Měření spotřeby paliva. Možnosti měření spotřeby paliva. Měření spotřeby paliva na vznětovém motoru proplachované vstřikovací čerpadlo



Podobné dokumenty
Metody měření provozních parametrů strojů. Metodika měření. absolutní a měrná spotřeba paliva. měření převodového poměru,

Metody měření provozních parametrů

Spádový karburátor SOLEX 1 B3 Schématický řez

19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES

Obsah. Obsah vod Z kladnì pojmy Kontrola technickèho stavu motoru... 24

Palivová soustava zážehového motoru Tvorba směsi v karburátoru

Nepřímé vstřikování benzínu Mono-Motronic

Systémy tvorby palivové směsi spalovacích motorů

Autodata Online 3 CZ Ukázky z programu

Palivové soustavy vznětového motoru

Diagnostika poruch hydraulických zařízení

1 PALIVOVÁ SOUSTAVA ZÁŽEHOVÝCH MOTORŮ PALIVOVÁ SOUSTAVA VZNĚTOVÝCH MOTORŮ... 70

Krok za krokem ke zlepšení výuky automobilních oborů. CZ.1.07/1.1.26/ Švehlova střední škola polytechnická Prostějov

Opel Vectra B Chybové kódy řídící jednotky (ECU)

Stroboskopy. 1 tlačítko uložení do pamětí naměřené hodnoty 2 kolečko posunutí stroboskopického efektu

Zvyšování kvality výuky technických oborů

Zkoušky paliva s vysokým obsahem HVO na motorech. Nová paliva pro vznětové motory, 8. června 2017

OPRAVA PALIVOVÉ SOUSTAVY. PROJEKT. III. ROČNÍK Téma 4.3 Soustava palivová

Vstřikovací systém Common Rail

Palivová soustava Steyr 6195 CVT

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej

Digitální učební materiál

TEDOM a.s. divize MOTORY

(mechanickou energii) působením na píst, lopatky turbíny nebo využitím reaktivní síly Používají se jako #3

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů

Silniční vozidla, Údržba a opravy motorových vozidel, Kontrola měření

OVĚŘOVACÍ TEST l ZÁKLADNÍ

PALIVOVÁ A VÝFUKOVÁ SOUSTAVA

PALIVA PRO VZNĚTOVÉ MOTORY

Obsah. Obsah. Úvodem. Vlastnosti a rozdělení vozidel na LPG. Druhy zástaveb LPG ve vozidlech. Slovo autora... 9

MIKROMAZÁNÍ PODVĚSNÝCH DOPRAVNÍKŮ

Měření emisí motorových vozidel

KATALOG NÁHRADNÍCH DÍLŮ ŠKODA 1000/1100MB, 1000MBG, 1000/1100MBX 3. část: KARBURÁTOR S PŘÍSLUŠENSTVÍM. Karburátor, čistič vzduchu a termoregulátor

DIESEL PRÉMIOVÁ PALIVA ALL IN AGENCY výkon ekologie rychlost vytrvalost akcelerace

Zvyšování kvality výuky technických oborů

Snímače a akční členy zážehových motorů

LAMELOVÁ ČERPADLA V3/25

PRI-TeO-PO F Palivová soustava vznětového motoru - dopravní (podávací) čerpadla 2 / 5

Pístové spalovací motory-pevné části

Zvyšování kvality výuky technických oborů

4141A LAGUNA II ZELENÁ TECHNICKÁ NÓTA EDITION TCHEQUE. Ostatní dotčené podkapitoly: Motory: Základní dokumentace:

Potřebné vybavení motoru 4 válce, plná verze

Schémata elektrických obvodů

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej

(elektrickým nebo spalovacím) nebo lidskou #9. pro velké tlaky a menší průtoky

PRI-TeO-PO F Palivová soustava vznětového motoru - řadová vstřikovací čerpadla (konstrukce) 1 / 12

