Bakalářská matematika I

Rozměr: px
Začít zobrazení ze stránky:

Download "Bakalářská matematika I"

Transkript

1 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I

2 Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A, B jsou neprázdné množiny. Kartézský součin množin A, B množina všech uspořádaných dvojic (a, b), kde a A, b B; označuje se A B. Tj. je A B = {(a, b) : a A b B}.

3 Některé užitečné pojmy Zobrazení Definice 1.2 F je zobrazení množiny A do množiny B, zkráceně F : A B, jestliže F A B a platí a A! b B : (a, b) F. Definice 1.3 Nechť F : A B a (a, b) F. Množina A se nazývá definiční obor zobrazení F. Prvek a se nazývá vzor prvku b při zobrazení F. Prvek b se nazývá obraz prvku a při zobrazení F a označuje se F(a).

4 Některé užitečné pojmy Závislá a nezávislá proměnná Poznámka 1.1 Pro vztah (a, b) F se používají také zápisy a F b, F(a) = b vyjadřující výstižně závislost prvku b na prvku a. Vzhledem k tomu, že prvek a se může měnit v rámci množiny A a v závislosti na něm se mění prvek b v rámci množiny B, používá se pro symboly a resp. b označení nezávislá resp. závislá proměnná.

5 Některé užitečné pojmy Operace Definice 1.4 Operace nad množinami A, B je zobrazení s definičním oborem A B. Poznámka 1.2 Budeme-li pracovat s operací : A B C, budeme obraz (a, b) označovat a b. Příklady Sčítání reálných čísel + : R R R. Dělení reálných čísel / : R R \ {0} R.

6 Funkce Definice funkce Definice 1.5 Funkce je zobrazení jakékoliv množiny do číselné množiny. Definice 1.6 Nechť f : A B je funkce. Říkáme, že f je reálná funkce, jestliže B R. f je funkce jedné reálné proměnné, jestliže A R. f je funkce dvou reálných proměnných, jestliže A R R. f je reálná funkce jedné reálné proměnné, jestliže A R, B R. f je reálná funkce dvou reálných proměnných, jestliže A R R, B R. Úmluva Dále budeme výraz funkce používat pro reálné funkce jedné reálné proměnné, tj. pro zobrazení jedné podmnožiny R do jiné podmnožiny R.

7 Funkce Definiční obor a obor hodnot funkce Definice 1.7 Definiční obor funkce f je množina D f = {x R :!y R, f (x) = y}; prvek této množiny se nazývá argument funkce f. Obor hodnot funkce f je množina H f = {y R : x D f, f (x) = y}; prvek této množiny se nazývá funkční hodnota funkce f. Úmluva Vztah M D f budeme také vyjadřovat větou f je definovaná na M. Rovnost f (x 0 ) = y 0 budeme také vyjadřovat větou y 0 je funkční hodnotou funkce f v bodě x 0.

8 Funkce Zadání funkce podrobnosti Poznámka 1.3 Funkci budeme nejčastěji zadávat prostřednictvím tzv. explicitního předpisu, který stanoví obecný tvar proměnné y (= f (x) ) v závislosti na proměnné x. Např. f (x) = x 2. K explicitnímu předpisu budeme někdy připojovat zamýšlený rozsah proměnné x. Např. f (x) = x 2, x 1, 2.

9 Funkce Graf funkce Definice 1.8 Graf funkce f je množina všech bodů v rovině o (kartďż zských) souřadnicích x, f (x), kde x D f, tj. množina {[x, f (x)] E 2 : x D f }. Příklad: Jde o graf funkce? Ano. Ne.

