Jan Suchy jan_suchy@cz.ibm.com +420 737 264 298 IBM POWER7 pod drobnohledem
Agenda. 1) IBM POWER7 pod drobnohledem IBM PowerSystems POWER7 procesor Servery s P7 Výkonnost architektury IBM PowerVM Virtualizace - technologie Efektivní dynamická infrastruktura 2) Virtualizace IBM PowerVM přínosy a úspory v praxi Konsolidace a centralizace IT Teorie Metodologie Praktická ukázka
IBM PowerSystems - POWER7 procesor - Servery s POWER7 - Výkonnost architektury
Processor Technology Roadmap POWER5 130 nm POWER6 65 nm POWER7 45 nm POWER8 POWER4 180 nm Dual Core Chip Multi Processing Distributed Switch Shared L2 Dynamic LPARs (32) Dual Core Enhanced Scaling 2way SMT Distributed Switch + Core Parallelism + FP Performance + Memory bandwidth + Virtualization (CPU) Dual Core High Frequencies Virtualization (Mobility) Memory (SharedPool) Altivec Instruction Retry Dyn Energy Mgmt SMT + Protection Keys DECIMAL FP Multi Core (8c) On-Chip edram L3 Power Optimized Cores Mem Subsystem ++ (6x) 4way SMT++ Reliability + VSM & VSX (AltiVec) Protection Keys+ DECIMAL FP Concept Phase 2001 2004 2007 2010
Výkonnost architektury
POWER, Performance, Virtualization 30X increase in performance per watt 26X increase in rperf performance 9+ years of changing the UNIX landscape udlpar 0,1 CPU Virtual I/O + 8Gb, HEA Shared pool, RAM, Ex 4way SMT rperf per KWatt DLPAR 1,0 CPU No Virtual I/O udlpar 0,1 CPU Virtual I/O VIOS Shared pool 2way SMT udlpar 0,1 CPU Virtual I/O + 8Gb, HEA Shared pool, RAM 2way SMT POWER4 p670 1.1 GHz rperf: 24.46 KWatts: 6.71 POWER4+ p670 1.5 GHz rperf: 46.79 KWatts: 6.71 POWER5 p5-570 1.65 GHz rperf: 68.4 KWatts: 5.2 POWER5+ p570 1.9 GHz rperf: 85.20 KWatts: 5.2 POWER6 Power 570 4.7 GHz rperf: 134.35 KWatts: 5.6 POWER6 Power 570 4.2 GHz rperf: 193.25 KWatts: 5.6 POWER7 Power 780 3.8 GHz
The highest performing 4-socket system on the planet POWER7 continues to break the rules with more performance SPECint_rate Power 750 Itanium HP rx6600 SPARC Sun T5440 x86 HP DL585 POWER7 Power 750 with PowerVM 7
More SAP performance than any 8-socket system in the industry Comparable to a 128-core, 32-socket Sun M9000 15,600 SAP users on SAP SD 2 Tier Power 750 Express with DB2 8-core Sun Fire X4270 Xeon 5500 24-core HP DL585 AMD 32-core Sun T5440 32-core Power 750 48-core HP DL785 AMD 48-core Sun x4640 AMD 128-core Sun M9000 2-sockets 4-sockets 8-sockets 32-sockets 8 Best SAP 2-Tier Results for 2, 4, 8 and 16 sockets. See SAP Benchmarks chart for detail or SAP website http://www.sap.com/solutions/benchmark/sd2tier.epx
IBM PowerVM - Virtualizace technologie - Virtual I/O server, NPIV - Efektivní dynamická infrastruktura
Benefits of Using PowerVM on POWER7 Support for 1000 LPARs (VMs) per server Run up to 160 LPARs on a Model 750 (Feb 2010) Run up to 320 LPARs on a Model 750 (Oct 2010 SoD) Increased CPU cores and memory capacity support more powerful virtualized workloads and higher consolidation ratios Superior TCO and ROI compared to competing UNIX and x86-based platforms (including virtualization) Use live partition mobility to migrate workloads from POWER6 to POWER7 platforms with zero downtime
PowerVM Technologies The leading virtualization platform for UNIX, i and Linux enables a more agile and responsive infrastructure Hypervisor Support for multiple operating environments Dynamic Logical Partitioning Micro-partitioning, resource movement Multiple Shared Processor Pools Cap processor resources for a group of partitions VIOS Virtual I/O Server Virtualizes resources for client partitions Integrated Virtualization Manager Simplifies partition management for entry systems Power Hypervisor Shared Memory Pool Memory Expansion Lx86 Supports x86 Linux applications Live Partition Mobility Move running AIX and Linux partitions System Planning Tool Simplifies the planning for and installation of Power servers with PowerVM