Témata profilové maturitní zkoušky z předmětu Silniční vozidla

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů

Ústav automobilního a dopravního inženýrství PODPORA CVIČENÍ. Ing. Jan Vančura Ústav automobilního a dopravního inženýrství FSI VUTBR

Metody měření provozních parametrů

zapaluje směs přeskočením jiskry mezi elektrodami motoru (93 C), chladí se válce a hlavy válců Druhy:

Biopowers E-motion. Návod k obsluze zařízení pro provoz vozidla na E85

10 TECHNICKÁ DIAGNOSTIKA PROGNOSTIKA ZÁKONY A PŘEDPISY PRO MOTOROVÁ VOZIDLA LITERATURA

Metody měření provozních parametrů strojů

Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/

Brněnská 30, Žďár nad Sázavou, tel./fax: , gsm: ,

Témata profilové maturitní zkoušky z předmětu Silniční vozidla

BALLOREX Venturi DN vnitřní závit/vnitřní závit měřící body, vysoký/nízký tlak Max. tlak PN 25 Max. teplota 120 C

STIHL TS 500i Nový rozbrušovací stroj STIHL se vstřikováním paliva. Andreas STIHL, spol. s r.o.

Témata profilové maturitní zkoušky z předmětu Silniční vozidla

Pojistné a zabezpečovací zařízení systémů VYT a TV

ČTYŘDOBÝ VÍCEVÁLCOVÝ SPALOVACÍ MOTOR S VYUŽITÍM TLAKOVÝCH PULZŮ VÝFUKOVÝCH PLYNŮ KE ZVÝŠENÍ NAPLNĚNÍ VÁLCŮ

Spalovací motory. Palivové soustavy

PROFESIONÁLNÍ CHEMIE BG PRO ÚDRŽBU AUTOMATICKÉ PŘEVODOVKY A MOTORU!!!

Konstrukce drážních motorů

Jawa 50 typ 550. rok výroby

DOPRAVNÍ A ZDVIHACÍ STROJE

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby.

Funkční vzorek vozidlového motoru EA111.03E-LPG

Měřicí princip hmotnostních průtokoměrů

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

Učební texty Diagnostika II. snímače 7.

Brněnská 30, Žďár nad Sázavou, tel./fax: , gsm: ,

Elektrický palivový ventil

HLAVA I SILNIČNÍ VOZIDLO V PROVOZU 36

PROBLEMATIKA MĚŘENÍ SPOTŘEBY PALIVA

HYDROGENERÁTORY V3 (série 30 a 40)

Vliv paliv obsahujících bioložky na provozní parametry vznětových motorů

Popis VIN Kontrola bloku motoru Opravy a renovace bloku motoru Mazací kanály... 22

TECHNICKÉ PARAMETRY INTEC- 1500

REGULAČNÍ LAMELOVÉ HYDROGENERÁTORY

Brněnská 30, Žďár nad Sázavou, tel./fax: , gsm: ,

ŘÍZENÍ MOTORU Běh naprázdno Částečné zatížení Plné zatížení Nestacionární stavy Karburátor s elektronickým řízením

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

Palivová soustava

Automobilová elektronika

Zvyšování kvality výuky technických oborů

Základní technický popis kogenerační jednotky EG-50

MOTORY. Síla. Efektivita

Učební texty Diagnostika snímače 4.

Tespo engineering s.r.o., Roubalova 7a, Brno, tel.: , fax : info@tespo-eng.cz ;

Komponenty pro hydraulickou výbavu. Všeobecně. Činnosti před spuštěním nového hydraulického systému

Komplexní péče o výrobní techniku

Service 80. Vznětové motory 1,2; 1,6 l a 2,0 l. Dílenská učební pomůcka. se systémem vstřikování common rail

membránové dávkovací čerpadlo MEMDOS GMR

Vstřikování Bosch-_Motronic

Popis výukového materiálu

Zkušenosti s provozem kalibračních tratí. Ing. Vladislav Šmarda ENBRA, a. s.