10 Základní elementární funkce Konstantní funkce f (x) = c, kde c R, D f = (, ), H f = {c}. Mocnina s celým exponentem f (x) = x k, kde k Z. f (x) = x, D f = (, ), H f = (, ) f (x) = x 2, D f = (, ), H f = 0, ) f (x) = x 3, D f = (, ), H f = (, ) f (x) = 1, x D f = (, 0) (0, ), H f = (, 0) (0, ) f (x) = 1, D x 2 f = (, 0) (0, ), H f = (0, ) f (x) = 1, D x 3 f = (, 0) (0, ), H f = (, 0) (0, ) Odmocnina s přirozeným exponentem f (x) = n x, kde n N. f (x) = x, D f = 0, ), H f = 0, ) f (x) = 3 x, D f = (, ), H f = (, )

11 Základní elementární funkce Exponenciální funkce f (x) = a x, kde a > 0, a 1. f (x) = e x, D f = (, ), H f = (0, ) Logaritmické funkce f (x) = log a x, kde a > 0, a 1. f (x) = log x, D f = (0, ), H f = (, ) (= log 10 x... dekadický logaritmus ) f (x) = ln x, D f = (0, ), H f = (, ) (= log e x... přirozený logaritmus ) Goniometrické funkce f (x) = sin x, D f = (, ), H f = 1, 1 f (x) = cos x, D f = (, ), H f = 1, 1 f (x) = tg x, D f = R \ { π + kπ : k Z}, 2 H f = (, ) f (x) = cotg x, D f = R \ {kπ : k Z}, H f = (, ) Cyklometrické funkce f (x) = arcsin x, D f = 1, 1, H f = π π 2 2 f (x) = arccos x, D f = 1, 1, H f = 0, π f (x) = arctg x, D f = (, ), H f = ( ) π π 2 2 f (x) = arccotg x, D f = (, ), H f = (0, π)

12 1. přednáška 2. přednáška Podrobnosti Základní elementární funkce Grafy základních elementárních funkcí funkci.pdf

13 Operace s funkcemi Sčítání, odčítání Definice 1.9 Nechť f, g jsou funkce a nechť množina M := D f D g je neprázdná. Řekneme, že f, g jsou si rovny na M, zkráceně f = g na M, jestliže f (x) = g(x), x M. Součet funkcí f, g na M je funkce (f + g) : M R definovaná předpisem (f + g)(x) := f (x) + g(x), x M. Rozdíl funkcí f, g na M je funkce (f g) : M R definovaná předpisem (f g)(x) := f (x) g(x), x M.

14 Operace s funkcemi Násobení, dělení Definice 1.10 Nechť f, g jsou funkce a nechť množina M := D f D g je neprázdná. Součin funkcí f, g na M je funkce (f g) : M R definovaná předpisem (f g)(x) := f (x) g(x), x M. Je-li g konstantní funkce o hodnotě c R, potom součin funkcí f, g se nazývá c-násobek funkce f a označuje se cf. Nechť n N. n-tá mocnina funkce f je funkce f n : D f R definovaná předpisem f n (x) := ( f (x) )n, x D f. Definice 1.11 Nechť f, g jsou funkce a nechť množina M := D f D g \ {x D g : g(x) = 0} je neprázdná. Potom podíl funkcí f, g na M je funkce (f /g) : M R definovaná předpisem (f /g)(x) := f (x) g(x), x M.

15 Operace s funkcemi Skládání Definice 1.12 Nechť f, g jsou funkce a nechť množina M := {x D f : f (x) D g} je nepr. Funkce (g f ) : M R definovaná předpisem (g f )(x) := g ( f (x) ), x M, se nazývá funkce složená z funkcí f, g. V této situaci se funkce g nazývá vnější funkce a funkce f se nazývá vnitřní funkce.

16 Elementární funkce Elementární funkce podrobnosti Definice 1.13 Elementární funkce jsou funkce, které lze vytvořit ze základních elementárních funkcí pomocí konečného počtu operací sčítďż ní (+), odčítání ( ), násobení ( ), dělení (/) a skládání ( ).

