k zjištění hustoty výkonu laseru v daném bodě p pomocí rovnice p= P p π w (z), kde P p je špičkový výkon laseru v jednom pulsu a πw je plocha svazku v pozici z od krčku svazku. Na závěr je nutno poznamenat, že tento výpočet platí pro základní mód TEM 00, pro jiné módy by byl výpočet komplikovanější. ().1 Ověření parametru laseru Obr. schéma uspořádání rezonátoru laseru Nanolase. Před samotným měření nelineární transmise jsme měřili a ověřovali tabulkové specifikace použitého laseru. Nejdříve jsme pomocí wattmetru měřili střední výkon laseru P str. Následně pomocí osciloskopu periodu T, ze které jsme určili frekvenci pomocí f = 1 T. (3) Na osciloskopu jsme měřili šířku jednoho pulzu v polovině maxima, tzv. FWHM Full Width Half Maximum τ FWHM. Finálně jsme za použití vztahů E p = P str f P p = E p τ FWHM (4) (5) odvodili energii jednoho pulzu E p a výkon jednoho pulzu P p. Všechny tyto hodnoty jsme vložili do tabulky (Tab. 1), kde jsme je porovnali s hodnotami uvedenými ve specifikaci laseru. Měření P str [mw] 35.0 44. f [khz] 13.89 15.6 τ FWHM [ns] 1.5* 0.81 E p [μj].5.90 P p [kw] 3.11 3.58 Specifikace Tab. 1 Naměřené hodnoty porovnané se specifikací. Při výpočtu pomocí (5) byla použita hodnota τ FWHM ze specifikace jak je vysvětleno níže. - -

Skoro všechny námi naměřené hodnoty se skoro shodují se specifikací laseru až na šířku pulzu τ FWHM. Při jeho měření jsme původně měřili mnohem větší délku, než zasáhl asistent, který nám vysvětlil jak přesně osciloskop při tomto měření pracuje a jak zvýšit citlivost osciloskopu snížením odporu z 1MΩ na 50Ω. Tím se zvýší rychlost vybíjení parazitní kapacity a zúžení pozorovaného pulzu. Po tomto zúžení jsme naměřili uvedenou hodnotu v tabulce (Tab. ), která je stále větší, než hodnota ze specifikace. Na měření stále mají vliv některé vlastnosti osciloskopu a fotodiody. Asistent nám prozradil, že samotná fotodioda má náběh přibližně t dioda = 1 ns. Následně, že osciloskop má náběh t rise = 1 ns závislý na frekvenci, která je specifická pro každý osciloskop. V našem případě se jednalo o f 3db = 350 MHz. Z těchto znalostí poté můžeme dopočítat jakou hodnotu naměříme, očekáváme-li τ FWHM = 0.81 ns. t system = t rise t measure = t system +t dioda = 1 +1 = +τ FWHM = +0.81 1.63 (6) (7) Jak je vidět z (7) naše měření by se mělo pohybovat kolem hodnoty 1.63, která je o trochu větší, než jsme naměřili. To bych přisoudil pravděpodobně špatnému odečtení z osciloskopu, ze kterého se nám v mnoha případech špatně odečítalo.. Měření nelineární transmise krystalu Ze specifikace víme, že w 0 = 85 μj. Společně se znalostí vlnové délky můžeme z pravého vzorce v (1) určit z R =.1 cm a b = 4. cm. Nejdříve určíme hodnoty poloměru w(z) a hustoty výkonu p a zaneseme je do tabulky (Tab. ). z teor [cm] w [μm] p [kw/cm ] 0 85 13700.1 10 6875 10 414 577.6 50 030 4.0 Tab. Teoretické hodnoty hustoty výkonu p a poloměru svazku w(z) vypočítané pomocí () a (1) v polohách z R, 10 cm a 50 cm od krčku. Na stolek za laser jsme umístili nejdříve kratší krystal a na různých bodech dráhy jsme pomocí wattmetru změřili výkon, který krystalem prošel. Poté jsme wattmetr vyměnili za diodu a měření na stejných místech jsme provedli znovu. Do tabulky (Tab. 3) v příloze jsme vložili data z tohoto měření. Následně jsme udělali jednou kompletně stejné měření, jenom s dlouhým krystalem. Data z tohoto měření jsou v tabulce (Tab. 4). Do grafu (Obr. 3) vložíme závislost vypočítaných transmisí podle obou měření u obou vzorků. V grafu (Obr. 4) se nachází závislost transmise kratšího vzorku na hustotě výkonu. Stejná závislost pro delší vzorek je v grafu (Obr. 5). Důležité je zmínit, že při měření jsme očekávali, že největší transmise bude v krčku, kde gaussovský svazek nejintenzivnější. Ovšem při obou měřeních jsme nalezli krček vždy v jiné pozici, která se navíc v obou případech velmi lišila od specifikace. Podle specifikace se nachází krček.5 cm za výstupem, ovšem při měření s krátkým krystalem byla největší transmise 6 cm za výstupem a u dlouhého vzorku 4.5 cm za výstupem. Tuto změnu pozice krčku si nedokážeme vysvětlit. Podle Obr. 4 respektive Obr. 5 můžeme saturační intenzitu krystalů odhadnout jako I s1 4 MW/cm respektive I s 7.5 MW/cm. - 3 -