Střední škola automobilní, mechanizace a podnikání p.o. Opakovací okruhy pro závěrečnou učňovskou zkoušku pro třídu 2.R

Transkript:

Metody měření provozních parametrů strojů absolutní a měrná spotřeba paliva Spotřeba paliva spotřebované palivo je spolu se s dosaženým efektivním výkonem motoru m vhodným souhrnným diagnostickým signálem měrná spotřeba paliva [g. g.kwh - 1 ] většina závad na vznětových a zážehových spalovacích motorech se projeví zvýšením spotřeby paliva pro každého uživatele je vhodné sledovat spotřebu paliva snadné sledování spotřeby paliva v [Litr. Litr.mth - 1, Litr.100km - 1 ] měříte u čerpací stanice při naplnění plné nádrže problémem zde je nemožnost přesně trefit stálou hodnotu plné nádrže, každá čerpací í stanice má jiné stojany a tedy palivoměry s jinou chybou (problémy eliminují korekce) Jak je pro Vás vhodné tankovat a proč? rychle pomalu 1

Měření spotřeby paliva spotřebované palivo spalovacího motoru je zpravidla měřeno na výstupu z palivové nádrže je případně nutno vzít v úvahu zpětné vracení paliva do nádrže měří se tak spotřeba paliva celého motoru bez rozlišení podílu jednotlivých válců při detailní diagnostice vznětových motorů, přichází v úvahu přímé měření paliva spotřebovaného jednotlivými válci, tzv. dodávka paliva do válců Možnosti měření spotřeby paliva měření s proplachovaným vstřikovacím čerpadlem měření s neproplachovaným vstřikovacím čerpadlem měření dodávky paliva dávkoměrem měření spotřeby paliva u zážehových motorů palivoměrem měření spotřeby paliva přímo na vstřikovacím zařízení měření spotřeby paliva z emisí Měření spotřeby paliva na vznětovém motoru proplachované vstřikovací čerpadlo 1. průtokoměr 2. sestava měřiče 3. palivový čistič 4. vstřikovací čerpadlo 5. vstřikovací soustava 6. dopravní čerpadlo 7. chladící komora 8. pomocné čerpadlo 9. palivová nádrž 2

Měření spotřeby paliva na vznětovém motoru proplachované vstřikovací čerpadlo Do sací komory vstřikovacího čerpadla je dopravováno několikanásobně vyšší množství paliva,, než je vstřikováno do válců, přičemž přebytečným palivem je čerpadlo: proplachováno, ochlazováno, strhávány plynné složky do výstupu z čerpadla. Palivo, které se vrací z proplachovaného vstřikovacího čerpadla, přichází zpět do odvzdušňovací a chladicí komory. Je třeba měřit při stabilním režimu otáček motoru a při plné dodávce paliva (zatížení motoru výkonovou brzdou). Měření při akceleraci motoru: Při akceleračních měřeních,, během krátkých dob rozběhu motoru, je uvedený měřič spotřeby v daném zapojení nepoužitelný.. Celý proplachovací okruh včetně vzduchových "polštářů" v komoře má vždy určitou setrvačnost st a měřicí prvek tedy začíná měřit se zpožděním. Při stabilním režimu, pro který je přístroj určen, to nevadí, avšak při akceleračním měření jsou výsledky značně zkreslené. Měření spotřeby paliva na vznětovém motoru neproplachované vstřikovací čerpadlo 1. palivová nádrž 2. dopravní čerpadlo 3. palivový čistič 4. odvzdušňovací komora 5. jednosměrný ventil 6. sestava měřiče 7. průtokoměr 8. vstřikovací čerpadlo 9. vznětový motor 3