17 Elementární funkce Polynomy Definice 1.14 Nechť n N {0}, a 0,... a n R, a n 0. Potom funkce f (x) = a nx n + a n 1 x n a 1 x + a 0, x R, je polynom stupně n. Speciálně: Polynom stupně 2 je kvadratická funkce, Polynom stupně 1 je lineární funkce. Poznámka 1.4 Definiční obor libovolného polynomu je množina R. Polynom stupně 0 je konstantní funkce.

18 Elementární funkce Příklady polynomů a) f (x) = 2x 2 8 b) f (x) = 2x + 3 parabola přímka c) f (x) = x d) f (x) = 6 osa 1. a 3. kvadrátu rovnoběžka s osou x

19 Elementární funkce Přímka a graf funkce Poznámka 1.5 Přímku p, která není rovnoběžná s osou y, lze vyjádřit jako graf nějaké lineární popř. konstantní funkce. Používá se zápis p : y = ax + b popř. p : y = c Přímku p, která je rovnoběžná s osou y, nelze vyjádřit jako graf funkce. Prochází-li tato přímka na ose x bodem c, používá se zápis p : x = c.

20 Elementární funkce Příklad 1.1 Určete definiční obor funkce (f zadané explicitně) a vyjádřete jej ve tvaru sjednocení komponent. a) f (x) = x 7 + 3x 5 2x + 7 b) f (x) = x+2 x 2 +x 2 c) f (x) = x 2 + 5x x 1 d) f (x) = cos x + cotg 2x e) f (x) = log(x + 6) f) f (x) = arccos(x 2)

21 Další funkce Absolutní hodnota f (x) = x, D f = (, ), H f = 0, ). x = { x, je-li x 0, x, je-li x < 0. Signum f (x) = sgn x, D f = (, ), H f = { 1, 0, 1}. 1, je-li x > 0, sgn x = 0, je-li x = 0, 1, je-li x < 0. Celá část f (x) = [x], D f = (, ), H f = Z. podrobnosti

22 Vlastnosti funkcí Průsečíky s osami Definice 1.15 Průsečík grafu funkce f s osou x je bod [x 0, 0], kde x 0 je řešení rovnice f (x) = 0. (1) Průsečík grafu funkce f s osou y je bod [0, y 0 ], kde y 0 = f (0). Poznámky: Jestliže rovnice (1) nemá řešení, potom neexistuje průsečík s osou x. Jestliže 0 D f, potom neexistuje průsečík s osou y. Průsečík s osou y může být nejvýše jeden; průsečíků s osou x může být až nekonečně mnoho.

23 Vlastnosti funkcí Známénko funkce Definice 1.16 Nechť f je funkce a nechť M D f. Potom f je kladná na M, jestliže x M : f (x) > 0. záporná na M, jestliže x M : f (x) < 0. kladná záporná na (0, 1) kladná na (1, ).

24 Vlastnosti funkcí Ohraničenost Definice 1.17 Nechť f je funkce a nechť M D f. Potom f je ohraničená shora na M, jestliže h R, x M : f (x) h. ohraničená zdola na M, jestliže d R, x M : f (x) d. ohraničená na M, je-li na M ohraničená shora i zdola. ohraničená shora ohraničená zdola ohraničená

25 Vlastnosti funkcí Monotónnost Definice 1.18 Nechť f je funkce a nechť M D f. Potom f je rostoucí na M, jestliže x 1, x 2 M : x 1 < x 2 = f (x 1 ) < f (x 2 ). klesající na M, jestliže x 1, x 2 M : x 1 < x 2 = f (x 1 ) > f (x 2 ). neklesající na M, jestliže x 1, x 2 M : x 1 < x 2 = f (x 1 ) f (x 2 ). nerostoucí na M, jestliže x 1, x 2 M : x 1 < x 2 = f (x 1 ) f (x 2 ). konstantní na M, jestliže x 1, x 2 M : f (x 1 ) = f (x 2 ). monotónní na M, jestliže má na M některou z předchozích vlastností. ryze monotónní na M, jestliže je na M rostoucí nebo klesající. rostoucí klesající

