Biomateriály. BIOCERAMICS Joon Park

Podobné dokumenty
Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22

LOGO. Struktura a vlastnosti pevných látek

Skupenské stavy látek. Mezimolekulární síly

Zdroj: Bioceramics: Propertie s, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák

Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Požadavky na technické materiály

Číslo a název klíčové aktivity: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny

Mol. fyz. a termodynamika

Glass temperature history

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

12. Struktura a vlastnosti pevných látek

Bioceramics. Properties, Characterizations, and Applications Park, Joon 2008, XII, 364 p.

Základy materiálového inženýrství. Křehké materiály Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010

Třídění látek. Chemie 1.KŠPA

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

Kysličníková skla. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008

18MTY 1. Ing. Jaroslav Valach, Ph.D.

Bioceramics Joon Park

Fyzika - Sexta, 2. ročník

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008

Vlastnosti tepelné odolnosti

Měření teplotní roztažnosti

2 MECHANICKÉ VLASTNOSTI SKLA

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

Sklo chemické složení, vlastnosti, druhy skel a jejich použití

4 Viskoelasticita polymerů II - creep

Předmět: CHEMIE Ročník: 8. ŠVP Základní škola Brno, Hroznová 1. Výstupy předmětu

Minule vazebné síly v látkách

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

6. Viskoelasticita materiálů

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008

Elektrická vodivost - testové otázky:

Diamantu podobné uhlíkové vrstvy pro pokrytí kloubních náhrad

MMC kompozity s kovovou matricí

Pevnost kompozitů obecné zatížení

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Hydrochemie koncentrace látek (výpočty)

Adhezní síly v kompozitech

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

OVMT Mechanické zkoušky

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Struktura polymerů. Příprava (výroba).struktura vlastnosti. Materiálové inženýrství (Nauka o materiálu) Základní představy: přírodní vs.

Vlastnosti tepelné odolnosti

Nauka o materiálu. Přednáška č.14 Kompozity

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK

COBRAPEX TRUBKA S KYSLÍKOVOU BARIÉROU

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Měření teplotní roztažnosti

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK)

CMC kompozity s keramickou matricí

Test vlastnosti látek a periodická tabulka

Elektricky vodivý iglidur F. Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

tuhost, elasticita, tvrdost, relaxace a creep, únava materiálu, reologické modely, zátěž a namáhání

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006

Sklářské a bižuterní materiály 2005/06

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

2. Molekulová stavba pevných látek

Vlastnosti technických materiálů

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

TECHNOLOGIE I (slévání a svařování)

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

STANOVENÍ PROPUSTNOSTI OBALOVÝCH MATERIÁLŮ PRO VODNÍ PÁRU

VÝROBKY PRÁŠKOVÉ METALURGIE

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

DOUČOVÁNÍ KVINTA CHEMIE

Molekulová fyzika a termika:

Téma 2 Napětí a přetvoření

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ

Vyjmenujte tři základní stavební částice látek: a) b) c)

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

5.7 Vlhkost vzduchu Absolutní vlhkost Poměrná vlhkost Rosný bod Složení vzduchu Měření vlhkosti vzduchu

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Příloha formuláře C OKRUHY

4. Stanovení teplotního součinitele odporu kovů

ALKOHOLY, FENOLY A ETHERY. b. Jaké zdroje cukru znáte a jak se nazývají produkty jejich kvašení?

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM

Chemie povrchů verze 2013

ztuhnutím pyrosolu taveniny, v níž je dispergován plyn, kapalina nebo tuhá látka fotochemickým rozkladem krystalů některých solí

Hydrochemie koncentrace látek (výpočty)

Okruhy pro bakalářské zkoušky z oboru Technologie konzervování restaurování, specializace kovové materiály Dějiny umění

III. STRUKTURA A VLASTNOSTI PLYNŮ

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

EU peníze středním školám digitální učební materiál

Poškození strojních součástí

iglidur H2 Nízká cena iglidur H2 Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty

Bez PTFE a silikonu iglidur C. Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost

Základy vakuové techniky

Transkript:

