Tříúběžníková perspektiva
|
|
- Vladislav Bureš
- před 6 lety
- Počet zobrazení:
Transkript
1 Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Tříúběžníková perspektiva Vypracoval: Martin Bouček Třída: 8. M Škoní rok: 2014/2015 Seminář: Deskriptivní geometrie
2 Prohlašuji, že jsem svou ročníkovou práci napsal samostatně a výhradně s použitím citovaných pramenů. Souhlasím s využíváním práce na Gymnáziu Christiana Dopplera pro studijní účely. V Praze dne Martin Bouček
3 Obsah 1. Úvod Lineární perspektiva Pojmy a jejich významy Jednoúběžníková perspektiva Dvouúběžníková perspektiva Tříúběžníková perspektiva Průsečná metoda Volná metoda Dělení úseček v tříúběžníkové perspektivě Závěr Zdroje
4 1. Úvod Když jsem si vybíral téma ročníkové práce, bral jsem v potaz svou zálibu v napodobování reality na papíře. Tříúběžníková perspektiva nabízí mnohem reálnější obraz, než perspektiva jednoúběžníková a dvouúvěžníková. Z důvodu, že tříúběžníková perspektiva se na středních školách nevyučuje, jsem se rozhodl na toto téma podívat hlouběji. Na začátku práce shrneme předem získané znalosti o perspektivě. Poté se zaměříme přímo na téma tříúběžníkové perspektivy a ukážeme si v ní dvě metody konstruování. Téma se budu snažit uchopit tak, aby mu porozumělo co největší množství lidí, i když se jedná o téma velice náročné na pochopení. 3
5 2. Lineární perspektiva S perspektivou se setkáváme každý den. Je to optický jev, který nám zkresluje skutečnost vnímanou okem. Kvůli perspektivě se nám zdá, že koleje se na obzoru sbíhají do jednoho bodu, ale přitom víme, že jsou stále rovnoběžné. Úplně stějně vnímáme na moři loď vetší, když ji máme několik metrů od sebe, než když přeplouvá obzor. Za to, že koleje nevnímá jako rovnoběžné, a že čím je věc dál, tím je menší, může oko, které má svůj vlastní zorný úhel. Člověk musí z dálky vnímat mnohem více informací, protože zorné pole se od nás rozšiřuje. Zároveň se to naše oko ale snaží dát do stejného formátu jako to, co vnímáme blíž, a proto vše co je dál, se musí jevit menší. To samé platí, když se snažíme zobrazit nějaký předmět na papír. Dalo by se říct, že papír je určitým oknem do reality, které je v určité distanci od našeho oka, a proto musíme zachovávat pravdla chování lidského zraku, které dále promítneme na papír. Je mnoho druhů různých perspektiv, ne všechny však jsou potřeba k vysvětlení tříúbežníkové. Nejprve si vysvětlíme jednoúběžníkovou, dále dvouúběžníkovou a nejvíce se budu věnovat tříúběžníkové perspektivě. Každá z nich má samozřejmě určité využití pro různé situace. 3. Pojmy a jejich významy Rád bych jednoduše osvětlil několik pojmů, se kterými se můžete při sledováni, či rýsování v perspektivě setkat. Průmětna ρ Plocha na kterou promítáme, většinou svislá; záleží na pozorovateli Základní rovina π Rovina, na které stojí pozorovatel i zobrazované těleso, většinou kolmá na průmětnu (ρ) Oko S bod ze kterého se díváme Distance d vzdálenost pozorovatele (S) od průmětny (ρ) Distančník D bod v dané vzdálenosti Základnice z průsečnice ρ a π Horizont h průsečnice ρ a obzorové roviny Hlavní bod H pravoúhlý průmět bodu S do průmětny ρ Hlavní vertikála v přímka v průmětně procházející H kolmo k základnici z 4
6 Výška perpektivy vzdálenost základnice od horizontu Úběžníky U1, U2, U3 bod, kde se protínají všechny vzájemně rovnoběžné přímky 4. Jednoúběžníková perspektiva Jednoúběžníková perspektiva se také někdy nazývá průčelnou. Je to způsebeno tím, že objekt je v pozici, kdy má rovnoběžnou stěnu s průmětnou. Horizontální linie této zdi nemají úběžník, kde by se mohly sbíhat. Horizontální přímky vyobrazovaného objektu či tělesa, které jsou kolmé na průmětnu, už svůj úběžník mají. Jedná se o jedno z nejjednodušších zobrazení v perspektivě, hojně užívané třeba u interiérů, nebo již zmiňovaných průčelí různých budov.. - Ukázka jednoduchého rýsování interiéru průčelnou perspektivou 5