PowerVM Virtualization Option Virtual I/O Server Partition Int Virt Manager Storage Sharing Ethernet Sharing 3 Cores Linux Dynamically Resizable 2 Cores AIX V6.1 Virtual I/O paths 6 Cores AIX V5.3 POWER Hypervisor Web Browser AIX V5.3 Linux Linux 6 Cores Micro-Partitioning IVM AIX V6.1 IBM i AIX V6.1 AIX V5.3 Offerings for POWER6/7 Standard Enterprise (Partition Mobility) Micro-Partitioning Share processors across multiple partitions Minimum Partition: 1/10 processor AIX V5.3 / V6.1 IBM i Linux Virtual I/O Server Shared Ethernet Shared SCSI & Fiber Channel Int Virtualization Manager HMC
Shared Dedicated Processors Linux AIX 5.3 AIX 6.1 AIX 5.3 Linux AIX 6.1 POWER Hypervisor P P P P P P P P P P P P P P P P Shared Dedicated / Dedicated Processors Shared (Non-Dedicated) Processors Excess Dedicated Capacity Utilization Unused capacity in dedicated processor partitions can be Donated to shared processor pool Excess cycles will only be utilized by uncapped partitions that have consumed all of their entitled capacity. POWER6 Servers
Micro-Partitioning Technology Dynamic LPARs Whole Processors AIX V5.2 Entitled capacity AIX V5.3 AIX V5.3 Max Min Micro-partitions Pool of Six CPUs Linux Hypervisor IBM i Linux Note: Micro-partitions are available via optional Power VM or POWER Hypervisor and VIOS features. AIX V6.1 Micro-Partitioning technology allows each processor to be subdivided into as many as 10 virtual servers, helping to consolidate UNIX and Linux applications. Partitioning options Micro-partitions: Up to 1024* Configured via the HMC or IVM Number of logical processors Minimum / Maximum Entitled capacity In units of 1/100 of a CPU Minimum 1/10 of a CPU Variable weight % share (priority) of surplus capacity Capped or uncapped partitions
Multiple Shared Processor Pools POWER6/7 16-core System P1 A I X P2 A I X P3 A I X2 0.75 P4 L i n 1 u 0.25 x P5 A I X 4 1.5 P6 A I X 4 0.5 P7 A I X 1 0.25 P8 A I X 2 0.5 P9 L i n 3 u 0.5 x P10 I B M 2 0.25 i P11 I B M 2 0.25 i P12 L i n 2 u x0.5 P13 A I X P14 A I X P15 L i n 1 u x0.25 2 3 1 1 0.5 7 0.25 Dedicated 2 1 Core Core V Pool: 0 Max Cap: 2 Ent Cap:1 V Pool: 1 Max Cap: 10 Ent Cap: 3.25 V Pool: 2 Max Cap: 3 Ent Cap: 0.5 13 Cores ( Shared Processor Pool ) V Pool: 3 4 Max Cap: 4 Res Cap:0.5 Ent Cap:2 # # Capped Partition Number of VP s Entitled Capacity Capping at the pool level Over commit processor resources
Active Memory Expansion & Active Memory Sharing Active Memory Expansion Effectively gives more memory capacity to the partition using compression / decompression of the contents in true memory AIX partitions only Active Memory Sharing Moves memory from one partition to another Best fit when one partition is not busy when another partition is busy AIX, IBM i, and Linux partitions 15 10 5 0 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 Active Memory Expansion Active Memory Sharing Supported, potentially a very nice option Considerations Only AIX partitions using Active Memory Expansion Active Memory Expansion value is dependent upon compressibility of data and available CPU resource
Sample SAP ERP Workload, Single Partition (DB + AppServer) Without Active Memory Expansion Partition utilization Memory: 100% (18 GB) CPU: 46% (12 cores in LPAR) Memory capacity is the bottle-neck CPU is under-utilized Handles 1000 simulated users With Active Memory Expansion Partition utilization Memory: 100% (18 GB true) CPU: 88% (12 cores in LPAR) Note: Most of the CPU increase is due to additional work done on server Higher throughput enabled with the same amount of physical memory Gain 37% memory capacity Handles 1700 simulated users Max. Partition throughput: 99 tps + 65% Max. Partition Throughput: 166 tps 12-core POWER7 partition 18 GB Memory 18 GB true. 0 GB expanded 12-core POWER7 partition 24.7 GB Memory 18 GB true. 6.7 GB expanded Expanded Memory Note: This is an illustrative scenario based on using a sample workload. This data represents measured results in a controlled lab environment. Your results may vary.
