Algebraické struktury s jednou binární operací

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Algebraické struktury s jednou binární operací"

Transkript

1 16 Kapitola 1 Algebraické struktury s jednou binární operací Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte počkat. Nejprve krátké opakování ze střední školy. Pamatujete na kartézský součin množin? Definice 1.1. (Kartézský součin) Kartézským součinem množiny A a B nazveme množinu A B = {(a, b) a A, b B}. To jest, jde o množinu všech uspořádaných dvojic, kde první z dvojice je prvkem z množiny A a druhý je prvkem z množiny B. Pár příkladů: Jestliže A = {1, 2} a B = {1, 3, 5}, pak A B = {(1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (2, 5)}. Jestliže A = {prasátko, } a B = {Lojzík, 3}, pak ale A B = {(prasátko, Lojzík), (prasátko, 3), (, Lojzík), (, 3)}, B A = {(Lojzík, prasátko), (3, prasátko), (Lojzík, ), (3, )}, Z tohoto příkladu plyne, že A B nemusí být vždy totéž jako B A. U kartézského součinu záleží na pořadí!

2 Grupoid, pologrupa, monoid a grupa 17 Jestliže A = {1, 2} a B = {1, 2}, pak A B = {(1, 1), (1, 2), (2, 1), (2, 2)} = B A. V případě, že A = B platí A B = B A = A A. Nyní si vzpomeňme na základní školu a na sčítání přirozených čísel. Jak se sčítají? Jednoduše, nějaké dvě čísla vezmu, kupříkladu 1 a 1 a jako jejich součet mi vyjde číslo 2. Obdobně součin dvou reálných čísel. Nasypu do něj třeba čísla 2 a 3 a vypadne číslo 6. Obecně, zobrazení, které každé uspořádané dvojici prvků z množiny A (což je prvek kartézského součinu A A) přiřadí nějaký prvek z A, nazýváme binární operací na množině A. Definice 1.2. (Binární operace) Binární operací na množině A nazveme každé zobrazení : A A A. Hodnotu (a, b) budeme dále značit a b (tak jak jsme zvyklí, nepíšeme +(2, 3), ale 2 + 3). Ekvivalentní formulace: Binární operací na množině A nazveme každé zobrazení definované na množině A A takové, že a, b A : a b A. (Říkáme, že zobrazení je uzavřené na množině A - hodnota a b neunikne z množiny A, ale zůstane v ní.) Pokud bude jasné, že máme na mysli binární operaci, budeme mluvit pouze o operaci. Dodejme, že zobrazení : A A A A nazýváme ternární operací na A, zobrazení : A A nazýváme unární operací na A a obecně zobrazení nazýváme n-ární operací na A. : A A... A n - krát A Příklad 1.3. Rozhodněte, zda je zobrazení binární operací na množině A. je obvyklé násobení reálných čísel, A = R. Násobení reálných čísel je definováno tak, že každé dvojici reálných čísel přiřadí jejich součin, což je opět reálné číslo. Proto jde o zobrazení z R R do R. Podle Definice 1.2 to znamená, že jde o binární operaci na množině reálných čísel.