Měření spotřeby paliva na vznětovém motoru neproplachované vstřikovací čerpadlo Takové zapojení bez proplachování vstřikovacího čerpadla se v provozu při práci motoru používá pouze výjimečně u některých typů motorů. Při diagnostickém měření, trvajícím zpravidla pouze několik minut, lze však uvedené zapojení použít bez problému. Výhodou je zapojení odvzdušňovací komory před měřicím prvkem, při i němž nemá měřicí systém nežádoucí přechodové jevy v podobě pomalého rozběhu a doběhu a lze proto měřit i při akceleraci motoru. V některých případech je možné krátkodobě převést systém proplachovaného čerpadla na neproplachované. Dávkoměr paliva pro ustálený režim motoru 1. vstřikovací čerpadlo 2. vstřikovač (součást dávkoměru) 3. komora přerušovače 4. přerušovač 5. elektromechanické počítadlo 6. připojení na akumulátor vozidla 7. jednosměrný ventil 8. odměrný válec s pístem 9. pístnice 4

Dávkoměr paliva pro ustálený režim motoru Lze měřit dodávku do jednotlivých válců vznětového motoru bez demontáže vstřikovacího čerpadla. Dávkoměr se namontuje na vysokotlaké vstřikovací potrubí jednoho, právě měřeného válce a měří se při chodu motoru na zbylé válce. Přičemž je palivo určené do měřeného válce po celou dobu měření vstřikováno etalonovým vstřikovačem proti destičce přerušovače. Určitým problémem však je udržet motor pracující na část válců na předvolené frekvenci otáček: čtyřválcový motor pracující na jeden válec se samočinně udržuje přibližně na polovině jmenovitých otáček motoru, čtyřválcový nebo šestiválcový motor pracuje při plné dodávce paliva na jeden válec stabilně a do druhého válce je střídavým povolováním šroubení regulována dodávka paliva tak, aby byly udržovány střední požadované měřící otáčky, požadované měřící otáčky jsou udržovány rytmickým střídáním plné a nulové dodávky paliva pomocí palivového pedálu. Dávkoměr paliva pro ustálený režim motoru Některé typy palivoměrů měří v objemových jednotkách za čas, jiné v nejčastěji požadované formě, tj. měřený objem na předvolený počet vstřiků (obvykle 200), a nebo též měřený počet vstřiků na předvolený objem paliva 12000. d Q V = ---------------. ------ z n 200. D V = ------------- C V stanovená dodávka paliva na 200 vstřiků (cm 3 /200) Q naměřená spotřeba paliva (cm 3 /s) n otáčky motoru (ot./min) d konstanta d = 1 pro dvoudobý a d = 2 pro čtyřdobý motor z počet válců motoru D předvolený objem dávkoměru (cm 3 ) C naměřený počet vstřiků pro naplnění objemu D 5

Měření průtoku v hydraulických soustavách Jedním z významných diagnostických signálů silových hydraulických soustav traktorů, automobilů a samojízdných strojů je objemové průtok kapaliny v různých místech soustavy při její definované pracovní činnosti.. Využívá se několik principů měření a jim odpovídajících měřících zařízení také při měření spotřeby paliva: přímoukazující průtokoměry součtové průtokoměry Přímoukazující průtokoměry zpravidla se jedná o objemová pístová nebo rychlostní měřidla měřicí prvek je proudem kapaliny uváděn do rotačního pohybu rychlost otáčení je elektricky měřena a měřené údaje cejchovány (litr/min, cm 3 /s) pro účelné praktické použití musí být průtokoměr vybaven sadou připojovacích prvků předřazeným čističem - zabránění poškození vlivem náhodně vniklých nečistot velmi přesně vyrobeného měřicího ústrojí přesnost přímoukazujících průtokoměrů bývá 1 až 2%, ovšem nároky na přesnost a kvalitu mechanických i elektrických částí jsou vysoké s využitím výpočetní techniky lze u každého konkrétního průtokoměru podstatně zvýšit přesnost měření tím, že je do programu zahrnuta korekce měřených údajů pomocí cejchovní křivky přesné měření lze v praxi dosáhnout jednak volbou průtokoměru o měřícím rozsahu zabezpečujícím, že zpravidla měřený průtok je pokud možno blízký hodnotě, při níž cejchovní křivka prochází nulovou hodnotou chyby měření nebo použitím cejchovní křivky průtokoměru 6