Sample SAP ERP Workload, Multiple Application Partitions Without Active Memory Expansion Partition utilization Memory: 100% (48 GB) CPU: 76% (24 cores in 3 8 core LPARs) Memory capacity is the bottle-neck CPU is under-utilized Handles 2900 simulated users Partitions have reached physical memory limitations by showing moderate paging With Active Memory Expansion Partition utilization Memory: 100% (48 GB true) CPU: 94% (24 cores in 3 8 core LPARs) Note: Majority of the CPU increase is due to additional work done on server Higher throughput enabled Gain xx% memory capacity Handles 4090 simulated users Partitions showing no paging Max. Partition throughput: 286 tps + 35% Max. Partition Throughput: 385 tps 3 x 8-core POWER7 partitions 48 GB Memory 48 GB true. 0 GB expanded 3 x 8-core POWER7 partitions xx GB Memory 48 GB true. xx GB expanded Expanded Memory Note: This is an illustrative scenario based on using a sample workload. This data represents measured results in a controlled lab environment. Your results may vary.
Sample SAP ERP Workload, Enabled Additional Application Partition Without Active Memory Expansion System Utilization Memory: 100% (48 GB) CPU: 76% on 24 cores 25% (8 core) unused Memory Capacity is the bottle-neck CPU is under-utilized Handles 2900 simulated users Partitions have reached physical memory limitations by showing moderate paging System Throughput: 286 TPS + 60% With Active Memory Expansion System Utilization Memory: 100% (48 GB) CPU: 94% on 32 cores Note: Majority of the CPU increase is due to additional work. Higher throughput enabled Enabled unused CPU resources (25% of server) with no add l physical memory. Gain 30% in application server memory capacity Handles 5000 simulated users System Throughput: 460 TPS 3 x 8-core POWER7 partitions 48 GB true. 0 GB expanded 4 x 8-core POWER7 partitions 48 GB true. 14 GB expanded LPAR 1 (DB + App) LPAR 2 (AppServer) LPAR 3 (AppServer) LPAR 4 (IDLE) Note: This is an illustrative scenario based on using a sample workload. This data represents measured results in a controlled lab environment. Your results may vary. LPAR 1 (DB + App) LPAR 2 (AppServer) LPAR 3 (AppServer) LPAR 4 (AppServer)
Active Memory Expansion - CPU & Performance 2 % CPU utilization for expansion Very cost effective 1 1 = Plenty of spare CPU resource available 2 = Constrained CPU resource already running at significant utilization Amount of memory expansion There is a knee-of-cure relationship for CPU resource required for memory expansion Busy processor cores don t have resources to spare for expansion The more memory expansion done, the more CPU resource required Knee varies depending on how compressible memory contents are
AIX Workload Partitions Separate regions of application space within a single AIX image Improved administrative efficiency by reducing the number of AIX images to maintain Software partitioned system capacity Each Workload Partition obtains a regulated share of system resources Each Workload Partition can have unique network, filesystems and security Two types of Workload Partitions System Partitions Application Partitions Separate administrative control Each System Workload partition is a separate administrative and security domain Shared system resources Operating System, I/O, Processor, Memory Workload Partition Application Server Workload Partition BI Workload Partition Test Workload Partition Web Server AIX Workload Partition Billing Workload Partition Test 21 2008 IBM Corporation