3 18 Algebraické struktury s jednou binární operací je restrikce násobení reálných čísel na množinu iracionálních čísel I, A = I. je tedy zobrazení, které funguje stejně jako násobení reálných čísel, ale omezíme se pouze na násobení iracionálních čísel. Vezměme příklad: 2 I 2 I = 2 / I. Vynásobili jsme dvě iracionální čísla, ale jejich součin již iracionální číslo není! Proto není operací na I (Nejde o zobrazení z I I do I). je restrikce sčítání přirozených čísel na množinu lichých přirozených čísel A = {2k 1 k N}. Sečteme-li dvě lichá přirozená čísla, vyjde číslo sudé, proto není operací na A. je restrikce násobení přirozených čísel na množinu lichých přirozených čísel A = {2k 1 k N}. Vynásobíme-li dvě lichá přirozená čísla, vyjde opět číslo liché. Podmínka uzavřenosti zobrazení na A je splněna. Proto je binární operací na A. Množinu A, na níž je definována nějaká operace (označit ji můžeme různě,, *, +,.,... ) budeme říkat grupoid. Přesněji řečeno, budeme tak nazývat uspořádanou dvojici, která sestává z této množiny a této operace. Definice 1.4. (Grupoid) Uspořádanou dvojici (A, ), kde A je neprázdná množina a je binární operace nazýváme grupoid. Známých grupoidů je mnoho, například: (Z, +), kde Z je množina celých čísel a + je jejich obvyklé sčítání, (F, +), kde F je množina reálných funkcí definovaných na R a + je jejich obvyklé sčítání, (F, ), kde F je množina reálných funkcí definovaných na R a je jejich skládání, (M (n,n), ), kde M (n,n) je množina čtvercových matic reálných čísel o n řádcích a je jejich obvyklé násobení.

4 Grupoid, pologrupa, monoid a grupa 19 Z výše uvedeného (Příklad 1.3) je patrné, že například množina iracionálních čísel spolu s jejich obvyklým násobením grupoid netvoří, neboť součin dvou iracionálních čísel již nemusí být iracionální číslo. Grupoid, jehož operace je asociativní budeme nazývat pologrupou. Definice 1.5. (Pologrupa) Uspořádanou dvojici (A, ), kde A je neprázdná množina a je zobrazení definované na množině A A takové, že 1.) a, b A : a b A, (tzn. (A, ) je grupoid ) 2.) a, b, c A : a (b c) = (a b) c, ( je asociativní) nazýváme pologrupou. Všechny výše uvedené příklady grupoidů jsou také příklady pologrup, neboť sčítání celých čísel je asociativní. Například platí: (1 + 2) + 5 = = 8 = = 1 + (2 + 5), Sčítání čtvercových matic reálných čísel je asociativní.například platí: ( ) ( ( ) ( ) ) ( ( ) ( ) ) ( = ) sčítání reálných funkcí definovaných na R je asociativní. Například platí: (x 2 + x) + x = x 2 + 2x = x 2 + (x + x), skládání reálných funkcí definovaných na R je asociativní. Uvažujme například funkce dané předpisy f : f(x) = x+1, g : g(x) = 2x a h : h(x) = sin x. Potom Funkce f (g h) zobrazuje dle následujícího schématu: ( ) x h sin x g f 2 sin x 2 sin x + 1 To jest, (f (g h)) (x) = 2 sin x + 1 Funkce (f g) h zobrazuje dle následujícího schématu: ( ) x h g sin x 2 sin x f 2 sin x + 1 To jest, ((f g) h) (x) = 2 sin x + 1 Ještě uvedeme příklad grupoidu, který není pologrupou. Podle definice pologrupy tedy půjde o grupoid, jehož operace není asociativní.

5 20 Algebraické struktury s jednou binární operací Příklad 1.6. Uvažujme grupoid (A, *), kde A = {1, 2, 3} N a operace * je dána následující tabulkou: * Podle této tabulky určíme, že ale 1 * (2 * 3) = 1 * 1 = 2, (1 * 2) * 3 = 3 * 3 = 1. Vidíme, že 1 * (2 * 3) (1 * 2) * 3. Operace * proto není asociativní a grupoid (A, *) tak není pologrupou. Vzpomeňme na násobení reálných čísel. Násobíme-li libovolné reálné číslo a číslem 1, obdržíme opět číslo a. Říkáme, že číslo 1 je neutrálním prvkem vzhledem k násobení reálných čísel. Přičteme-li k libovolnému reálnému číslu a číslo 0, obdržíme opět číslo a. Říkáme, že číslo 0 je neutrálním prvkem vzhledem ke sčítání reálných čísel. Podobně u matic, neutrálním prvkem vzhledem k násobení je jednotková matice a vzhledem ke sčítání je to nulová matice. Definice 1.7. (Neutrální prvek) Nechť je operace na množině A. Prvek e A nazveme neutrálním prvkem vzhledem k operaci právě když a A : a e = e a = a. Pologrupu, v níž existuje nějaký neutrální prvek, nazýváme monoid. Definice 1.8. (Monoid) Uspořádanou dvojici (A, ), kde A je neprázdná množina a je zobrazení definované na množině A A takové, že 1.) a, b A : a b A, (uzavřenost) 2.) a, b, c A : a (b c) = (a b) c, (asociativnost) 3.) e A a A : a e = e a = a, (existence neutrálního prvku) nazýváme monoid. Při pohledu na definici monoidu by mohlo leckoho napadnout, proč v bodu 3.) vystupuje a e i e a. Vždyť je to totéž, ne? Ne, nemusí být! Záleží na operaci. Třeba sčítání reálných čísel komutativní je, pro každé dvě reálná čísla a