7 - Ukázka šachovnice v jednoúběžníkové perspektivě. Jednotlivé čtverce se vizuálně se zvětšující vzdáleností zužují, zkracují a zkreslují. - Průčelí jednoduchého tělesa v jednoúběžníkové perspektivě 6
8 5. Dvouúběžníková perspektiva Této perspektivě se také přezdívá nárožní. Když zobrazované těleso nemá s průmětnou rovnoběžnou žádnou stěnu, tak jeho vzájemně rovnoběžné horizontální přímky májí dva uběžníky. Je to způsobeno tím, že je objekt pootočen kolem své osy (narozdíl od průčelné p.), a proto se zobrazuje, jako když bychom se na něj dívalí z rohu. Touto perspektivou se většinou vizualizují budovy. - Na obrázku je ukázka krychle v prostoru, oka a průmětny. Průsečíky úseček tvořenými spojnicemi bodů krychle a oka, protínají průmětnu v bodech, které budou tvořit obraz v dvouúběžníkové perspektivě. 7
9 - Pohled z boku na stejnou situaci. Je vidět jev, kdy se úsečka dál od pozorovatle jeví jako kratší než ta, která je blíže. - Pohled zepředu, sbíhající se přímky jsou spojeny v úběžnících, spojnice úbězníků je červeně horizont; pokud nám nějaké rovnoběžky tvoří úběžník mimo obraz, můžeme si pro získání horizontu pomoci spojnicí uhlopříček náležících vodorovným stěnám. - Konstrukce nároží jednoduché stavby v dvouúběžníkové perspektivě. 8
10 6. Tříúběžníková perspektiva Rýsováním v tříúběžníkové perspektivě se dosahuje nejrealističtějšího obrazu. Využíva se při vizualizaci extrémně vysokých budov a konstrukcí, jako jsou například mrakodrapy, televizní vysílače, vodárenské věže, rozhledny a další. Výsledný obraz již nemá žádné stěny rovnoběžné. To je dáno přítomností třetího uběžníku, který se nenachází na horizontu. Řešení se dosahuje nakloněním průmětny. Pokud průmětnu nakloníme směrem k pozorovateli, získáme pohled vzhůru, třetí úběžník se poté nachází nad horizontem a my získáváme takzvanou žabí perspektivu. Pokud však skloníme průmětnu od pozorovatele, získáme pohled dolů, třetí úběžník je pod horizontem a my získváme takzvanou ptačí perspektivu. - Náklon průmětny směrem k pozorovateli žabí perspektiva. 9
11 - Viditelně sbíhající se svislice nad horizontem žabí perspektiva. - Náklon průmětny od pozorovatele ptačí perspektiva. 10
12 - Viditelně sbíhající se svislice pod horizontem ptačí perspektiva. 11
13 6.1 Průsečná metoda Průsečná metoda se vyznačuje svojí přesností. To však má svou daň v podobě náročnosti, proto se k tomuto vyobrazování používá počítačových softwarů. Jako příklad si ukážeme rýsování jednoduchého tělesa, skládajícího se z široké podstavy, hranolového sloupu, završeného jehlanem. - Nejprve si zvolíme objekt, naneseme ho v Mongeově promítání - Volíme směr pohledu na nárysně (p2) v našem případě pohled vzhůru žabí perspektiva - Volíme průmětnu kolmá na osu pohledu 12
14 - Následující body nemůžeme volit - H Hlavní bod se nachází v půdorysu, vzdálenost od S1 je rovno distanci naneseme vzdálenost průsečíku osy p2 a průmětny od osy x1,x2 na osy p1 od místa, kde se protíná s průmětnou - Usp Plní funkci hlavního bodu v dvouúběžníkové perspektivě to znamená, že to je úběžník spádových přímek půdorysny. Prochází jím horizont, je určen vzdáleností průsečíku p2 a průmětny od průsečíku rovnoběžky s x1,x2, kterou vedeme z průmětny a bodu S2 13
15 - Zjistíme vzdálenost průmětny a bodu S2, která je poloměrem kružnice se středem v úběžníku spádových přímek Usp - Na kolmici k přímce p1, která prochází hlavním bodem, naneseme poloměr kružnice, tím dostaneme bod S! - Bodem S! Vedeme kolmici na přímku UspS!, průsečík této přímky a přímky p1 nám dá úběžník U3 - Bod D leží na přímce p1 ve stejné vzdálenosti jako S! Od U3 - Bod T je průsečíkem kružnice a p1 14