26 Vlastnosti funkcí Extrémy funkce Definice 1.19 Nechť f je funkce a x 0 M D f. Potom řekneme, že funkce f nabývá na množině M minima v bodě x 0, jestliže x M \ {x 0 } = f (x) f (x 0 ), ostrého minima v bodě x 0, jestliže x M \ {x 0 } = f (x) > f (x 0 ), maxima v bodě x 0, jestliže x M \ {x 0 } = f (x) f (x 0 ), ostrého maxima v bodě x 0, jestliže x M \ {x 0 } = f (x) < f (x 0 ). Dodatky Nastane-li v definici 1.19 situace M = D f, hovoříme o globálním (ostrém) minimu resp. o globálním (ostrém) maximu. Nabývá-li funkce f na množině M (ostrého) lokálního minima nebo maxima v bodě x 0, řekneme, že funkce f nabývá na množině M (ostrého) lokálního extrému v bodě x 0.

27 Vlastnosti funkcí Konvexnost, konkávnost Definice 1.20 Nechť f je funkce a nechť M D f. Potom f je konvexní na M, jestliže pro všechna x, x 1, x 2 M platí x 1 < x < x 2 = f (x) < f (x 1 ) + f (x 2) f (x 1 ) x 2 x 1 (x x 1 ). konkávní na M, jestliže pro všechna x, x 1, x 2 M platí x 1 < x < x 2 = f (x) > f (x 1 ) + f (x 2) f (x 1 ) x 2 x 1 (x x 1 ).

28 není prostá je prostá je prostá není monotónní Vlastnosti funkcí Prostota Definice 1.21 Funkce f je prostá, jestliže x 1, x 2 D f : x 1 x 2 f (x 1 ) f (x 2 ). Věta 1.1 Každá funkce ryze monotónní na svďż m definičním oboru je prostá. důkaz Poznámka 1.6 Opačné tvrzení neplatí: funkce prostá nemusí být (ani) monotónní na svďż m definičním oboru.

29 Vlastnosti funkcí Sudost, lichost Definice 1.22 Funkce f je sudá, jestliže x D f : x D f f ( x) = f (x). lichá, jestliže x D f : x D f f ( x) = f (x). sudá lichá

30 Vlastnosti funkcí Sudost, lichost Příklad 1.2 Určete, zda je funkce sudá nebo lichá. a) f (x) = x 3 + tg x b) f (x) = x 2 2x + 5 c) f (x) = x2 +1 x 2 1 d) f (x) = x + 3

31 Vlastnosti funkcí Periodicita Definice 1.23 Funkce f je periodická, existuje-li T > 0 takové, že x D f : x + T D f f (x + T ) = f (x). V této situaci se číslo T nazývá perioda funkce f. Existuje-li nejmenší perioda funkce f, nazývá se základní perioda funkce f. T = 2π T = 2

32 Vlastnosti funkcí Periodicita Příklad 1.3 Určete periodu funkce. a) f (x) = sin x b) f (x) = sin 2x c) f (x) = sin(2x + 1) d) f (x) = 3 sin(2x + 1)

33 Vlastnosti funkcí Invertibilita Definice 1.24 Nechť f je funkce. Potom funkce f 1 : H f R taková, že x D f, y H f : f 1 (y) = x y = f (x), se nazývá inverzní funkce k funkci f. Poznámka 1.7 Grafy funkcí f a f 1 jsou souměrné podle osy 1. a 3. kvadrantu. Platí D f 1 = H f, H f 1 = D f.