6 Grupoid, pologrupa, monoid a grupa 21 a e opravdu platí a + e = e + a. Ale symbol může představovat třeba násobení matic, a to komutativní není. Obecně pro dvě matice A a E (byť třeba čtvercové a o stejném počtu řádků) neplatí, že A E = E A. Algebraickou strukturu, jejíž operace je komutativní častujeme přídomkem Abelova. Mluvíme tak o Abelově grupoidu, Abelově pologrupě, Abelově monoidu, či grupě. Ale vraťme se k monoidům. Pár příkladů: (Z, +), kde Z je množina celých čísel a + je jejich obvyklé sčítání. (Z, +) je Abelův monoid, neboť je to pologrupa, neutrálním prvkem je celé číslo 0 Z (a + 0 = 0 + a = a) a + je komutativní operace. (M (n,n), ), kde M (n,n) je množina čtvercových matic reálných čísel o n řádcích a je jejich obvyklé násobení. (M (n,n), ) je monoid, neboť je to pologrupa a neutrálním prvkem je jednotková matice E (A E = E A = A). Ale není to Abelův monoid, protože není komutativní operace. (F, +), kde F je množina reálných funkcí definovaných na R a + je jejich obvyklé sčítání, (F, +) je Abelův monoid, neboť je to pologrupa, neutrálním prvkem je funkce o daná předpisem x R : o(x) = 0 R a jejich obvyklé sčítání je komutativní. (F, ), kde F je množina reálných funkcí definovaných na R a je jejich skládání, (F, ) je monoid, neboť je to pologrupa a neutrálním prvkem je identita, to jest funkce id daná předpisem x R : id(x) = x. Ale není to Abelův monoid, protože skládání funkcí není komutativní operace. Uvažujme algebraickou strukturu (A, *), kde A = {1, 2, 3} N a operace * je dána následující tabulkou: * Z této tabulky je vidět, že:

7 22 Algebraické struktury s jednou binární operací 1.) Operace * je uzavřená na množině A = {1, 2, 3} (v tabulce se neobjevilo nic jiného, než 1, 2, nebo 3). 2.) Operace * je asociativní, neboť (pro stručnost uvedeme jen 3 z 27 možností, které je třeba prověřit): (1 * 1) *1 3 2 (1 * 1) *2 3 3 (3 * 3) *3 1 2 = 1 * (1 * 1) 3 2 = 1 * (1 * 2) 1 3. = 3 * (3 * 3) ) Neutrálním prvkem vzhledem k operaci * je prvek 2, neboť: 1 * 2 = 2 * 1 = 1 2 * 2 = 2 * 2 = 2 3 * 2 = 2 * 3 = 3 Můžeme proto tvrdit, že algebraická struktura (A, *) je monoid. Navíc vidíme, že tabulka je symetrická podle diagonály. To je neklamným znakem toho, že * je operace komutativní. Proto si můžeme dovolit ještě silnější tvrzení, a to, že (A, *) je Abelův monoid. Vyvstává otázka. Může býti v monoidu i více neutrálních prvků? Odpověď je jednoduchá. Ne! Věta 1.9. (O jednoznačnosti neutrálního prvku) Nechť (A, ) je monoid. Potom v A existuje jediný neutrální prvek vzhledem k operaci. Důkaz. Předpokládejme, že e 1 A a také e 2 A je neutrální prvek vzhledem k operaci. Potom e 1 = e 1 e 2 = e 2. Znemená to, že neexistují dva různé neutrální prvky vzhledem k operaci.

