MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem ( ) po dlouhou dobu bylo vojenským tajemstvím

Rozměr: px
Začít zobrazení ze stránky:

Download "MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím"

Transkript

1 část 1.

2 MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem ( ) po dlouhou dobu bylo vojenským tajemstvím

3 ZOBRAZENÍ BODU - sdružení průměten sdružení průměten π 1... půdorysna (první průmětna) π 2... nárysna (druhá průmětna) x... osa x (průsečnice průměten) A 1... první průmět bodu A A 2... druhý průmět bodu A Každý bod prostoru je jednoznačně dán svým prvním a druhým průmětem. Tyto průměty leží na kolmici na osu x, takové kolmici říkáme ordinála.

4 ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

5 ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

6 ZOBRAZENÍ PŘÍMKY p 1... půdorys přímky p p 2... nárys přímky p

7 ZOBRAZENÍ PŘÍMKY P... půdorysný stopník (průsečík přímky s π 1 ) N... nárysný stopník (průsečík přímky s π 2 ) P 1... půdorys půdorysného stopníku P 2... nárys půdorysného stopníku N 1... půdorys nárysného stopníku N 2... nárys nárysného stopníku

8 Příklad: Určete podle obrázků polohu přímky p vzhledem k průmětnám.

9 SKLOPENÍ PŘÍMKY - do půdorysny sklápíme první promítací rovinu přímky AB

10 SKLOPENÍ PŘÍMKY - do půdorysny sklápíme první promítací rovinu přímky AB

11 SKLOPENÍ PŘÍMKY - do půdorysny sklápíme první promítací rovinu přímky AB

12 SKLOPENÍ PŘÍMKY - do polohy rovnoběžné s půdorysnou

13 SKLOPENÍ PŘÍMKY - do polohy rovnoběžné s půdorysnou

14 SKLOPENÍ PŘÍMKY - do polohy rovnoběžné s půdorysnou

15 Obdobně funguje i sklápění do nárysny a do polohy rovnoběžné s nárysnou. Příklad: Určete odchylku přímky p (A, B) od nárysny.

16 Obdobně funguje i sklápění do nárysny a do polohy rovnoběžné s nárysnou. Příklad: Určete odchylku přímky p (A, B) od nárysny.

17 Obdobně funguje i sklápění do nárysny a do polohy rovnoběžné s nárysnou. Příklad: Určete odchylku přímky p (A, B) od nárysny.

18 vzájemná poloha dvou přímek rovnoběžky různoběžky mimoběžky

19 ZOBRAZENÍ ROVINY - stopy roviny

20 Příklad: Určete podle obrázků polohu roviny σ vzhledem k průmětnám.

21 ZOBRAZENÍ ROVINY - hlavní a spádové přímky první osnovy hlavní přímka 1 h ρ... přímka roviny ρ rovnoběžná s první průmětnou

22 ZOBRAZENÍ ROVINY - hlavní a spádové přímky první osnovy hlavní přímka 1 h ρ... přímka roviny ρ rovnoběžná s první průmětnou spádová přímka 1 s ρ... přímka roviny ρ kolmá na hlavní přímky první osnovy

23 ZOBRAZENÍ ROVINY - hlavní a spádové přímky druhé osnovy hlavní přímka 2 h ρ... přímka roviny ρ rovnoběžná s druhou průmětnou

24 ZOBRAZENÍ ROVINY - hlavní a spádové přímky druhé osnovy hlavní přímka 2 h ρ... přímka roviny ρ rovnoběžná s druhou průmětnou spádová přímka 2 s ρ... přímka roviny ρ kolmá na hlavní přímky druhé osnovy