Cejchovní křivka velký průtok je výhodný pro dodavatele (naměří se více) malý průtok je vhodný pro odběratele (naměří se méně) Součtové průtokoměry měřicí prvek je v zásadě stejný jako u průtokoměrů přímoukazujících neměří se však okamžité hodnoty objemového průtoku, ale proteklé množství kapaliny je sumarizováno za určitou předvolenou dobu je-li měření takto rozloženo do časového úseku délky jednotek až desítek sekund, dosahuje se vyšší přesnosti při menších nárocích na technickou dokonalost měřidla 7

Součtový průtokoměr 1. rychlospojka 2. tlakoměr 3. regulační škrtící ventil 4. hydromotor 5. přerušovač elektrického okruhu 6. elektromechanické počítadlo impulsů 7. časové relé 8. zdroj elektrického proudu Výpočet množství paliva G. N Q = 0,06. --------------- t. c Q objemový průtok kapaliny (litr/min) G vnitřní geometrický objem měřidla = objem kapaliny proteklé za jednu otáčku (cm 3 /ot.) N naměřený počet impulsů za předvolený časový úsek t předvolený časový úsek měření (s) c počet vrcholů vačky přerušovače (imp/ot.) Pro praktické měření se volí vhodná relace veličin t, G a c tak, aby výsledná veličina Q byla číselně totožná s přímo odečítanou veličinou N. 8

Vhodná relace veličin 0,6. G t = --------------- c Q = 0,1. N Například: Je-li vnitřní objem měřidla G = 10 cm 3 a počet vrcholů vačky c = 1, volíme časový úsek t = 6 s. Je-li za tento předvolený časový úsek 6 sekund naměřen například počet impulsů N = 156 impulsů, čte se tento údaj s jednou desetinnou čárkou jako naměřená hodnota Q = 15,6 litrů/min. Obdobně lze vhodnou volbou časového úseku t, při seškrcení tlaku kapaliny p škrtícím ventilem na jmenovitou hodnotu, přímo měřit výkon protékající hydraulické kapaliny ve Wattech. Měření spotřeby paliva z emisí Vychází se z produkce: CO oxidu uhelnatého [g.km - 1 ], CO 2 oxidu uhličitého [g.km - 1 ], HC uhlovodíků [g.km - 1 ]. Pro zážehové motory palivem je benzín FC 0.1154 ( 0.866 HC) + ( 0.429 CO) + ( 0.273 CO D 2 ) Pro vznětové motory FC 0.1155 ( 0.866 HC) + ( 0.429 CO) + ( 0.273 CO D 2 ) FC = spotřeba paliva v litrech na 100 km HC = změřené emise uhlovodíků v g.km -1 CO = změřené emise oxidu uhelnatého v g.km -1 CO 2 = změřené emise oxidu uhličitého v g.km -1 D = hustota zkušebního paliva 9

Měření spotřeby paliva z emisí Výhody: Nevýhody: není nutné zasahovat do palivové soustavy vozidla (není třeba eliminovat přepad zpátky do nádrže, není třeba dávat pozor na ovlivnění podmínek provozu (vstřikovací tlaky) měření na válcové zkušebně při konstantní zatížení bezproblémové měření spotřeby paliva během jízdního městského nebo mimoměstského cyklu možné pouze za celý cyklus (jímání produkce emisních složek k do vaků) ve své podstatě je tedy tento způsob jednoduchý e velmi vhodný do d provozní praxe nelze měřit během akcelerace spalovacího motoru zpoždění jednotlivých analyzátorů při měření ředěných plynů jsou potřeba jiné rozsahy měřících analyzátorů Porovnání spotřeby paliva z palivoměru a z emisí Dodávka paliva podle palivoměru (kg/h) Dodávka paliva podle emisí (kg/h) 10