8 Grupoid, pologrupa, monoid a grupa 23 Zavedeme další pojem. Opět vzpomeňme na násobení reálných čísel. Kterým číslem je třeba vynásobit číslo 2 tak, aby vyšlo číslo 1 (neutrální prvek)? Ano správně, jednou polovinou. Analogie pro sčítání reálných čísel je následující. Které číslo je třeba přičíst k číslu 2 tak, aby vyšlo číslo 0 (neutrální prvek při sčítání)? Jistě, bude to číslo 2. Říkáme, že jedna polovina je inverzním prvkem čísla 2 vzhledem k násobení reálných čísel. Číslo 2 je zase inverzním prvkem k číslu 2 vzhledem ke sčítání reálných čísel. Definice (Inverzní prvek) Nechť je operace na množině A a e je neutrální prvek vzhledem k operaci. Prvkem inverzním k prvku a A vzhledem k operaci nazveme každý prvek a 1 A takový, že a a 1 = a 1 a = e. Všimněme si, že ne každé reálné číslo má inverzní prvek vzhledem k násobení (inverze k nule neexistuje), ale každé reálné číslo má svůj inverzní prvek vzhledem ke sčítání. Monoid, kde každý prvek má svůj inverzní prvek budeme nazývat grupou. Prvek inverzní k prvku a budeme označovat a 1. Definice (Grupa) Uspořádanou dvojici (A, ), kde A je neprázdná množina a je zobrazení definované na množině A A takové, že 1.) a, b A : a b A, (uzavřenost) 2.) a, b, c A : a (b c) = (a b) c, (asociativnost) 3.) e A a A : a e = e a = a, (existence neutrálního prvku) 4.) a A a 1 A : a a 1 = a 1 a = e, (existence inverzních prvků) nazýváme grupa. Grupa je speciálním případem monoidu. Víme proto, že v ní existuje pouze jediný neutrální prvek (Věta 1.9). Jak je to ale s inverzními prvky? Může mít daný prvek více prvků inverzních? V grupě ne! Věta (O jednoznačnosti inverzního prvku) Nechť (A, ) je grupa. Potom v A existuje ke každému prvku právě jeden prvek inverzni. To jest, platí: a A! a 1 A : a a 1 = a 1 a = e, kde e je neutrální prvek vzhledem k operaci.

9 24 Algebraické struktury s jednou binární operací Důkaz. Předpokládejme, že a 1 1 a také a 1 2 jsou inverzní prvky k a vzhledem k operaci. (A, ) je grupa, proto operace je asociativní. A tak a 1 1 = a 1 1 e = a 1 1 (a a 1 e 2 ) = (a 1 1 a) a 1 2 = a 1 2. e Znamená to, že neexistují dva různé inverzní prvky k prvku a vzhledem k operaci. Věta Nechť (A, ) je grupa, a A. Potom platí: (a 1 ) 1 = a. To jest, inverzním prvkem k a 1 je a. Ještě jinak, prvek je inverzním prvkem ke svému inverznímu prvku. Důkaz. Důkaz plyne okamžitě z definice inverzního prvku (Definice 1.10). Věta Nechť (A, ) je grupa, a 1, a 2,..., a n A. Potom platí: (a 1 a 2 a n ) 1 = a 1 n a 1 2 a 1 1. Důkaz. Tvrzení věty plyne z asociativity operace ((A, ) je grupa!): (a 1 a 2 a n ) (a 1 n a 1 2 a 1 1 ) = e = (a 1 a 2 a n 1 ) (a 1 e. n 1 a 1 2 a 1 1 ) = = (a 1 a 2 ) (a 1 2 a 1 1 ) = e = a 1 a 1 1 = e. Obdobně se dá ukázat, že (a 1 n a 1 2 a 1 1 ) (a 1 a 2 a n ) = e.