ČESKÉ VSOKÉ UČENÍ TECHNICKÉ FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSTVÍ Biomateriály BIOCERAMICS Joon Park PROPERTIES, CHARACTERIZATIONS, AND APPLICATIONS (str.69 81) Glass Formation and Characterization TVORBA A POPIS SKEL PŘELOŽIL: Bc. Ondřej Šárovec EMAIL: ondrej.sarovec@seznam.cz OBOR: Přístroje a metody pro biomedicínu, 4. semestr 2011

4. TVORBA A POPIS SKEL V této kapitole budeme diskutovat základní rozdělení skel a vlastnosti skel z pohledu materiálu používaného na implantáty. Tato kapitola z velké části vychází z Glass Science od Deremus [4]. 4.1. VÝROBA SKEL Sklo je definováno jako amorfní pevná látka se vzdálenostmi mezi atomy řád <10 Å a viskozitou větší než 10 13 Poise. Další definovali sklo jako materiál vytvořený ochlazením z kapalného stavu bez změn v měrném objemu, který se stává méně či více rigidní se zvýšenou viskozitou. ASTM (American Society for Testing and Mateials) definuje sklo jako anorganický produkt tavení, který ochlazením přejde do nekrystalického pevného stavu. Některá skla mohou být vyrobena bez ochlazování a bez vypařování vody z tekutého roztoku. Skla mohou být též vyrobena z organických materiálů *např. Plexiglas, polymethylmetakrylát (PMMA), polystyren (PS)+. Skla občas obsahují krystalky menší než 100 Å, které jsou těžko detekovatelné. Tabulka 4.1 popisuje prvky a sloučeniny, ze kterých může být sklo vyrobeno. Oxidy jako B 2 O, SiO 3, GeO 2, P 2 O 3, As 2 O 3, Sb 2 O 3, In 2 O 3, Tl 2 O 3, SnO 2, PbO 2 a SeO 2, iontová skla jako halogeny, nitridy, sulfidy a uhličitany, organické sloučeniny jako metanol, etanol a PMMA ze skla. Tabulka 4.1. Některá skla vytvořená kapalným ochlazováním Skupina Příklad Prvky S, Se, P Oxidy B 2 O 3, SiO 2, GeO 2, P 2 O, As 2 O 3, Sb 2 O 3, In 2 O 3, Tl 2 O 3, Sn 2 O 3, PbO 2, SeO 2 Sulfidy As 2 S 3, Sb 2 S Uhličitany K 2 CO 3 -MgCO 3 Polymery Polymetylmetakrlát,Polystyren, Polivinilchlorid Kovové slitiny Au 4 Si, Pb 4 Si Krystalický stav je termodynamicky více stabilní, tudíž sklo má sklon ke krystalickým změnám, jestliže je po dlouhou dobu dodáváno dostatek tepelné energie i při nízkých teplotách, nebo naopak. Proto rychlost krystalizace přímo souvisí s rychlostí tvorby skla. Závislost rychlosti krystalizace na teplotě pro SiO 2 je nakreslena v obrázku 4.1. Maximální rychlost krystalizace je 10-4 cm/s, trvá 10 ms a zabraňuje růstu krystalů na více než 100 Å. Tento čas je dostatečně krátký k vytvoření jiných skel než z oxidu křemičitého. To umožňuje rychlost krystalizace vyjádřit jako: (4.1)

kde je teplota směsi v tavenině, je vzdálenost v mřížce a je viskozita roztoku. Rovnice (4.1) ukazuje, že vysoká viskozita, blízká u, bude mít za následek nízkou rychlost krystalizace. To dělá výrobu skla snazší. Tabulka 4.2 popisuje některé změřené hodnoty rychlosti krystalizace kapalného vytváření skla. Obrázek 4.1. Závislost rychlosti krystalizace SiO 2 z taveného křemene a teploty. Převzatý z podkladů z *4+. Copyright 1973, Wiley. 4.2. NUKLEACE A VZNIK SKLA Rychlost homogenní nukleace z kapalin může být vyjádřena jako: (4.2) kde je koeficient a E je energie potřebná k vytvoření kritického jádra, která může být vypočten podle následujícího vztahu: (4.3)