34 Vlastnosti funkcí Invertibilita Věta 1.2 (o existenci inverzní funkce) Nechť f je funkce. Potom f 1 existuje právě tehdy, když f je prostá. Příklad 1.4 Určete funkci inverzní k zadané funkci. a) f (x) = x + 2 b) f (x) = x 2 c) f (x) = 10 x+1

35 Rozšíření definice kartézského součinu zpět Definice 1.1 Nechť A, B jsou neprázdné množiny. Kartézský součin množin A, B množina všech uspořádaných dvojic (a, b), kde a A, b B; označuje se A B. Tj. je A B = {(a, b) : a A b B}. Nechť n N a A 1,..., A n jsou neprázdné množiny. Kartézský součin množin A 1,..., A n je množina všech uspořádaných n-tic (a 1,..., a n), kde a i A i pro každé i {1,..., n}; označuje se A 1 A n. Je-li A 1 = = A n = A, potom kartézský součin A 1 A n se nazývá n-tá kartézská mocnina množiny A ; označuje se A n.

36 Způsoby zadání funkce zpět Analyticky explicitně: rovností y = f (x), např. y = 2x 2 (nebo též f (x) = 2x 2 ), implicitně: rovnicí F(x, y) = 0, např. xy 2 e y = 0, parametricky: rovnicemi } x = φ(t) t D, y = ψ(t) např. } x = 1 + t y = t 2 + t t R. Grafem Tabulkou např. Odpracované roky plat v tis. Kč Slovně např. Číslo zadání studentova domácího programu je dáno zbytkem po celočíselném dělení posledního dvojčíslí jeho osobního čísla dvaceti zvětšeným o jedničku.

37 Funkce celá část, operace div, mod zpět Věta Pro každé x R existuje jediné k Z takové, že k x < k + 1. Číslo k Z odpovídající číslu x R podle přechozí věty se označuje [x]. Funkce [ ] : R Z definovaná předpisem se nazývá celá čast (reálného čísla). x [x] Operace div : R + R + Z definovaná předpisem [ x div y = se nazývá celočíselné dělení. x y ], (x, y) R + R +, Operace mod : R + R + R definovaná předpisem [ x mod y = x se nazývá zbytek po celočíselném dělení. x y ] y, (x, y) R + R +,

38 Klasifikace elementárních funkcí zpět Algebraické funkce jsou všechny elementďż rnďż funkce vytvořené výhradně z funkcí f (x) = c, f (x) = x, f (x) = n x. Polynomy jsou všechny algebraické funkce vytvořené bez použití funkce n x a operace /. Racionální jsou všechny algebraické funkce vytvořené bez použití funkce n x. Iracionální jsou všechny ostatní algebraické funkce. Transcendentnďż jsou všechny ostatní elementární funkce. Nižší, např. exponenciální, logaritmické, goniometrické, cyklometrické. Vyšší, např. e x2 dx. Příklady a) f (x) = x 7 + 3x 5 2x + 7 b) f (x) = x+2 x 2 +x 2 c) f (x) = x 2 + 5x x 1 d) f (x) = cos x + cotg 2x

39 Věta 1.1 s důkazem zpět Věta 1.1 Každá funkce ryze monotónní na svďż m definičním oboru je prostá. Důkaz (přímý): Nechť f je rostoucí. Nechť x 1, x 2 D f a x 1 x 2. Je-li x 1 < x 2, potom z definice 1.18 plyne, že f (x 1 ) < f (x 2 ). Je-li x 1 > x 2, potom z definice 1.18 plyne, že f (x 1 ) > f (x 2 ). V obou případech tedy f (x 1 ) f (x 2 ).