10 Grupoid, pologrupa, monoid a grupa 25 Značení Pro jednoduchost zápisu zavedeme následující značení. Nechť (A, ) je grupa, a A a n N. Potom prvek a a a budeme označovat n krát symbolem a n. Prvek a 1 a 1 a 1 budeme označovat symbolem a n. n krát To jest, a n = a a a n krát a a n = a 1 a 1 a 1. n krát Neutrální prvek v grupě (A, ) budeme označovat symbolem a 0. S využitím zavedeného značení zformulujeme přímý důsledek Věty Věta Nechť (A, ) je grupa, a A. Potom: 1. n N : (a n ) 1 = (a) n. 2. m, n Z : a m a n = (a) m+n. Důkaz. První tvrzení je tvrzením Věty 1.14 pro případ a 1 = a 2 = = a n. Tvrzení druhé pak okamžitě plyne z tvrzení prvního a zavedeného značení. Věta (O krácení v grupě) Nechť (A, ) je grupa. Potom pro každé a, b, c G platí: (a c = b c) (a = b) Důkaz. (A, ) je grupa, proto existuje c 1, a operace je asociativní. Předpokládejme, že a c = b c a e je neutrální prvek v (A, ). Odtud: a = a e = a (c c 1 ) = (a c) c 1 = (b c) c 1 = b (c c 1 ) = b e = b. Poznámka Často se místo symbolu pro operaci v grupě používá symbol +, nebo (ať už představují jakékoli operace). V takovém případě se poněkud liší symbolika při použití operace + a při použití (odpovídá tomu, jak jsme zvyklí tyto operace zapisovat u reálných čísel):

11 26 Algebraické struktury s jednou binární operací aditivní zápis: multiplikativní zápis: a + a + + a n krát a a a n krát = na = a n Při použití symbolu + mluvíme o aditivní grupě (G, +), při použití symbolu mluvíme o multiplikativní grupě (G, ). V aditivní grupě nazýváme neutrální prvek nulovým prvkem, v multiplikativní grupě nazýváme neutrální prvek jednotkovým prvkem Cvičení Rozhodněte, zda (A, ) tvoří grupu. 1.) A = N a je obvyklé sčítání přirozených čísel. 2.) A = Z a je obvyklé sčítání celých čísel. 3.) A = Q a je obvyklé sčítání racionálních čísel. 4.) A = I a je obvyklé sčítání iracionálních čísel (tj. restrikce sčítání reálných čísel na I). 5.) A = N a je obvyklé násobení přirozených čísel. 6.) A = Z a je obvyklé násobení celých čísel. 7.) A = Q a je obvyklé násobení racionálních čísel. 8.) A = Q {0} a je restrikce obvyklého násobení racionálních čísel na Q {0}. 9.) A = I {0} a je obvyklé násobení iracionálních čísel (tj. restrikce sčítání reálných čísel na I {0}). 10.) A = {0, 1, 2} N a operace = + je dána následující tabulkou: ) A = {a + b 2 a, b Q, (a, b) (0, 0)} a je restrikce obvyklého násobení reálných čísel na množinu A.

12 Grupoid, pologrupa, monoid a grupa ) A = R 2 2 je množina čtvercových matic reálných čísel o dvou řádcích a dvou sloupcích a je obvyklé násobení matic. 13.) A = S n je množina permutací n-prvkové množiny a je skládání funkcí.