kde je molární objem kapaliny, a. Rychlost nukleace může být také omezena transportem molekul do jádra. Ulhmann navrhnul, že viskozita a rychlost poklesu viskozity s teplotou jsou důležité determinanty rychlosti nukleace [6]. Tabulka 4.2. Rychlost krystalizace a viskozity u kapalného vytváření skla Maximální Teplota Log viskozity Materiál ( C) rychlost (cm/s) při max. rychlosti ( C) při (P) SiO 2 1734 2.2 x 10-7 1674 7.36 GeO2 1116 4.2 x 10-6 1020 5.5 P2O5 580 1.5 x 10-7 561 6.7 Na2O-2SiO 2 878 1.5 x 10-4 762 3.8 PbO-2B 2 O 5 774 1.9 x 10-4 705 1.0 Glycerol 18.3 1:8 x 10-4 -6.7 1.0 Převzato z podkladů z *4+. Copyright 1973, Wiley. Obecně nízká teplota tání s asymetrickou strukturou molekul usnadňují vytváření skel. Proto vytvářet skla budou prvky a sloučeniny s nízkým a s blížícím se k. Pro oxidy, nejpříznivější substrát pro vytváření skel, je látka s dlouhou 3D neperiodickou sítí s energií srovnatelnou s krystalickou sítí. Konkrétně: 1. Atom kyslíku není spojen s více než dvěma sklo vytvářejícími atomy. 2. Koordinační číslo (CN) je malé. 3. Kyslík mnohostěnu sdílí rohy s ostatníma, ne krajem ani stěnou. 4. Mnohostěny jsou spojeny v 3D síti. Dle těchto pravidel, AO 2 a A 2 O 5 [A: atom kovu+ splní tyto pravidla, když O atom vytvoří čtyřstěn kolem každého A; A 2 O 5 vyhovuje pravidlům 1, 3 a 4 když atomy kyslíku vytvoří trojné vazby kolem každého A; A 2 O a AO nesplní ani jedno pravidlo. 3D síť má obvykle za následek vysokou viskozitu, což vede k nízké rychlosti krystalizace, která podporuje vytváření skla. Další typickou vlastností je vysoká vazebná energie mezi O a A atomy (>80 kcal/mol), třebaže teplota tání je nižší než u jednotlivých prvků. Nízká teplota tání způsobuje malou rychlost nukleace a krystalický růst, což usnadňuje vytváření skla. 4.3. PEVNOST SKLA Griffitova teorie lámání může být použita pro křehký materiál s kazy. Podobná analýza může být použitá na sklo; opravdu, Griffitova teorie byla prvně vyvinuta pomocí skla jako experimentálního vzoru. Tabulka 4.3 udává některé vlastnosti používané ke spočítání teoretické pevnosti křemenného skla. (např. povrchové napětí, Youngův modul a Si-O vazebnou vzdálenost. Tabulka 4.3 Vlastnosti křemenného skla Vlastnost Hodnota

Si-C vazebná energie 106 kcal/mol Vazebná hustota 7.9 x 10 14 molekul/cm 2 [=1.3 x 10 5 molekul/m 2 ] Povrchové napětí 2,9 N/m [= J/m 2 ] Youngův modul 72 GPa Vazebná vzdálenost 1.62 Å Teoretická pevnost 18 GPa Změřená pevnost 13.5 GPa @ -196 C 14.7 GPa @ -269 C Převzato z podkladů z *4+. Copyright Příklad 4.1 1973, Wiley. Vypočítejte teoretickou pevnost křemenného skla s použitím hodnot z tabulky 4.3. Odpověď:. Vazebná vzdálenost je odhadována jako ¼ mřížkové vzdálenosti,. Tato hodnota je blízká ke změřené hodnotě 14.7 GPa při -269 C z tabulky 4.4. Jak již bylo zmíněno dříve, mez pevnosti křehkých materiálů závisí na velikosti kazu, či trhliny v testovaném vzorku. Jedno takové měření skla je v tabulce 4.4. Podle (3.16) můžeme napsat jako a je konstanta bez ohledu na velikost trhliny. Tabulka 4.4 ukazuje výsledky, když je nezávislé na. (4.4) Tabulka 4.4 Mez pevnosti skla pro různé velikosti trhliny Velikost trhliny 2 (m) Mez pevnosti (MPa) (MPa ) 0.0038 5.96 0.37 0.0069 4.30 0:36 0.0137 3.32 0.39 0.0226 2.52 0.38 1 psi = 6895 Pa. Převzato z podkladů z *4+. Copyright 1973, Wiley.