Porovnání spotřeby paliva z palivoměru a z emisí Přesnost v těsné blízkosti měřených bodů (%) Přesnost v celé pracovní oblasti (%) Diagnostika palivových soustav spalovacích motorů 11

Péče o správnou funkci palivové soustavy je jednou z nejzávažnějších podmínek spolehlivého, ekonomického a ekologického provozu spalovacího motoru. Prakticky má malá odchylka od optimální funkce palivové soustavy větší vliv než například poměrně značná ztráta kompresního tlaku. Poruchy a diagnostika palivové soustavy vznětového motoru Základní požadavek dopravit do spalovacího prostoru motoru správnou dodávku paliva, ve správný čas a ve správné formě Na plnění tohoto požadavku se podílí: Nízkotlaká část čistič paliva dopravní čerpadlo nízkotlaké potrubí Vysokotlaká část vstřikovací články zpětné ventily vstřikovací potrubí vstřikovače Významný vliv má také regulátor 12

Typické poruchy V 1 normální dodávka paliva (mm 3 /zdvih) V 2 dodávka paliva snížená v důsledku opotřebení vstřikovacího článku (mm 3 /zdvih) V 3 dodávka paliva zvýšená v důsledku nesprávného seřízení (mm 3 /zdvih) M 1, M 2, M 3 odpovídající průběhy točivého momentu v závislosti na otáčkách motoru (Nm( Nm) V důsledku opotřebení vstřikovací jednotky čerpadla klesá dodávka paliva mnohem více při nižších otáčkách, kdy je k dispozici dostatek času na únik paliva. Ve jmenovitých otáčkách je změna točivého momentu zanedbatelná, ale výrazně je ovlivněna záloha točivého momentu a motor ztrácí na pružnosti. Obdobně se projevuje opotřebení výtlačného ventilku.. V provozu dochází k opotřebení odlehčovací válcové plošky, což má nepříjemný ný dopad nejen na vznik dostřiků, ale též v tom, že se zvyšuje spotřeba paliva p (ve( výtlačném potrubí zůstává po vstřiku v tomto případě větší množství paliva pod větším tlakem a nově vytlačované palivo je při následujícím zdvihu více využito k vlastnímu vstřiku). Na změnu dodávaného paliva má vliv také otevírací tlak trysky (například snížením otevíracího tlaku ze 16 na 12 MPa se zvětší dodávka o 4 %). Je-li palivo vstříknuto do spalovacího prostoru motoru ve správný čas, č ve správném množství, ale v nevhodné formě, dochází k menšímu využití paliva a tím k poklesu točivého momentu (vstřik při částečně zacpaných tryskách, váznutí jehly vstřikovače ). Nesprávné seřízení dodávky paliva může být způsobeno neodborným zásahem do nastavení dorazu regulační tyče.. Jde obvykle o zvýšení dodávky, jehož následkem je kouření motoru (20 % zvýšení dodávky zvýší výkon asi o 10 % avšak za cenu nepřípustného zvýšení kouřivosti a namáhání motoru) nadbytečné palivo je spotřebováno velmi nehospodárně. Seřizovací podmínky vstřikovacích zařízení jsou uváděny v podobě tabulek a nebo grafických charakteristik. 13

Vstřikovací čerpadlo s výkonnostním regulátorem Dorazem ovládací páky mohou být změněny maximální otáčky,, což vede k nebezpečí havárie motoru. Dorazem regulační tyče lze částečně zvýšit výkon,, ovšem za cenu zvýšení kouřivosti motoru a nehospodárného zvýšení spotřeby paliva Vstřikovací čerpadlo s omezovacím regulátorem Dorazem ovládací páky Dorazem ovládací páky může být částečně zvýšen výkon na úkor kouření a zvýšení spotřeby paliva motoru. 14