AIX Live Application Mobility Move a running Workload Partition from one server to another for outage avoidance and multi-system workload balancing Workload Partition Web Workload Partition App Server Workload Partition Dev Workload Partition e-mail Workload Partition Data Mining Workload Partition Billing Workload Partition QA AIX Workload Partitions Manager Policy AIX Works on any hardware supported by AIX 6, including POWER5 and POWER4 22 2008 IBM Corporation
Virtual I/O Server
Workload Partition e- mail Workload Partition Billing AIX 6 Global Instance Workload Partition Dev Workload Partition Data Mining Workload Partition QA Workload Partition e- mail Workload Partition Billing AIX 6 Global Instance Workload Partition Dev Workload Partition Data Mining Workload Partition QA IBM Power Systems PowerVM Virtual I/O Server (VIOS) Workload management and provisioning AIX 5 partitions AIX 6 Linux partitions i5/os Virtual I/O servers Unassigned on demand resources Hardware Management Console Hypervisor Virtual processors Virtual Network Virtual adapters Processors Service processor Memory Expansion slots Local devices & storage Networks and network storage
Virtual I/O Server - Value Proposition Economical I/O Model Your new system will be ready in 20 Minutes or 20 Days 10% 10% 10% 10% 10% 10% 10% 10% 40% }40% Quick Deployment Virtual SAN + Net Cables Switches Ports + Power Reduced Infrastructure Server Consolidation
Virtual I/O Server Home Website Download Latest Readme Master Datasheet Red Books Online Manual & Command Ref. White Papers https://www14.software.ibm.com/webapp/set2/sas/f/vios https://www14.software.ibm.com/webapp/set2/sas/f/vios/documentation/home.html
Your Reference Library
Processor Virtualisation Evolution (CPU Sharing) Old Style Separate Systems LPAR Server Consolidation LPAR size via start time boundaries DLPAR Dynamic live boundary changes Manual or scripts SPLPAR Shared Processor automatic adjusts at millisecond level by Hypervisor Pre-2000 ~2001 ~2002 ~2005
Processor Virtualisation Evolution (CPU Sharing) SPLPAR Shared Processor automatic adjusts at millisecond level by Hypervisor Harvesting Spare capacity ready for adding more workloads at zero hardware cost Partition Mobility Make a cluster of your machines & flow your workload between them ~2005 ~2006 ~2008
Virtual I/O Server (Adapter Sharing) The I/O centric view of the world: CPU used to modify & feed data to the networks & disks Network Disk
Virtual I/O Server (Adapter Sharing) Network Disk Production Direct the rest Virtual Pure Direct Network Disk Virtual except high I/O LPARs VIOS Network VIOS Disk Pure Virtual VIOS Network VIOS VIOS Disk Reduced Cost
Where are You? A B C D E F 1 2 3 4
VIOS 2.1 IBM Power Systems Storage Virtualisation With NPIV VIO client Generic SCSI disk Note VIO client EMC 5000 LUN IBM 2105 LUN SCSI SAS Virtual SCSI Adapters vscsi VIOS Virtual FC Adapters VIOS FC Adapters Storage Virtualiser FC Adapters Pass Through mode VIOS Admin in charge SAN NPIV SAN SAN Admin Back in charge EMC 5000 LUN IBM 4700 LUN EMC 5000 LUN IBM 4700 LUN
VIOS 2.1 IBM Power Systems NPIV What you do? 1. HMC 7.3.4 configure Virtual FC Adapter Just like virtual SCSI On both Client and Server Virtual I/O Server
VIOS 2.1 IBM Power Systems NPIV What you do? 2. Once Created: LPAR Config Manage Profiles Edit click FC Adapter Properties and the WWPN is available
VIOS 2.1 IBM Power Systems Previous Virtual SCSI to Fibre Channel VIOS AIX LVM multipathing Disk Driver LVM AIX MPIO Disk Driver LVM multipathing Disk Driver fibre channel HBAs VSCSI target VSCSI HBA VSCSI HBA VSCSI target fibre channel HBAs PHYP SAN
VIOS 2.1 IBM Power Systems New NPIV pure Fibre Channel VIOS AIX LVM Storage Multipathing Disk Driver fibre channel HBAs passthru module VFC HBA VFC HBA passthru module fibre channel HBAs PHYP SAN No VIOS side multipath, more client setup per LPAR but Thinner Stack