16 - Rys si otočíme o 90 po směru hodinových ručiček - Nyní máme místo hlavního bodu bod Usp a bod T nám předtavuje distančník - Abychom mohli dostat bod G, musíme vést bodem G kolmici na základnici, z tohoto průsečíku vedeme přímku do hlavního bodu, kterým nyní je Usp. Průsečíkem těchto přímek je bod G - Obdobně pokračujeme u všech bodů podstavy - Bod G dostaneme tak, že bodem D vedeme přímku do bodu G, a kde nám protne svislici z bodu G, tam dostaneme bod M. Z bodu M přeneseme výšku bodu G z Mongeova promítání a naneseme ji na svislici. Z tohoto bodu nyní vedeme přímku do bodu D a v místě protnutí se spojnicí G a U3 máme bod G. Toto aplikujeme pro všechny body 15
17 - Finální podoba. 16
18 - Detail na finální podobu, zvýrazněno tmavší zelenou, zakryté úsečky jsou přerušovaně. 6.2 Volná metoda Volná metoda je méně komplikovaná i méně zdlouhavá. Není však přesná, jako metoda průsečná. Pro názornou ukázku si vyobrazíme těleso podobné tomu předchozímu. 17
19 - Sami volíme všechny úběžníky U1, U2, U3 první dva musí ležet na horizontu h (ten si také volíme), a protože U3 je pod horizontem, tak nám vznikne ptačí perspektiva. - Hledáme hlavní bod H je průsečíkem výšek na U1 a U2 - Bod So je průsečíkem svislice v U3 a Thaletovy kružnice pod U1 a U2 - Bod S je průsečíkem Thaletovy kružnice a svislice z U3, a horizontály procházející hlavním bodem - Bod D je stejně vzdálen od U3, jako bod S, zároveň leží na svislici z bodu U3 - Sestrojíme půdorys stejně jako v dvouúběžníkové perspektivě z bodů U1 a U2 18
20 - Požadovanou výšku získáme svislým narýsováním nad jeden z bodů půdorysu, a vrcholem povedeme přímku do bodu D. Dále ještě spojíme tentýž bod půdorysu s dolním úběžníkem. Průsečík těchto dvou přímek je bodem v požadované výšce. Stejně aplikujeme na zbytek bodů. 19
21 - Řešení zblízka. 7. Dělení úseček v tříúběžníkové perspektivě Když úsečka, kterou máme v úmyslu rozdělit leží v základní rovině nebo s ní rovnoběžných rovinách, tak postupujeme stejně, jako při dělení úsečky v dvouúběžníkové perspektivě. Na horizontu si zvolíme libovolný úběžník a na základnici si naneseme kraje dělené úsečky. Vymezenou vzdálenost na základnici rozdělíme na požadovaný počet částí a 20
22 ty pak zpětně spojíme s úběžníkem, tam kde se protnou s původní úsečkou nám vzniknou části úsečky tak, jak jsme je chtěli. Pro dělení svislé úsečky AB si zvolíme libovolnou přímku p, která bude mít stejný úběžník jako dělená úsečka AB. Dále volíme rovnoběžku q se zvolenou přímkou p tak, aby se setkávala s dělenou úsečkou na jejím kraji v bodu A. Konec dělené úsečky, kde se dotýká přímky q spojíme s libovolným bodem X na přímce p, na přímku q naneseme bod Y který leží na přímce XB tak máme na q nanesenou úsečku AB. Nyní stačí rozdělit AY na požadovaný počet částí a vzniklé body spojíme s bodem X, tam kde protnou AB jsou body rozdělující AB na požadovaný počet úseků str
23 8. Závěr V práci jsme si ukázali, jak reaguje naše oko na záklaní tělesa v prostoru. Doufám, že i Vy jste si z mé práce něco odnesli, stejně jako já. Při vypracovávání příkladů jsem zjistil, že rýsováni i v takto malém rozsahu vyžaduje vysokou koncentraci. Stačí udělat jednu chybu na začátku a můžete začít znovu. I přes toto riziko jsem si plnění úkolu velice užil a těším se, až jednou v životě tyto poznatky zužitkuji. 22
24 Zdroje - Doc. RNDr. Jaroslav Černý, CSc., doc. RNDr. Milada Kočandrlová, CSc. (1998): Konstruktivní geometrie, Vydavatelství ČVUT, Praha 6, Thákurova linearni_perspektiva.html pektiva/pojmytypy/pojmytypy.html Veškeré vložené obrázky jsou autorské. 23
ROČNÍKOVÁ PRÁCE. Užití lineární perspektivy
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Užití lineární perspektivy Vypracoval: Michal Černý Třída: 4. C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Vypracoval: Adam Protivanský Třída: 8.M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlášení Prohlašuji,