25 Příklad: Je dán první průmět bodu A a stopy roviny ρ. Určete druhý průmět bodu A, jestliže bod A leží v rovině ρ.

26 Příklad: Je dán první průmět bodu A a stopy roviny ρ. Určete druhý průmět bodu A, jestliže bod A leží v rovině ρ.

27 Příklad: Je dán první průmět bodu A a stopy roviny ρ. Určete druhý průmět bodu A, jestliže bod A leží v rovině ρ.

28 Příklad: Určete stopy roviny ρ, která je zadána rovnoběžkami a, b.

29 Příklad: Určete stopy roviny ρ, která je zadána rovnoběžkami a, b.

30 Příklad: Určete stopy roviny ρ, která je zadána rovnoběžkami a, b.

31 Příklad: Určete stopy roviny ρ, která je zadána rovnoběžkami a, b.

32 Příklad: Určete stopy roviny ρ, která je zadána rovnoběžkami a, b.

33 průsečnice dvou rovin daných stopami

34 průsečnice dvou rovin

35 PRŮSEČÍK PŘÍMKY S ROVINOU - metoda krycí přímky

36 PRŮSEČÍK PŘÍMKY S ROVINOU - metoda krycí přímky krycí přímka r... průsečnice promítací roviny přímky p s rovinou ρ

37 PRŮSEČÍK PŘÍMKY S ROVINOU - metoda krycí přímky krycí přímka r... průsečnice promítací roviny přímky p s rovinou ρ

38 PRŮSEČÍK PŘÍMKY S ROVINOU - metoda krycí přímky krycí přímka r... průsečnice promítací roviny přímky p s rovinou ρ

39 Příklad: Určete průsečík přímky p s rovinou danou různoběžkami a, b.

40 Příklad: Určete průsečík přímky p s rovinou danou různoběžkami a, b.

41 Příklad: Určete průsečík přímky p s rovinou danou různoběžkami a, b.

42 Příklad: Určete průsečík přímky a s trojúhelníkem ABC

43 Příklad: Určete průsečík přímky a s trojúhelníkem ABC

44 Příklad: Určete průsečík přímky a s trojúhelníkem ABC

45 Příklad: Určete průsečík přímky a s trojúhelníkem ABC

46 Příklad: Určete průsečík přímky a s trojúhelníkem ABC

47 ZOBRAZENÍ KRUŽNICE kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa

48 ZOBRAZENÍ KRUŽNICE kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice se zobrazuje ve skutečné velikosti pouze na hlavních přímkách procházejících středem kružnice...v prvním průmětu na 1 h ρ 1, v druhém průmětu na 2 h ρ 2

49 ZOBRAZENÍ KRUŽNICE kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice se zobrazuje ve skutečné velikosti pouze na hlavních přímkách procházejících středem kružnice...v prvním průmětu na 1 h ρ 1, v druhém průmětu na 2 h ρ 2 koncové body průměrů zobrazených ve skutečné velikosti jsou hlavními vrcholy elips v jednotlivých průmětech, vedlejší vrcholy získáme proužkovou konstrukcí

50 ZOBRAZENÍ KRUŽNICE kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice se zobrazuje ve skutečné velikosti pouze na hlavních přímkách procházejících středem kružnice...v prvním průmětu na 1 h ρ 1, v druhém průmětu na 2 h ρ 2 koncové body průměrů zobrazených ve skutečné velikosti jsou hlavními vrcholy elips v jednotlivých průmětech, vedlejší vrcholy získáme proužkovou konstrukcí

51 ZOBRAZENÍ KRUŽNICE kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice se zobrazuje ve skutečné velikosti pouze na hlavních přímkách procházejících středem kružnice...v prvním průmětu na 1 h ρ 1, v druhém průmětu na 2 h ρ 2 koncové body průměrů zobrazených ve skutečné velikosti jsou hlavními vrcholy elips v jednotlivých průmětech, vedlejší vrcholy získáme proužkovou konstrukcí konstrukcí oskulačních kružnic získáme představu o tvaru elips a vykreslíme je