VIOS 2.1 IBM Power Systems Heterogeneous Multipathing VIOS Passthru module AIX Client LPAR A Fibre HBA NPIV NPIV Fibre HBA POWER Hypervisor Note: Multipath FC & FC SAN Switch Storage Controller SAN Switch A B C D Note: NOT vscsi A B C D
Jan Suchy jan_suchy@cz.ibm.com +420 737 264 298 Virtualizace IBM PowerVM - přínosy a úspory v praxi
Konsolidace a centralizace IT - Teorie - Metodologie - Praktická ukázka
Situace: IT systémy a infrastruktura dosahují kritických hodnot Dramatické bujení serverů a síťových zařízení Nadměrné užívání energií a vytváření tepelných ztát Nepřiměřené napájení a chlazení infrastruktury Datová úložiště a jejich synchronizace Předpoklad toho, že všechno je připojeno Lineární náklady na IT obsluhu Prudce rostoucí náklady za licence SW Nevysvětlitelné výpadky Mezitím, očekávání zákazníků, tlak konkurence, regulační opatření a tlaky na fiskální výsledky neustále rostou.
Proč virtualizovat? Efektivní využití zdrojů Zjednodušení správy a údržby Snížení množství HW vybavení Dynamické změny HW parametrů Nové služby bez nákupu infrastruktury Snížení energetických a prostorových nároků Sníženínákladů
Typická malé vytížení serverů Typický UNIX nebo x86 server běžící jednu úlohu a operační systém je vytěžován na 10-20% Konfigurace pro plánovaný růst (20% nepoužito) Konfigurace plánované pro špičky (50% nepoužito) Systémy čekající na I/O a paměťový přístup i u prac. systémů (20% unused?) 100% 80% 60% 40% 20% 0% Kolik jsme zaplatili Kolik dostáváme Výsledkem je, že 80% hardware, software, údržbou, místem, a energiemi za které jste zaplatili, je plýtváno.
Náklady na vlastnictví serverů Spending (US$B) $300 $250 $200 $150 $100 $50 Náklady na napájení a chlazení x8 Náklady na administraci a management x4 Náklady za pořízení nových serverů Installed Base (M Units) 50 45 40 35 30 25 20 15 10 5 $0 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 0 Source: IDC, Virtualization 2.0: The Next Phase in Customer Adoption
Finanční přínos konsolidace / virtualizace Náklady Možné úspory Hlavní součásti Údržba 69% - 76% Menší počet nových serverů redukuje náklady na údržbu. FINANCIAL SERVICES COMPANY Conventional Virtualized 22.3 (62% less) 59.3 Software 65% - 69% Menší počet kopií, méně procesorů vede k nižšímu počtu licencí a tím k nižší podpoře a poplatkům za údržbu software. MANUFACTURING COMPANY Conventional Virtualized 9.9 (61% less) 25.3 Personál 31% - 45% Redukce počtu serverů a propracovaná technologie managementu virtuálních prostředí vede k redukci požadavků na administrátory systémů. Vybavení 52% - 61% Menší počty serverů, menší rozměry a váha, energeticky efektivnější technologie zajistí menší požadavky na místo a energie v datových centrech. RETAIL COMPANY Conventional Virtualized 21.3 9.7 (55% less) 0 10 20 30 40 50 60 $ Millions Maintenance System software Database software Personnel Facilities Technology Group, February 10, 2007. Study methodology: Companies in financial services, manufacturing and retail with $15 Billion+ revenues and total 200,000+ employees focusing on UNIX large enterprise environments with multiple, broad-ranging applications. Study compared the cost of the company's workload running on multiple vendor servers and employing minimal virtualization to the cost of the company's workload. This cost analysis was performed for financial services, manufacturing and retail example environments with an overall average savings of up to 62% in TCO savings by virtualizing. TCO depends on the specific customer environment, the existing environments and staff, and the consolidation potential.