Aplikace lineární perspektivy
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Aplikace lineární perspektivy Vypracoval: Jakub Sýkora Třída: 8.M Školní rok: 2015/2016 Seminář : Deskriptivní geometrie Prohlašuji,
ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Vypracoval: Zdeněk Ovečka Třída: 4. C Školní rok: 2011/2012 Seminář: Deskriptivní geometrie Prohlášení Prohlašuji,
Perspektiva. Doplňkový text k úvodnímu cvičení z perspektivy. Obsahuje: zobrazení kružnice v základní rovině metodou osmi tečen
Perspektiva Doplňkový text k úvodnímu cvičení z perspektivy Obsahuje: úvodní pojmy určení skutečné velikosti úsečky zadané v různých polohách zobrazení kružnice v základní rovině metodou osmi tečen 1 Příklad
pomocný bod H perspektivního obrázku zvolte 10 cm zdola a 7 cm zleva.)
Teoretické řešení střech Zastřešení daného půdorysu rovinami různého spádu vázaná ptačí perspektiva Řešené úlohy Příklad: tačí perspektivě vázané na Mongeovo promítání zobrazte řešení střechy nad daným
RELIÉF. Reliéf bodu. Pro bod ležící na s splynou přímky H A 2 a SA a reliéf není tímto určen.
RELIÉF Lineární (plošná) perspektiva ne vždy vyhovuje pro zobrazování daných předmětů. Například obraz, namalovaný s osvětlením zleva a umístěný tak, že je osvětlený zprava, se v tomto pohledu "nemodeluje",
Fotogrammetrie. zpracovala Petra Brůžková. Fakulta Architektury ČVUT v Praze 2012
Fotogrammetrie zpracovala Petra Brůžková Fakulta Architektury ČVUT v Praze 2012 Fotogrammetrie je geometrický postup, který nám umožňuje určení tvaru, velikosti a polohy reálných objektů na základě fotografického
JEVIŠTNÍ PERSPEKTIVA TABULKA 19
OBSAH tabulka strana Předmluva 6 Úvod 7 Základní pojmy v perspektivě 1 8 Výška oka sedícího diváka 2 9 Průčelná perspektiva centrální, pozorovací bod je na ose symetrie, základna prochází stranou BC 3
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Technické osvětlení
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické osvětlení Vypracoval: Martin Hanuš Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že jsem ročníkovou
Ročníková práce. Zrcadlení v lineární perspektivě. Vypracoval: Ondřej Texler. Třída 8.M. Školní rok: 2011/2012. Seminář : Deskriptivní geometrie
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Zrcadlení v lineární perspektivě Vypracoval: Ondřej Texler Třída 8.M Školní rok: 2011/2012 Seminář : Deskriptivní geometrie Prohlašuji,
Středové promítání. Středové promítání E ~ ~ 3. dané průmětnou r a bodem S (S r) je zobrazení prostoru...
Středové promítání Středové promítání dané průmětnou r a bodem S (S r) je zobrazení prostoru... E ~ 3 (bez S) na r takové, že obrazem bodu A je bod A =SA r. rozšířená euklidovská přímka E ~ 1 E1 U E ~
ZÁKLADNÍ ZOBRAZOVACÍ METODY
ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem
FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině
FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Aplikace lineární perspektivy
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Aplikace lineární perspektivy Vypracoval: Jiří Koucký Třída: 8. M Školní rok: 2014/2015 Seminář: Deskriptivní geometrie Prohlašuji,
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
MONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:
Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme
NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY
NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY 1. PERSPEKTIVNÍ KRABIČKA Perspektivní krabička je krabička, většinou bez víka, s malým otvorem na jedné straně, uvnitř pomalovaná různými obrazci. Když se do krabičky
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...
Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1
Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu
AXONOMETRIE - 2. část
AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.
MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr
BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
Deskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání
středu promítání (oka) se objekty promítají do roviny (nahrazuje sítnici). Perspektivní obrazy
Lineární perspektiva Lineární perspektiva je významnou aplikací středového promítání. V technické praxi se používá především k zobrazování objektů větších rozměrů, napodobuje tak lidské vidění. Ze středu
Test č. 6. Lineární perspektiva
Test č. 6 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2008-2009 Lineární perspektiva (1) Nad průměrem A S B S (A, B leží v základní rovině π) sestrojte metodou osmi tečen
Mongeovo zobrazení. Osová afinita
Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně
MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím
část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po
Zrcadlení v lineární perspektivě
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Zrcadlení v lineární perspektivě Vypracoval: Lukáš Rehberger Třída: 8. M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji,
Důkazy vybraných geometrických konstrukcí
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl
Mongeova projekce - úlohy polohy
Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova
Mongeovo zobrazení. Bod a přímka v rovině
Mongeovo zobrazení Bod a přímka v rovině Přímka v rovině Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka leží v rovině; Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Polopravidelné mnohostěny Vypracovala: Lucie Kocourková Třída: 4. C Školní rok: 2014/2015 Seminář : Deskriptivní geometrie Prohlašuji,
Kótované promítání. Úvod. Zobrazení bodu
Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,
Pravoúhlá axonometrie
Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
Elementární plochy-základní pojmy
-základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Vypracoval: Barbora Mrázová Třída: 8.M Školní rok: 2014/2015 Seminář: Deskriptivní geometrie Zadavatel:
1. MONGEOVO PROMÍTÁNÍ
Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:
Další polohové úlohy
5.1.16 alší polohové úlohy Předpoklady: 5115 Průniky přímky s tělesem Př. 1: Je dána standardní krychle. Sestroj průnik přímky s krychlí pokud platí: leží na polopřímce, =, leží na polopřímce, =. Příklad
Sférická a Cylindrická perspektiva
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Sférická a Cylindrická perspektiva Vypracoval: Sebastián Náse Třída: 4. C Školní rok: 2011/2012 Seminář: Deskriptivní geometrie Prohlášení
PŘÍMKOVÉ PLOCHY. Přednáška DG2*A
PŘÍMKOVÉ PLOCHY Přednáška DG*A PŘÍMKOVÉ PLOCHY = plocha, jejímž každým bodem prochází alespoň jedna přímka plochy. Každá přímková plocha je určena třemi řídícími křivkami, příp. plochami. p k k k 3 Je-li
SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru
SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI
[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]
Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení
Mongeovo zobrazení. Řez jehlanu
Mongeovo zobrazení Řez jehlanu Středová kolineace Středová kolineace Definice Geometrická příbuznost mezi útvary dvou rovin (různých nebo totožných) splňující následující podmínky Středová kolineace Definice
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE
ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.
ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní
LINEÁRNÍ PERSPEKTIVA
LINEÁRNÍ PERSPEKTIVA Lineární perspektiva je významnou aplikací středového promítání. V technické praxi se používá především k zobrazování objektů větších rozměrů, napodobuje tak lidské vidění. Ze středu
KONSTRUKTIVNÍ GEOMETRIE
KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie Pomocný učební text František Ježek, Světlana Tomiczková Plzeň 20. září 2004 verze 2.0 Předmluva Tento pomocný text
půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho
Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;
Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44
Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání
AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.
AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna
Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].
Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie
Radka Matěková Anaglyfy a jejich využití ve výuce stereometrie
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Radka Matěková Anaglyfy a jejich využití ve výuce stereometrie Katedra didaktiky matematiky Vedoucí bakalářské práce: RNDr. Petra
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok
Deskriptivní geometrie 1
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 2. října 2006 verze 2.0 Předmluva Tento pomocný
Prùniky tìles v rùzných projekcích
UNIVERZITA PALACKÉHO V OLOMOUCI PØÍRODOVÌDECKÁ FAKULTA Katedra algebry a geometrie Prùniky tìles v rùzných projekcích Bakalářská práce Vedoucí práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2010 Vypracoval:
3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek
tečen a osu o π, V o; plochu omezte hranou vratu a půdorysnou a proved te rozvinutí
Řešené úlohy Rozvinutelná šroubová plocha v Mongeově promítání Příklad: V Mongeově promítání zobrazte půl závitu rozvinutelné šroubové plochy, jejíž hranou vratu je pravotočivá šroubovice, která prochází
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné
Perspektiva. In: Emil Kraemer (author): Perspektiva. (Czech). Praha: Přírodovědecké nakladatelství, pp
Perspektiva 5. Přímá methoda (Volná perspektiva) In: Emil Kraemer (author): Perspektiva. (Czech). Praha: Přírodovědecké nakladatelství, 1951. pp. 48 71. Persistent URL: http://dml.cz/dmlcz/402929 Terms
Metrické vlastnosti v prostoru
Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii
11 Zobrazování objektů 3D grafiky
11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Kartografické projekce
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Kartografické projekce Vypracoval: Jiří Novotný Třída: 4.C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:
Mongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102
Mongeova projekce KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Mongeova projekce ZS 2008 1 / 102 Obsah 1 Úvod 2 Zobrazení bodu 3 Zobrazení přímky 4 Určení roviny 5 Polohové úlohy Vzájemná poloha dvou
ROČNÍKOVÁ PRÁCE PRAVIDELNÝ DVACETISTĚN
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE PRAVIDELNÝ DVACETISTĚN Vypracovala: Zuzana Dykastová Třída: 4. C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že
Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60
Axonometrie KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Axonometrie ZS 2008 1 / 60 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU
0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
Zadání domácích úkolů a zápočtových písemek
Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
STEREOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití IT ve vyučování matematiky na gymnáziu INVESTIE
Deskriptivní geometrie I zimní semestr 2017/18
Deskriptivní geometrie I zimní semestr 2017/18 Rys č. 2 Lineární perspektiva, zrcadlení Pokyny pro vypracování platné pro všechny příklady Pokud není v zadání příkladu uvedeno jinak, zobrazujte pouze viditelné
5.1.3 Obrazy těles ve volném rovnoběžném promítání I
5.1.3 Obrazy těles ve volném rovnoběžném promítání I Předpoklady: 5102 Pedagogická poznámka: K obrazům těles ve volném rovnoběžném promítání je možné přistoupit dvěma způsoby: Látku v podstatě přeskočit
Interaktivní modely pro Konstruktivní geometrii
Interaktivní modely pro Konstruktivní geometrii Jakub Makarovský Abstrakt V příspěvku jsou prezentovány interaktivní modely základních úloh z Konstruktivní geometrie (1. ročník, zimní semestr) zaměřující
Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem
Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................
Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení konstrukce kvádr a jejích součástí. Konstrukce kvádru
METODICKÝ LIST DA58 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Prostorová tělesa II. - kvádr Astaloš Dušan Matematika šestý frontální,
REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE
REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné
prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného
Elipsa Výklad efinice a ohniskové vlastnosti prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného řezu na rotační kuželové ploše, jestliže řezná rovina není kolmá k ose
Pracovní listy LINEÁRNÍ PERSPEKTIVA
Tecnická univerita v Liberci Fakulta přírodovědně-umanitní a pedagogická Katedra matematiky a didaktiky matematiky LINEÁRNÍ PERPEKTIVA Petra Pirklová Liberec, květen 07 . Ve stopníkové metodě obrate stupně
Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení konstrukce krychle a jejích součástí. Konstrukce krychle
METODICKÝ LIST DA57 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Prostorová tělesa I. - krychle Astaloš Dušan Matematika šestý frontální,
BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie
UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 11. září 2006 verze 4.0 Předmluva
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě BRNO 2006 BLANKA MORÁVKOVÁ Prohlášení: Prohlašuji, že jsem diplomovou práci vypracovala
Topografické plochy KG - L MENDELU. KG - L (MENDELU) Topografické plochy 1 / 56
Topografické plochy KG - L MENDELU KG - L (MENDELU) Topografické plochy 1 / 56 Obsah 1 Úvod 2 Křivky a body na topografické ploše 3 Řez topografické plochy rovinou 4 Příčný a podélný profil KG - L (MENDELU)
5.1.4 Obrazy těles ve volném rovnoběžném promítání II
5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 5103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary
5.1.4 Obrazy těles ve volném rovnoběžném promítání II
5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 050103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary
Deskriptivní geometrie 1
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 22. září 2009 verze 3.0 Předmluva Tento pomocný
Mongeovo zobrazení. Vzájemná poloha dvou přímek
Mongeovo zobrazení Vzájemná poloha dvou přímek Dvě přímky a, b mohou být v prostoru: Dvě přímky a, b mohou být v prostoru: a) rovnoběžné totožné a = b Dvě přímky a, b mohou být v prostoru: a) rovnoběžné