4.4. STATICKÁ ÚNAVA SKEL Stejně jako u všech jiných materiálů, skla podléhají zhoršení pevnosti při statickém, či dynamickém zatížení. Statické vlastnosti mohou být měřeny provedením tří (nebo čtyř) bodovém testu, při kterém se použije konstantní zatížení a automaticky se měří čas, při kterém dojde ke zlomení vzorku. Za účelem zkrácení času testu se může použít vyšší namáhání, teplota, nebo zhoršení okolního prostředí. Jeden soubor údajů z testu je v tabulce 4.5 a na obrázku 4.2, kde je několik povrchů vzorku. Mez pevnosti vzorku skla v tekutém dusíku nám dává a průměrný čas zlomení = ½ ( ). Jak můžete vidět na obrázku, se mění téměř lineárně s log, bez ohledu na povrchových úpravách materiálu mají všechny křivky podobný tvar. Jestliže jeden může posunout křivky, mohou utvořit hlavní křivku analogickou WLF rovnici pro časovou a teplotně závislost uvolnění modulu ve skelných polymerech. Faktory posunu mohou v tomto případě distribuovat velikost povrchu trhliny. Tabulka 4.5 Účinek různých odřenin na mechanické vlastnosti skla Odřenina (MPa) (sec) Těžké tryskání 93.8 2.9 Střední tryskání, Smirkový papír, kolmé namáhání 85.5 8.8 600 štěrk 134.5 0.0043 320 štěrk 95.2 0.039 150 štěrk, paralelně namáhaný 69.6 0.56 150 štěrk 164.8 0.14 Převzato z podkladů z *4+. Copyright 1973, Wiley.

Obrázek 4.2 Graf vs log sodnovápenatého vzorku. Převzato z podkladů z *4+. Copyright 1973, Wiley. Část vzorků, která v čase chybí, může být vyjádřena Gausovým rozdělením:, (4.5) kde je čas, kdy a je míra rozptýlení rozložení. Obrázek 4.3 ukazuje rozložení rovnice (4.5) s a experimentální data pro borosilikátové sklo (66% SiO 2, 24% B 2 O 3, 3% Al 2 O 3, 4% Na 2 O, 2% K 2 O). Jak můžeme vidět, pro počáteční časové periody je rozdíl největší (různé pokusy dávaly rozdílné výsledky), ale minimální pro dlouhé časové periody. Příklad 4.2 Bioinženýr se snaží zlepšit vlastnosti UI-keramiky, která je ze safíru (Al 2 O 3 ). Youngův modul (400 GPa), Poisonovo rozdělení (0.3) a hustota (3.9 g/cm 3 ) jsou srovnatelné s ostatními hlinitými keramikami. Bioinženýr měřil pevnost a zaznamenal hodnoty z těchto záznamů pro původní a UI-keramiku.

Obrázek 4.3 Rozdělení log časů poruchy podle rovnice (4.5) s h = 0.7 a experimentálních dat borosilikátového skla. Převzato z podkladů z *4+. Copyright 1973, Wiley. Úroveň tlaku počet zlomených vzorků (MPa) Původní Nová keramika 100 (95 105) 1 0 110 (105 115) 2 1 120 (115 125) 4 3 130 (125 135) 9 6 140 (135 145) 4 9 150 (145 155) 0 1 1. Vypočítejte průměrnou pevnost pro původní a UI-keramiku. 2. Vypočítejte procentní nárůst pevnosti u úpravy. 3. Vypočítejte největší délku Griffitovy praskliny uvnitř vzorku pro původní vzorek oxidu hlinitého podle předpokladu eliptického tvaru trhliny, povrchová energie je 0.1 N/m.