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA ve studiu učitelství 1. stupně základní školy Vilma Novotná, Bohuslav Pisklák Ostrava 2003 Obsah I. Úvod do teorie množin a matematické logiky

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Reziduovaná zobrazení

Reziduovaná zobrazení Reziduovaná zobrazení Irina Perfilieva Irina.Perfilieva@osu.cz 1. března 2015 Outline 1 Reziduované zobrazení 2 Izotónní/Antitónní zobrazení Definice Necht A, B jsou uspořádané množiny. Zobrazení f : A

Více

Matematické základy kryptografických algoritmů Eliška Ochodková

Matematické základy kryptografických algoritmů Eliška Ochodková Matematické základy kryptografických algoritmů Eliška Ochodková Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 ii Úvodem Máte před sebou text k přednášce Diskrétní matematika pro první ročník na

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Násobení přirozených čísel. a) Násobení v oboru násobilek

Násobení přirozených čísel. a) Násobení v oboru násobilek Násobení přirozených čísel a) Násobení v oboru násobilek Zvládnutí operace násobení a základních spojů násobilky je pro děti dobrým východiskem pro zvládání dalšího učiva, kterým je dělení, dělení se zbytkem,

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

Obsah 1. Základní algebraické pojmy... 2 2. Monoidové okruhy a některé další základní konstrukce... 4 3. Podgrupy a jiné podstruktury... 7 4.

Obsah 1. Základní algebraické pojmy... 2 2. Monoidové okruhy a některé další základní konstrukce... 4 3. Podgrupy a jiné podstruktury... 7 4. Obsah 1. Základní algebraické pojmy........................ 2 2. Monoidové okruhy a některé další základní konstrukce.............. 4 3. Podgrupy a jiné podstruktury....................... 7 4. Kvocientní

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti...

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti... Poznámky k ekonomickému ukazateli IRR (Remarks on the economic criterion the Internal Rate of Return ) Carmen Simerská IRR... vnitřní míra výnosnosti, vnitřní výnosové procento, výnos do splatnosti...

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Více

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C,

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C, Výsledky operací jsou tedy popsány pomocí svých koeficientů algoritmicky. Na vstupu do algoritmu jsou koeficienty polynomů, které sčítáme resp. násobíme. S proměnnou x algoritmy nepracují. Polynomy Polynom

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

1 Úvod - jazyk matematiky 2 1.1 Co je to matematika... 2 1.2 Co je algebra... 3 1.3 Jazyk matematiky... 6

1 Úvod - jazyk matematiky 2 1.1 Co je to matematika... 2 1.2 Co je algebra... 3 1.3 Jazyk matematiky... 6 Obsah 1 Úvod - jazyk matematiky 2 11 Co je to matematika 2 12 Co je algebra 3 13 Jazyk matematiky 6 2 Polynomy 12 21 Co to je polynom? 12 22 Operace s polynomy 13 23 Hornerovo schema 20 24 Kořeny polynomu

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat.

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. @08. Derivace funkce S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. Definice: Součet funkce f a g je takový předpis, taková funkce h, která každému

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 11 Nejmenší společný násobek Největší společný dělitel O čem budeme hovořit: Nejmenší společný násobek a jeho vlastnosti Největší

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

MASARYKOVA UNIVERZITA. Moduly nad okruhy hlavních ideálů JANA MEDKOVÁ

MASARYKOVA UNIVERZITA. Moduly nad okruhy hlavních ideálů JANA MEDKOVÁ MASARYKOVA UNIVERZITA Přírodovědecká fakulta Moduly nad okruhy hlavních ideálů JANA MEDKOVÁ Bakalářská práce Vedoucí práce: prof. RNDr. Radan Kučera, DSc. Studijní program: matematika Studijní obor: obecná

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou OD NULY K NEKONEâNU Poãítej jako EgypÈan Nejstarší známý početní systém založený na čísle 10 zavedli před 5 000 lety v Egyptě. Egypťané používali skupinu čar pro vyjádření čísel do devítky. Vypadala asi

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Determinanty a matice v theorii a praxi

Determinanty a matice v theorii a praxi Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

Pokrytí šachovnice I

Pokrytí šachovnice I Pokrytí šachovnice I VŠB-TU Ostrava, fakulta FEI Obor: Informatika výpočetní technika Předmět: Diskrétní matematika (DIM) Zpracoval: Přemysl Klas (KLA112) Datum odevzdání: 25.11.2005 1) Abstrakt: Máme

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více