Podstatný vliv na činnost palivové soustavy, a tím i celého motoru, mají vstřikovače.. Poruchy chodu motoru způsobené vstřikovačem může mít tyto příčiny: špatný technický stav vstřikovače nesprávné seřízení otvíracího tlaku trysky špatná montáž na motor Nejčastěji je stejně jako u pístů a u válců způsobené opotřebení abrazívní z nečistot v palivu. Výrazně se také projevuje působení mechanických sil (velký počet zdvihů, vysoké tlaky a malá dosedací plocha). Další problémy způsobuje koroze a karbon. Vůle mezi tělesem trysky a jehlou palivo uniká kolem jehly do odpadové trubky a snižuje se tak výkon motoru Netěsnost jehly v sedle působí špatné rozprášení palivo, odkapávání paliva, jež má za následek snížený výkon motoru a nehospodárný provoz. Zkoušení se provádí na zkoušečce, kdy se nesmí objevit palivo dříve než 1 MPa před otvíracím tlakem. Zadírání jehly způsobí špatné rozprášení paliva (pozor na špatnou montáž, zkřížení, karbon na dosedací ploše (pokud je vše v pořádku tak přenosná p zkoušečka odhalí charakteristický vrzavý zvuk při vstřiku) Prasklá pružina vstřikovače ovlivní se kvalita rozprašování, motor ztrácí výkon a jeho chod je nepravidelný Diagnostické signály dodávka paliva vstřikovacím čerpadlem měrná spotřeba paliva kouřivost motoru úhel předvstřiku paliva průběh vstřikovacího tlaku Dodávka paliva vstřikovacím čerpadlem důležité je posouzení význačných bodů dodávací charakteristiky význačným bodem je dodávka paliva při 90 a 45 % jmenovitých otáček motoru pokud lze seřídit dodávku paliva v tolerančních mezích daných výrobcem, tak není nutná oprava čerpadla 15

Dodávka paliva vstřikovacím čerpadlem Jak by jste vytvořili diagnostický postup? 1. původní dodávka paliva při n 2 2. seřízení dodávky při n 2 3. kontrola dodávky při n 1 4. toleranční meze Měrná spotřeba paliva užitečná měrná spotřeba paliva vztažená na jednotku užitečné práce indikovaná spotřeba paliva vztažená na jednotku indikované práce výhodnější je užití indikované měrné spotřeby paliva,, protože: je méně ovlivněna teplotou měření probíhá tak, že se měří čas, palivo se odebírá ze zvláštní nádobky a výkon motoru (nepřesnost v nastavení otáček má za následek výraznou změnu výkonu motoru) vhodnější je měření a vztažení spotřeby paliva nikoliv za jednotku času, ale za určitý počet otáček motoru (při sledování otáček s přesností ± 5 % je chyba měření spotřeby paliva ± 0,5 % m = V / M m měrná spotřeba paliva (g/w.s) V spotřeba paliva (g/rad) M točivý moment motoru (N.m = W.s/rad) 16

Kouřivost motoru 1. zdroj světla 2. měřící trubice 3. ventil 4. fotočlánek 5. miliampérmetr 6. potenciometr 7. ventilátor Úhel předvstřiku paliva Při požadavku menší přesnosti postačí překontrolovat úhel předvstřiku paliva měření pomocí kapiláry (hladina v kapiláře) měření pomocí stroboskopické lampy (fázový posun) měření pomocí magnetické značky na setrvačníku (vzrůst tlaku) 17

Průběh vstřikovacího tlaku 1. mechanický stav čerpadla, vstřikovací jednotky 2. činnost výtlačného ventilu 3. stav potrubí světlost 4. stav vstřikovače, trysky a pružin 5. oblast vstřikování paliva 6. oblast poklesu na konci výtlaku 7. stav výtlačného ventilu 8. odlehčovací schopnost ventilu 9. oblast oscilací po výstřiku Poruchy a diagnostika palivové soustavy zážehového motoru Musí plnit stejné podmínky jako palivová soustava vznětového motoru: oru: dodání správného množství paliva, ve správném stavu a ve správný čas Palivová soustava: s karburátorem (běžně Škoda Favorit a starší vozidla) se vstřikováním (běžně Škoda Felicia a mladší vozidla) 18