40 Konec (1. Funkce)

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f. 1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Funkce. Vlastnosti funkcí

Funkce. Vlastnosti funkcí FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí. Přehled funkcí Martina Hetmerová Gymnázium Přípotoční 1337 Praha 10 Vlastnosti funkcí Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo Zapisujeme: f:y=f(x)

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

soubor FUNKCÍ příručka pro studenty

soubor FUNKCÍ příručka pro studenty soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá

Více

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Základy matematiky pracovní listy

Základy matematiky pracovní listy Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Matematika I. Funkce jedné proměnné. Funkce jedné proměnné Matematika I 1 / 212

Matematika I. Funkce jedné proměnné. Funkce jedné proměnné Matematika I 1 / 212 Matematika I Funkce jedné proměnné Funkce jedné proměnné Matematika I 1 / 212 1. Množiny a zobrazení Funkce jedné proměnné Matematika I 2 / 212 Množiny Definice 1.1.1: Množinou rozumíme soubor prvků se

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

1 ÚVOD. 1.1 Kontaktní informace. 1.2 Předpokládané znalosti ze střední školy. Mgr. Iveta Cholevová, Ph. D. A829,

1 ÚVOD. 1.1 Kontaktní informace. 1.2 Předpokládané znalosti ze střední školy. Mgr. Iveta Cholevová, Ph. D. A829, 1 ÚVOD 1.1 Kontaktní informace Mgr. Iveta Cholevová, Ph. D. iveta.cholevova@vsb.cz A829, 597 324 146 Mgr. Arnošt Žídek, Ph. D. arnost.zidek@vsb.cz A832, 597 324 177 1.2 Předpokládané znalosti ze střední

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Reálné funkce 1 / 21 Matematika 1 pro PEF PaE 1. Reálné funkce Přemysl Jedlička Katedra matematiky, TF ČZU funkce Reálné funkce Základní pojmy 2 / 21 Zobrazení z množiny A do množiny B je množina f uspořádaných

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Matematika 1. Matematika 1

Matematika 1. Matematika 1 5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Funkce a základní pojmy popisující jejich chování

Funkce a základní pojmy popisující jejich chování Funkce a základní pojmy popisující jejich chování Pro zobrazení z reálných čísel do reálných čísel se používá termín reálná funkce reálné proměnné. Protože jen výjimečně budou v této části použity jiné

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

2 Reálné funkce jedné reálné proměnné

2 Reálné funkce jedné reálné proměnné 2 Reálné funkce jedné reálné proměnné S funkcemi se setkáváme na každém kroku, ve všech přírodních vědách, ale i v každodenním životě. Každá situace, kd jsou nějaký jev nebo veličina jednoznačně určen

Více

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: Matematická funkce Kartézský součin Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: [x, y] = [u, v] x = u y = v Pokud K, L jsou libovolné množiny, pak množinu

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Aplikační úlohy z diferenciálního počtu jedné proměnné

Aplikační úlohy z diferenciálního počtu jedné proměnné Jihočeská univerzita v Českých Budějovicích Fakulta Katedra Bakalářská práce Aplikační úlohy z diferenciálního počtu jedné proměnné Vypracoval: Michaela Jelínková Vedoucí práce: RNDr. Vladimíra Petrášková,

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy Moderní technologie ve studiu aplikované fyziky CZ.1.07/..00/07.0018 7. Funkce jedné reálné proměnné, základní pojmy V této chvíli jsme již ve výkladu přikročili ke kapitole, kterou můžeme považovat za

Více

funkce konstantní (y = c); funkce mocninné (y = x r pro libovolné r R, patří sem tedy i

funkce konstantní (y = c); funkce mocninné (y = x r pro libovolné r R, patří sem tedy i Přednáška č. 6 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 6 29. října 2007 1 / 64 Přehled elementárních funkcí Jde o pojem spíše historický než matematický. Vymezuje se několik (základních)

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

Bakalářská matematika I

Bakalářská matematika I do předmětu Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Podmínky absolvování předmětu Zápočet Zkouška 1 účast na přednáškách alespoň v minimálním rozsahu,

Více

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že .5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

1.1 Funkce 1. Tab. 1: Omezující funkce definičního oboru. 1 V tomto textu se pojmem funkce uvažuje funkce jedné proměnné

1.1 Funkce 1. Tab. 1: Omezující funkce definičního oboru. 1 V tomto textu se pojmem funkce uvažuje funkce jedné proměnné 1.1 Funkce 1 V životě se běžně setkáváme se vztahem závislosti mezi různými proměnnými. Takovým vztahem závislosti může být například cena akciového titulu v závislosti na čase nebo teplota v místnosti

Více

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni.