52 ZOBRAZENÍ TĚLES - s podstavou v půdorysně pravidelný kolmý čtyřboký jehlan šikmý válec

53 ZOBRAZENÍ TĚLES - s podstavou v nárysně rotační kužel šikmý trojboký hranol

54 PERSPEKTIVNÍ AFINITA malé odbočení - vztah mezi objekty promítnutými z jedné roviny do druhé roviny směrem, který není rovnoběžný ani s jednou z rovin o... osa afinity, s... směr afinity, A... vzor, A... obraz vlastnosti: odpovídající si body leží na rovnoběžkách se směrem s odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence, rovnoběžné přímky se zobrazí na rovnoběžné přímky, střed úsečky se zobrazí na střed úsečky

55 Příklady perspektivní afinity: - mezi dolní podstavou hranolu a řezem hranolu: osa afinity je průsečnice roviny dolní podstavy s rovinou řezu, směr afinity je rovnoběžný s bočními hranami - mezi rovinou a jejím otočeným obrazem: osa afinity je osa otáčení, směr afinity je určený libovolným bodem původní roviny a jeho otočeným obrazem

56 OSOVÁ AFINITA vzniká promítnutím perspektivní afinity do roviny (směr promítání musí být různoběžný od rovin ve kterých probíhala perspektivní afinita od původního směru promítání a od roviny do které promítáme) vlastnosti perspektivní afinity zůstávají zachovány afinita (perspektivní i osová) je daná osou o a párem odpovídajících si bodů AA, které určují směr afinity s AF = (o AF, A, A )

57 OSOVÁ AFINITA vzniká promítnutím perspektivní afinity do roviny (směr promítání musí být různoběžný od rovin ve kterých probíhala perspektivní afinita od původního směru promítání a od roviny do které promítáme) vlastnosti perspektivní afinity zůstávají zachovány afinita (perspektivní i osová) je daná osou o a párem odpovídajících si bodů AA, které určují směr afinity s AF = (o AF, A, A )

58 OSOVÁ AFINITA vzniká promítnutím perspektivní afinity do roviny (směr promítání musí být různoběžný od rovin ve kterých probíhala perspektivní afinita od původního směru promítání a od roviny do které promítáme) vlastnosti perspektivní afinity zůstávají zachovány afinita (perspektivní i osová) je daná osou o a párem odpovídajících si bodů AA, které určují směr afinity s AF = (o AF, A, A )

59 OSOVÁ AFINITA vzniká promítnutím perspektivní afinity do roviny (směr promítání musí být různoběžný od rovin ve kterých probíhala perspektivní afinita od původního směru promítání a od roviny do které promítáme) vlastnosti perspektivní afinity zůstávají zachovány afinita (perspektivní i osová) je daná osou o a párem odpovídajících si bodů AA, které určují směr afinity s AF = (o AF, A, A )

60 OSOVÁ AFINITA vzniká promítnutím perspektivní afinity do roviny (směr promítání musí být různoběžný od rovin ve kterých probíhala perspektivní afinita od původního směru promítání a od roviny do které promítáme) vlastnosti perspektivní afinity zůstávají zachovány afinita (perspektivní i osová) je daná osou o a párem odpovídajících si bodů AA, které určují směr afinity s AF = (o AF, A, A )

61 ŘEZY TĚLES - hranol postup řešení - řez hranolu rovinou: najdeme jeden bod řezu - průsečík jedné z bočních hran hranolu s rovinou řezu určíme osu afinity mezi řezem a dolní podstavou - průsečnice roviny řezu s rovinou dolní podstavy další body řezu na hranách určíme afinitou určíme viditelnost řezu

62 Poznámka: Tak jako je mezi řezem hranolu a jeho dolní podstavou vztah afinity, tak je mezi řezem jehlanu a jeho dolní podstavou vztah středové kolineace. STŘEDOVÁ KOLINEACE je daná osou o středem S a párem odpovídajících si bodů AA (které leží na přímce procházející středem) KOL = (S, o, A, A ), A... vzor, A... obraz vlastnosti: odpovídající si body leží na přímkách procházejících středem S odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence

63 Poznámka: Tak jako je mezi řezem hranolu a jeho dolní podstavou vztah afinity, tak je mezi řezem jehlanu a jeho dolní podstavou vztah středové kolineace. STŘEDOVÁ KOLINEACE je daná osou o středem S a párem odpovídajících si bodů AA (které leží na přímce procházející středem) KOL = (S, o, A, A ), A... vzor, A... obraz vlastnosti: odpovídající si body leží na přímkách procházejících středem S odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence

64 Poznámka: Tak jako je mezi řezem hranolu a jeho dolní podstavou vztah afinity, tak je mezi řezem jehlanu a jeho dolní podstavou vztah středové kolineace. STŘEDOVÁ KOLINEACE je daná osou o středem S a párem odpovídajících si bodů AA (které leží na přímce procházející středem) KOL = (S, o, A, A ), A... vzor, A... obraz vlastnosti: odpovídající si body leží na přímkách procházejících středem S odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence

65 Poznámka: Tak jako je mezi řezem hranolu a jeho dolní podstavou vztah afinity, tak je mezi řezem jehlanu a jeho dolní podstavou vztah středové kolineace. STŘEDOVÁ KOLINEACE je daná osou o středem S a párem odpovídajících si bodů AA (které leží na přímce procházející středem) KOL = (S, o, A, A ), A... vzor, A... obraz vlastnosti: odpovídající si body leží na přímkách procházejících středem S odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence

66 Poznámka: Tak jako je mezi řezem hranolu a jeho dolní podstavou vztah afinity, tak je mezi řezem jehlanu a jeho dolní podstavou vztah středové kolineace. STŘEDOVÁ KOLINEACE je daná osou o středem S a párem odpovídajících si bodů AA (které leží na přímce procházející středem) KOL = (S, o, A, A ), A... vzor, A... obraz vlastnosti: odpovídající si body leží na přímkách procházejících středem S odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence

67 ŘEZY TĚLES - jehlan postup řešení - řez jehlanu rovinou: najdeme jeden bod řezu - průsečík jedné z bočních hran jehlanu s rovinou řezu určíme osu kolineace mezi řezem a dolní podstavou - průsečnice roviny řezu s rovinou dolní podstavy další body řezu na hranách určíme kolineací určíme viditelnost řezu

68 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.

69 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.

70 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.

71 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.

72 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.

73 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.

74 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.

75 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.

76 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.

77 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.

78 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

79 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

80 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

81 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

82 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

83 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

84 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

85 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

86 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

87 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

88 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

89 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).

90 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez rovinou kolmou k jedné z průměten

91 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez rovinou kolmou k jedné z průměten

92 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez rovinou kolmou k jedné z průměten

93 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu

94 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu

95 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu

96 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu

97 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu

98 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu

Zobrazení a řezy těles v Mongeově promítání

Zobrazení a řezy těles v Mongeově promítání UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání

Více

Pravoúhlá axonometrie - osvětlení těles

Pravoúhlá axonometrie - osvětlení těles Pravoúhlá axonometrie - osvětlení těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles ZS 2008 1 / 39 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles

Více

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava

Více

Pravoúhlá axonometrie. tělesa

Pravoúhlá axonometrie. tělesa Pravoúhlá axonometrie tělesa V Rhinu vypneme osy mřížky (tj. červenou vodorovnou a zelenou svislou čáru). Tyto osy v axonometrii vůbec nevyužijeme a zbytečně by se nám zde pletly. Stejně tak můžeme vypnout

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

Deskriptivní geometrie

Deskriptivní geometrie Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké

Více

Deskriptivní geometrie

Deskriptivní geometrie Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké

Více

Mongeovo zobrazení. Konstrukce stop roviny

Mongeovo zobrazení. Konstrukce stop roviny Mongeovo zobrazení Konstrukce stop roviny Způsoby určení roviny Způsoby určení roviny při provádění konstrukcí v Mongeově zobrazení je výhodné pracovat s rovinami, které náme určeny pomocí stop; Způsoby

Více

Deskriptivní geometrie II.