4. Vypočítejte tepelnou rezistivitu (ΔT) UI- keramiky, která má lineární tepelný koeficient roztažnosti 8.5 x 10-6 /K. 5. Který vzorek by byl pravděpodobně poškozen více teplotním šokem? 1 mm, nebo 10 mm UI-keramika? Proč? 6. Bioinženýr zjistil, že pevnost byla nejvyšší pro menší než větší krystalickou UIkeramiku. Proč? 7. Nakreslete křivku souhrnné pravděpodobnosti selhání (CPF) vs. lámacího napětí. Odpovědi: 1. Kontrolní 126.5 MPa, UI-keramika 133 MPa. 2. Procentuální změna = (133 126.5)/126.5=5.14% zvýšení. 3. pro vnitřní trhlinu. 4.. Tato hodnota je poněkud nízká. Bylo by nepravděpodobné, že tepelný šok, by byl problém in vivo, protože teplota zůstává konstantní. 5. 10 mm tenký implantát od změny obsahující větší trhliny, které jsou typické pro tlusté vzorky. Tlustší implantát bude odolávat déle, než dosáhne tepelné rovnováhy. 6. Implantát s menší velikostí krystalů je pevnější díky zvýšené plochy a menší velikostí trhlin. 7. Zkuste to sami. PROBLÉMY 4.1 Když křehký materiál o objemu je podroben jednotnému tahovému namáhání,, můžeme napsat: kde je pravděpodobnost, že materiál bude zlomen a a jsou konstanty. Místo toho aby tahové napětí bylo konstantní v celém materiálu, liší se podle polohy pravděpodobnost a je:

Testy pevnosti v ohybu byly prováděny na jednotlivých paprscích nitridu křemíku, jak je uvedeno níže (a). 50% paprsků se zlomí v okamžiku nebo před, kdy tahové napětí dosáhne 500 MPa. Stejný vzor je používán v případech, kdy je v tahu podél jeho délky, jak je níže uvedeno v (b). Vypočítejte namáhání v tahu, které dává 50% šance na zlomení tohoto vzorku. Můžete předpokládat, že pro nitrid křemíku. Rady jak použít test pevnosti v ohybu: (a) měli byste integrovat pouze polovinu paprsku, (b) můžete předpokládat, že namáhání v tahu v obecné poloze dáno: přes spodní je (Viz graf v Problému 4.1) Testy pevnosti v ohybu byly provedeny na vzorcích zesílené sklokeramice s rozměry Průměrná hodnota (tj. ) byla 300 MPa. Sklo-keramika má být použita s rozměry naložená v jednom tahu po celé své délce. 4.3. Odpovědi z údajů uvedených pro keramiku z oxidu hliníku. prosklené a kalené Vlastnosti za přijaté (1500 C, silikonový olej)

(psi) 40,000 61,000 0.25 0.3 (glazura) 65 53 (glazura) (GPa) 390 390 a. Odhadněte velikosti tepelného šoku ( ) potřebného ke zlomení přijatých, prosklených a kalných vzorků. b. Očekávali byste vyšší, když přijatý vzorek byl po povrchu leštěn plamenem? Proč? Proč ne? c. Odhadněte pro přijaté, prosklené a kalené vzorky, jestliže byl největší nedostatek hloubky 1 mm. d. Můžete použít tu samou hodnotu získanou pro jedno-krystalový safír pro odhad nedostatku hloubky pro polykrystalický oxid hlinitý? Uvést důvody. 4.4. Griffitovo měření meze pevnosti skla po zavedení odlišných velikostí vad. a. Výpočet poloměru trhliny. b. Dokažte, že teoretická pevnost skla závisí na. Délka trhliny Mez pevnosti (psi) 0:15 864 0.29 623 0.54 482 0.89 366 4.5. a. Integrací získáme část vzorků, které se zlomí pod určitou zátěží: c. Nákres, předpokládejme, že je náhodné. 4.6 Někdo vyrábí nitrooční čočky (IOLs) z PMMA skla a pyrexového skla (křemenné sklo). Poskytují výhody i nevýhody z hlediska jejich mechanických a povrchových vlastností, hustoty, vyrobitelnosti, použitelnosti a biokompatibility. 4.7 Golfový řidič s tekutou kovovou hlavou má být amorfní (nekrystalický). Jaké by byly výhody použití tekutého kovu pro kyčelní dřík při totálních kyčelníchnáhradách?