Obr. 3 Vypočítané hodnoty transmise T osci/watt obou krystalů na vzdálenosti z od výstupu z laseru. Obr. 4 Vypočítané hodnoty transmise T osci/watt tenkého krystalu na hustotě výkonu p. - 4 -

Obr. 4 Vypočítané hodnoty transmise T osci/watt dlouhého krystalu na hustotě výkonu p. 3. Závěr Během měření jsme porovnali a parametry laseru s technickou dokumentací (Tab. 1) a ukázali si, jak funguje osciloskop a proč na něm nejsme schopni přesně změřit délku pulzu. Následně jsme naměřili transmise dvou vzorků saturovaných absorbérů. Jejich saturační intenzitu jsme odhadli jako I s1 4 MW/cm pro krátký vzorek a I s 7.5 MW/cm pro dlouhý vzorek. Do grafů (Obr. 4 a 5) jsme vynesli závislost transmise na hustotě výkonu a do grafu (Obr. 3) závislost transmise na vzdálenosti od laseru. 4. Použitá literatura [1] Návod k úloze 6 - Nelineární transmise saturovatelných absorbérů. [Online] [5.4.016] http://people.fjfi.cvut.cz/blazejos/public/ul6.pdf 5. Přílohy z [cm] U osci [V] P watt [mw] p [kw/cm ] T watt [%] T osci [%] 0.74 6.4 956.0 75.4 74 4 0.80 7.0 73.0 77.1 80 4.5 0.80 7.3 9153.0 78.0 80 5 0.80 7.6 11180.0 78.9 80 5.5 0.80 8.3 1970.0 80.9 80-5 -

6 0.80 8.5 13700.0 81.4 80 6.5 0.80 7.3 1970.0 78.0 80 8 0.80 6.7 73.0 76.3 80 10 0.76 6.7 956.0 76.3 76 1 0.7 5.8 1499.0 73.7 7 14 0.7 5. 88.1 7.0 7 15 0.7 5. 707.7 7.0 7 0 0.7 4.6 301.5 70.3 7 30 0.7 4.0 104.1 68.6 7 Tab. 3 Naměřené a vypočtené hodnoty při měření s krátkým vzorkem. z je vzdálenost od laseru, U osci napětí naměřené na osciloskopu, P watt výkon naměřený na wattmetru, p vypočítaná hustota výkonu v bodě, T watt je transmise určená měřením wattmetrem a T osci určená pomocí oscilátoru. z [cm] U osci [V] P watt [mw] p [kw/cm ] T watt [%] T osci [%] 4 0.5 17.4 1970.0 49.7 5 4.5 0.50 18.3 13700.0 5.3 50 5 0.5 17.7 1970.0 50.6 5 5.5 0.46 16.8 11180.0 48.0 46 6 0.48 16.5 9153.0 47.1 48 6.5 0.4 15.0 73.0 4.9 4 7 0.38 13.5 5681.0 38.6 38 8 0.4 1.9 3636.0 36.9 4 9 0.4 14.7 450.0 4 4 10 0.44 15.6 1748.0 44.6 44 16 0.4 15.3 44.5 43.7 4 0 0.4 14.7 47.1 4.0 4 30 0.44 15.0 91.5 4.9 44 Tab. 4 Naměřené a vypočtené hodnoty při měření s dlouhým vzorkem. z je vzdálenost od laseru, U osci napětí naměřené na osciloskopu, P watt výkon naměřený na wattmetru, p vypočítaná hustota výkonu v bodě, T watt je transmise určená měřením wattmetrem a T osci určená pomocí oscilátoru. - 6 -