Historie serverové virtualizace Již v roce 1961 je předveden Compatible Time Sharing System (CTSS), umožňující sdílení procesorového času (time sharing) první VM (virtuální stroj). 1964: rok uvedení platformy mainframe na trh, počátek vývoje operačního systému CP-40, který nabízí každému uživateli kompletní server za pomoci virtualizace prostředků. 1969: CP-67 verze 2, 1970: CP-67 verze 3; tento operační systém je provozován ve 44 datových centrech. 70. léta: přichází nová generace mainframů. Do roku 1989 prodáno více než 20 000 licencí VM. 90. léta virtualizace se objevuje v unixovém světě. Po roce 2000 virtualizace vstupuje do x86 světa.
Kdy virtualizovat? Starý přístup: Každý server je dimenzován na špičky požadovaného výkonu, mnohé jsou předimenzované 100 80 60 40 20 0 100 80 60 40 20 0 100 80 60 40 20 0 100 100 80 80 60 60 40 40 20 20 + 0 + 0 = 500 Capacity Units Server 1 CPU Capacity Units = 100 Server 2 CPU Capacity Units = 100 Server 3 CPU Capacity Units = 100 Server 4 CPU Capacity Units = 100 Server 5 CPU Capacity Units = 100 Nový přístup: Server s dynamickými virtuálními servery, které umožní automatický přesun procesorů. Návrh serveru odpovídá maximálnímu současnému zatížení. CPU Capacity Units server hosující několik virtualních serverů 250 200 150 100 50 0 1 2 3 4 5 6 7 8 9 10 11 12 minute time intervals, stacked CPU utilization Server 5 Server 4 Server 3 Server 2 Server 1
Vliv virtualizace na procesory Jeden fyzický server: Průměrné vytížení: 20.7% 80% Špičkové vytížení: 79% 70% Více virtualních serverů zvyšuje průměrné vytížení 60% 50% ale špičkové se příliš nemění: 40% 8:1 průměrné: 39%, špičkové 76% 30% 16:1 průměrné: 48%, špičkové 78% 20% 10% 64:1 průměrné: 61%, špičkové 78% 0% Počet potřebných procesorů roste pomaleji než počet přidávaných serverů. Single Appliation Server (2 CPUs) 80% 70% 60% 50% 8 to 1 Consolidation (8 CPUs) 80% 70% 60% 50% 16 to 1 Consolidation (12 CPUs) 80% 70% 60% 50% 64 to 1 Consolidation (36 CPUs) 40% 40% 40% 30% 30% 30% 20% 20% 20% 10% 10% 10% 0% 0% 0%
Koncepty virtualizace serverů Hardware Partitioning Bare Metal Hypervisor Hosted Hypervisor Apps OS... Apps OS Apps OS... Apps OS Apps OS... Apps OS Partition Controller Adjustable partitions Hypervisor Hypervisor Host OS SMP Server SMP Server SMP Server Server is subdivided into fractions each of which can run an OS Board-level partitioning S/370 SI->PP & PP->SI, Sun Domains, HP npartitions Core/thread-level partitioning Original POWER4 LPAR HP vpartitions Sun Logical Domains Hypervisor provides fine-grained timesharing of all resources Hypervisor firmware System z PR/SM and z/vm PowerVM hypervisor Hypervisor Software VMware ESX Server Xen Hypervisor Microsoft Hyper-V častá kombinace třett etí možnosti s první nebo druhou Hypervisor uses OS services to do timesharing of all resources Hypervisor software runs on a host operating system VMware GSX Microsoft Virtual Server HP Integrity VM User Mode Linux Linux KVM
PowerVM poráží VMware ve výkonu AIM7 PowerVM vs vsphere 4.0 Single VM Scaling 140000 120000 100000-52% jobs/min 80000 60000-43% -42% PowerVM vsphere 4.0 40000-41% 20000-36% 0 1vcpu 2vcpu 4vcpu 6vcpu 8vcpu Number of virtual processors P550 8cores, 5GHz, 64GB RAM, PowerVM HP DL370 Intel Xeon 5550 2.9T GHz (Turbo Mode) 8 cores, 128GB RAM (HT enabled in BIOS, Intel VTx with EPT HW Virtualization Assist) Red Hat 5.3 (x86_64) with AIM7 Compute Benchmark