4.8 Vysvětlete důvody, proč některé krystalické struktury (jako je diamant a oxid hlinitý) jsou průsvitné, zatímco ostatní (např. krystal zlata) ne? Proč jsou některá skla (např. sodno-vápenné sklo) průhledná a některá (tekutý kov) ne? SYMBOLY/DEFINICE Řecká písmena : povrchová energie : viskozita : rychlost krystalizace Římská písmena : homogenní nukleací rychlost a:mřížková vzdálenost : aktivační energie nukleace erf: špatná funkce F: Gaussova distribuční funkce h: rozsah Gaussova rozložení : teplo směsi k: konstanta R: plynová konstanta : teplota tání : stupeň podchlazení V: molární objem Definice ASTM: Americká společnost pro testování a materiály. Koordinační číslo (CN): Číslo přímého kontaktu atomů, či iontů v jediné buňce krystalické struktury. Gaussovo rozdělení: Skupina distribucí stejného všeobecného tvaru, lišícího se v umístění a rozsahu parametrů: a to střední a směrodatné odchylce. Standardní normální distribuce je normální distribuce s průměrem a odchylkou jedné. To se často nazývá zvonová funkce, neboť graf hustoty pravděpodobnosti se podobá zvonu. Pojmenované podle Carla Friedricha Gausse, který ji publikoval v jeho práci v roce 1801 [2]. Hlavní křivka: Často používaná k nákresu relaxačním křivkám modulů na semilogaritmický graf k získání celého spektra relaxace. Viz WLF rovnice.

Neodymové sklo rozsáhle používané jako laserové a vlnovodné sklo (sodnovápenaté sklo obsahující 2% Nd 2 O 3 hmotnostních). Může být vyrobeno jako sklokeramické. PMMA: Polymetylmetakrylát, Nekrystalický, čistý, tvrdý polymer používaný k výrobě syntetických okenních skel, tvrdých kontaktních čoček, kostní cement atd. Poise: Jednotka viskozity, 1 P = 1 Pa s. PS: Polystyren, nekrystalický, čistý, tvrdý a křehký polymer používaný k výrobě levných výrobků. Viskozita: Vnitřní tření tekutiny, které brání proudění na pevném povrchu, či v ostatních vrstvách kapaliny. WLF rovnice: Williams, Wendel a Ferry navrhli, že časově-teplotní chování amorfních materiálů (polymerů) může být vyjádřeno jako kde je činitel posunu, je přechodová teplota skla. Reologickým chováním (např. relaxace) mohou být získány po desítkách, jestliže jeden může poskytnout relaxační data změn teplot a vykreslit faktory posunu. To nemusí platit pro organická skla, relaxační chování nesmí být podobné jako u molekul s dlouhým řetězcem (polymerní skla) *3+. REFERENCE 1. Ashby MF, Jones DR. 1986. Engineering materials 2:an introduction to microstructures, processing and design, pp. 147-152, Oxford: Pergamon. 2. Bell ET. 1986. The prince of mathematicians: Gauss. In Men of mathematics: the lives and achievements of the great mathematicians from Zeno to Poincaré, pp. 218-269. New Yourk: Simon and Schuster. 3. Billmeyer Jr FW. 1984. Textbook of polymer science. New York: Wiley. 4. Doremus RH. 1973. Glass science. New York: Wiley. 5. Platt R. 1994. Smithsonian visual timeline of inventions. New York: Dorling Kindersley. 6. Uhlman DR. 1972. A kinetic treatment of glass formation. J Noncryst Solids 7:337-348.