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni. KMA/ZM1 Přednášky RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni sediva@kma.zcu.cz Obsah 0.1 Matematické objekty, matematické definice, matematické věty.............. 4

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

VII. Limita a spojitost funkce

VII. Limita a spojitost funkce VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Pracovní materiál pro

Pracovní materiál pro Pracovní materiál pro Úvodní kurz pro FELÁKY Temešvár u Písku, září 01 Úvodem Tento text má sloužit jako přehled středoškolských znalostí a dovedností, které jsou nezbytné při studiu matematiky na vysoké

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE,

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, LIMITA FUNKCE, DERIVACE FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století

Více

Matematika I. Katedra matematiky a deskriptivní geometrie mdg.vsb.cz

Matematika I. Katedra matematiky a deskriptivní geometrie mdg.vsb.cz Matematika I Úvod Mgr. Iveta Cholevová, Ph. D iveta.cholevova@vsb.cz A 829, 597 324 146 Mgr. Jaroslav Drobek, Ph. D. jaroslav.drobek@vsb.cz, A 837, 597 324 101 Mgr. Arnošt Žídek arnost.zidek@vsb.cz, A

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Matematika I: Pracovní listy do cvičení

Matematika I: Pracovní listy do cvičení Matematika I: Pracovní listy do cvičení Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Pro FAST upravil Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita

Více

Matematika I Reálná funkce jedné promìnné

Matematika I Reálná funkce jedné promìnné Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme

Více

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, }

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } ÚVOD DO MATEMATIKY Číselné množin Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } Racionální čísla (Q) Čísla která lze vjádřit

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace 22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Cyklometrické funkce

Cyklometrické funkce 4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli

Více

ELEMENTÁRNÍ KOMPLEXNÍ FUNKCE SPECIÁLNÍ ELEMENTÁRNÍ FUNKCE

ELEMENTÁRNÍ KOMPLEXNÍ FUNKCE SPECIÁLNÍ ELEMENTÁRNÍ FUNKCE ELEMENTÁRNÍ KOMPLEXNÍ FUNKCE Všechny základní reálné funkce reálné proměnné, s kterými jste se seznámili na začátku tohoto kurzu, lze rozšířit i na komplexní funkce komplexní proměnné. U některých je rozšíření

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

MATEMATIKA I. Marcela Rabasová

MATEMATIKA I. Marcela Rabasová MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje.

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje. Číslo projektu Škola Autor Číslo materiálu Název Téma hodiny Předmět Ročník/y/ Anotace CZ.1.07/1.5.00/34.0394 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Mgr. Renata

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

Matematika B 2. Úvodní informace

Matematika B 2. Úvodní informace Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno

Více

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto Exponenciální funkce Exponenciální funkce je taková funkce, která má neznámou na místě exponentu. Symbolický zápis by tedy vypadal takto: f:y = a x, kde a > 0 a zároveň a 1 (pokud by se a mohlo rovnat

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

CZ.1.07/1.5.00/

CZ.1.07/1.5.00/ Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim 3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

6. F U N K C E 6.1 F U N K C E. Sbírka úloh z matematiky pro SOU a SOŠ RNDr. Milada Hudcová, Mgr. Libuše Kubičíková 181/1 190/24 25

6. F U N K C E 6.1 F U N K C E. Sbírka úloh z matematiky pro SOU a SOŠ RNDr. Milada Hudcová, Mgr. Libuše Kubičíková 181/1 190/24 25 6. F U N K C E 6.1 F U N K C E Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) 181/1 190/24 25 80/1 2 82/3 6.2 D E F I N I Č N Í O B O R, O B O R H O D N

Více

Stručný přehled učiva

Stručný přehled učiva Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném

Více

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška

Více

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více