PowerVM poráží Hyper-V ve výkonu AIM7 PowerVM vs Windows HyperV VM Scaling 140000 120000 100000 jobs/min 80000 60000-75% -86% -89% PowerVM HyperV 40000 20000-77% 0 1VM 4VMs 6VMs 8VMs Number of Virtual Machines P550 8cores, 5GHz, 64GB RAM, PowerVM HP DL370 Intel Xeon 5550 2.9T GHz (Turbo Mode) 8 cores, 128GB RAM (HT enabled in BIOS, Intel VTx with EPT HW Virtualization Assist) RHEL 5.3 (GA, x86_64) with AIM7 Compute Benchmark
Možnosti virtuálních serverů Statické virtuální servery Změna charakteristik vyžaduje restartování OS Dynamické virtuální servery CPU, zlomky CPU RAM Bez nutnosti restartování OS Virtualizace IO Disky LAN Automaticky reagující (dynamické) virt. servery CPU RAM Uživatelsky definovaná pravidla Mobilita virtuálního serveru Zachování běhu aplikace Zátěž virtuálních serverů v průběhu 24 hodin SAP R/3 PROD SAP CRM PROD Live partition mobility SAP TEST DEV
Příklad: virtualizace a mobilita Požadavek: Více výkonu pro modrou databázi. Zachovat zdroje červené a zelené databáze. Zachovat běh ostatních databází (možné snížit výkon). SAP APP SAP DB SAP CRM SAP QA SAP DEV SAP BW Outsourcing pro finanční instituce, EU
Příklad: virtualizace a mobilita Požadavek: Konsolidace cca 350 serverů na 20 fyzických serverech. Libovolný virtuální server je spustitelný na libovolném fyzickém serveru. Tedy cca 7000 profilů pro virtuální servery a jejich přesuny. Desítky tisíc virtuálních LAN, disků apod. Státn tní správa, Skandinávie
Metodologie konsolidace
Metodologie konsolidace IBM Zodiac Zachytit stávající stav >>> 4) Náklady / údržba, prostředí, SW, podpora 1) Soupis IT systémů 2) Aplikace / funkcionalita 3) Hranice datacentra
Metodologie konsolidace IBM Zodiac výsledek
IT Resource Optimisation Zodiac v6.07 Jan Suchy Zodiac Infrastructure Study prepared for Financial Services Company
Confidentiality and Liability The data used to generate this report is primarily based on IBM experience and available industry data. This report is intended to illustrate the kinds of potential benefits that may be achieved by some customers through infrastructure simplification. This does not mean that in your or any other customer consolidation that such benefits will be achieved. Potential benefits depend, among other factors, on the specific customer environment, the existing customer environment and staff, and the consolidation potential. IBM is providing this report to you on an AS IS basis without warranties of any kind. In no event will IBM be liable to you for any direct, indirect, special or other consequential damages for any use of this report. Any configurations contained in this report are provided as samples by IBM representing typical solutions for consolidation. Whilst each configuration has been reviewed by the IBM configuration tool for accuracy in a specific situation, they are intended to illustrate typical capacity & costs, and there is no guarantee that the configurations will integrate into the customer's operational environment. If there are concerns about any elements of a proposal then a Solution Assurance Review should be conducted. The entire IDEAS International dataset is used under their copyright and may not be supplied or included in its entirety in any client report; however, a small sample may be used in order to illustrate the internal sizing process used to select target servers for the client.