Palivová soustava zážehového motoru s karburátorem Hlavní vliv na palivovou soustavu má správná funkce a správné nastavení součástí karburátoru: těsné a správně nastavené škrtící klapky v celém rozsahu činnosti i včetně jejich osiček (výměna karburátoru) rovná dosedací plocha karburátoru dostatečně utěsněná (přetěsnění, přebroušení, výměna karburátoru) správná hladina paliva v karburátoru těsný jehlový ventil (výměna ventilu) těsný a správně nastavený plovák (výměna plováku) volný přepad paliva z karburátoru do palivové nádrže správná funkce sytiče (kontrola jeho teploty chladící soustava) správná funkce a nastavení podtlakové regulace 2. stupně karburátoru (obnovení těsnosti) membrána akcelerační pumpičky (výměna) čistota trysky, emulzní trubice, odvzdušňovače hřídelky, jehly správné palivo podle ČSN Kontrola těsnosti klapek 1. a 2. stupně uvolní se dorazové šrouby klapek a uzavřou šrouby běhu naprázdno a přídavného vzduchu uzavřená poloha 4,41 kpa (450 mm vodního sloupce) dorazovým šroubem klapky se nastaví požadovaná hodnota 19

Závady a jejich projevy znečištění karburátoru (obtížné spouštění a studený běh motoru, špatné otáčky běhu naprázdno, nelze seřídit volnoběh, CO, nedostatečný výkon ) motor zahlcený palivem (nízké otáčky běhu naprázdno, špatně se seřizují otáčky běhu naprázdno a nelze seřídit CO, špatně se spouští teplý ý motor) neseřízený nástřik akcelerační pumpičky (motor při prudké akceleraci škube, špatný přechod na druhý stupeň a špatný přechod u studeného motoru) neseřízené otáčky běhu naprázdno (motor při akceleraci škube, vysoká spotřeba paliva) nefunkční odpojovač běhu naprázdno (nepravidelný běh studeného motoru, špatné spouštění motoru za studena i za tepla) špatné osazení karburátoru (škubání při akceleraci, špatný přechod na druhý stupeň, nedostatečný výkon, vysoká spotřeba) palivo není podle normy ČSN (snížený výkon motoru, při zvýšeném obsahu vody možné až zanesení odkalovací nádobky a z toho plynoucí ucpání trysek, a celá řada dalších ) Palivové čerpadlo Elektrické u motorů se vstřikováním, při nesprávné funkci se obvykle neopravuje, vymění se za nové Jikov SH při závadě se také obvykle neopravuje a vyměňuje za nové, je řešeno jako nerozebíratelné Jikov OD membránové pákové, možnost výměny membrány, vyčištění odkalovače Kontrola činnosti čerpadla kontrola dodávky paliva na předurčený počet zdvihů a čas kontrola minimálního a maximálního tlaku ve výtlaku nasátí paliva za 15 s z hloubky 1,5 m při suchém čerpadle ruční čerpání paliva při jakékoliv poloze vačkového hřídele 20

Vstřikování paliva Vstřikování paliva umožňuje snížení spotřeby paliva a zvýšení výkonu motoru při stejném objemu. Palivová soustava je poměrně jednoduchá složená ze čtyř hlavních částí (čerpadla, trysky, řídící jednotky a čističe). Řídící jednotka na základě údajů ze snímačů řídí množství paliva (většinou časem otevření vstřikovače) v předepsaný okamžik (předstih). Většina závad je spojena s se špatnou funkcí některého ze snímačů provozního stavu. Snímače snímač otáček klikového hřídele a vyhodnocení předstihu snímač teploty nasávaného vzduchu snímač množství nasátého vzduchu snímač teploty chladící kapaliny motoru snímač polohy jehly vstřikovače Lambda sonda eventuálně jejich sady snímač polohy palivového pedálu 21

Diagnostika palivových soustav spalovacích motorů 22