Business Case Summary Client:FSC Total initial investment in in storage & server technology to initiate a simplified architecture: CZK 29 022 636 Our illustration shows a potential reduction of recurring costs. Business Case Period: 4 years. Base Case: CZK 188 579 860 Alternate Case: CZK 105 549 628 Potential Cost Reduction: CZK 83 030 232 Estimated Payback Period: 1yr 4m The total investment cost does not include write-off charges for current assets. Migration Cost: Not included Please refer to backup slides for further details of computations. Cumulative Cost 250 000 000.00 200 000 000.00 150 000 000.00 100 000 000.00 50 000 000.00 0.00 E.O.year 0 year 1 year 2 year 3 year 4 C urrent Alt.C ase
Target Servers by Solution Group new-mod FullName Old Servers New Servers Old Images New Images Old #CPU New #CPU Old #Cores New #Cores Old Load Old RIPS New RIPS Average of old Utln Average of new Utln p7-770(48)3.1 13 2 17 14 129 12 174 96 45 347.2 90 694.3 113 643.8 50% 40% 116 ud16 Ostatní Aplikace 13 2 17 14 129 12 174 96 45 347.2 90 694.3 113 643.8 50% 40% Grand Total 13 2 17 14 129 12 174 96 45 347.2 90 694.3 113 643.8 50% 40% Reduction of Physical Servers: 13 : 2
Increase Energy Efficiency (for Available Capacity) 85% less servers 25% more capacity 78% less electricity 120 114 18.000 100 91 16.201 16.000 14.000 80 12.000 10.000 60 8.000 40 32 6.000 4.000-20 13 2.857 C urrent 2 Alt.C ase 7 2.000 - #Physical Servers Total RIP C apacity Systems kw RIPs/Watt Energy Efficiency Improvement: 467%
116: Ostatní Aplikace 116: ud16 Ostatní Aplikace Actual Capacity Current AltCase2 7:1 AltCase1 7:1 Year Projection Server Type p7-770(64)3.1 p7-770(48)3.1 Total Cores 174.00 128 96 200 000 Used Cores 174.00 69 66 Total CPUs 129.00 16 12 180 000 #Logical Servers 17.00 14 14 160 000 #Physical Servers 13.00 2.00 2.00 140 000 Ave.Log.Srv RIP 5 335.0 8 167.6 8 117.4 Total RIP Capacity 90 694.3 114 345.9 113 643.8 120 000 Total RIP Workload 45 347.2 45 347.2 45 347.2 100 000 Ave CPU %Utilisation 50.00% 39.66% 39.90% 80 000 Annual Operating Costs (AOC) Staff Cost Code Unix Unix Unix Software Cost Code unix/16 aixf5.oraee aixf5.oraee Software Cost /CPU 182 915 1 802 880 1 802 880 Software Cost /Lsrv 0 0 0 Software Cost /Psrv 0 0 0 Software M&S 23 596 000 15 549 840 14 873 760 Hardware Maint 20 132 000 4 649 664 3 487 248 Space 263 429 18 286 13 714 Power 1 745 936 667 279 585 558 Staff Cost 1 407 600 1 043 280 1 043 280 Depreciation 0 0 0 Total AOC 47 144 965 21 928 349 20 003 560 est.potential saving /yr 25 216 616 27 141 405 One Time Costs (OTC) Software Purchase 392 000 294 000 Hardware Purchase 38 304 848 28 728 636 Transition 0 0 Target Utilisation Total OTC 0 38 696 848 29 022 636 Write-Off 0 0 0 Decimal Places Net Cash Investment 38 696 848 29 022 636 Year Projection OTC + 4x AOC 188 579 860 121 760 580 105 549 628 0yr saving 66 819 280 83 030 232 Payback Period Project Time 0yr 0m 1yr 6m 1yr 1m Thousands 60 000 40 000 20 000 0 Transition Software Purchase Staff Cost Power Software M&S 1 2 3 Hardware Purchase Depreciation Space Hardware Maint
116: Ostatní Aplikace Environmental Analysis Power & Space Current Alt.Case.2 Alt.Case Total RackU 165.0 32.0 24.0 Racks (42/40U utilised) 3.9 0.8 0.6 Systems kw 31.7 9.5 7.0 Distribution kw 5.7 1.7 1.3 Mechanical kw 26.0 13.0 13.0 Total kw 63.5 24.3 21.3 Energy Efficiency Relative RIPs /Watt 1.0 3.3 4.5 Watts/Log.Srv 3484.4 8786.3 8732.3 Power Cost per Logical Server 102 772 47 695 41 854 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 1 2 3 Systems kw Distribution kw Mechanical kw CO2 Emission Systems 150.3 45.1 33.2 Distribution 27.1 8.1 6.0 Mechanical 123.3 61.6 61.6 tonnes CO2 / yr 300.6 114.9 100.8 tonnes CO2 / krip 6.6 2.5 2.2
Otázky a odpovědi Dekuji za pozornost_