Deskriptivní geometrie II. Střední průmyslová škola elektrotechnická a Vyšší odborná škola Pardubice, Karla IV. 13 Deskriptivní geometrie II. Ing. Rudolf Rožec Pardubice 2001 Skripta jsou určena pro předmět deskriptivní geometrie

Více

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY INTERAKTIVNÍ ÚLOHY MONGEOVA PROMÍTÁNÍ DIPLOMOVÁ PRÁCE Bc. Petra Konjatová Učitelství pro 2. stupeň ZŠ,

Více

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů 1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou

Více

Vybrané kapitoly z Mongeova promítání

Vybrané kapitoly z Mongeova promítání UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 2. ročník prezenční studium Obor: Učitelství matematiky Učitelství českého jazyka Vybrané kapitoly z Mongeova promítání

Více

Mongeova projekce - řezy hranatých těles

Mongeova projekce - řezy hranatých těles Mongeova projekce - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Mongeova projekce - řezy hranatých těles 1 / 73 Obsah 1 Zobrazení těles v základní poloze 2 Řez hranolu rovinou Osová afinita Sestrojení

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

Středoškolská odborná činnost 2005/2006

Středoškolská odborná činnost 2005/2006 Středoškolská odborná činnost 2005/2006 12. tvorba učebních pomůcek, didaktická technologie DESKRIPTIVNÍ GEOMETRIE Autoři: Martin Hlaváč, Michal Křen SPŠ, Kollárova 617, 686 01 Uherské Hradiště, 3. ročník

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Deskriptivní geometrie BA03

Deskriptivní geometrie BA03 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie BA03 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 Určeno pro studenty studijních

Více

Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L

Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů

Více

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

LINEÁRNÍ PERSPEKTIVA

LINEÁRNÍ PERSPEKTIVA LINEÁRNÍ PERSPEKTIVA Lineární perspektiva je významnou aplikací středového promítání. V technické praxi se používá především k zobrazování objektů větších rozměrů, napodobuje tak lidské vidění. Ze středu

Více

Témata profilové maturitní zkoušky z předmětu Stavební konstrukce

Témata profilové maturitní zkoušky z předmětu Stavební konstrukce ta profilové maturitní zkoušky z předmětu Stavební konstrukce 1. Dimenzování dřevěných trámů na ohyb 2. Dimenzování dřevěných sloupů 3. Dimenzování ocelových sloupů 4. Dimenzování ocelových válcovaných

Více

Sedlová plocha (hyperbolický paraboloid)

Sedlová plocha (hyperbolický paraboloid) Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického

Více

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

5.1.4 Obrazy těles ve volném rovnoběžném promítání II 5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 5103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Stereometrie

Více

6. Čtyřúhelníky, mnohoúhelníky, hranoly

6. Čtyřúhelníky, mnohoúhelníky, hranoly 6. Čtyřúhelníky, mnohoúhelníky, hranoly 7. ročník - 6. Čtyřúhelníky, mnohoúhelníky, hranoly 6.1. Základní pojmy 6.1.1. n úhelník n - úhelník pro n > 2 je geometrický obrazec, který má n vrcholů ( stran,

Více

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách.

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách. ŠROUBOVÉ PLOCHY 1. Základní úlohy na šroubových plochách. Šroubová plocha Φ vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý (pravotočivý je i

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

s touto válcovou plochou. Tento případ nebudeme dále uvažovat.

s touto válcovou plochou. Tento případ nebudeme dále uvažovat. Šroubové plochy Šroubová plocha Φ(k) vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý, resp. pravotočivý je i plocha Φ levotočivá, resp. pravotočivá.

Více

Mat2 - Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základních škol. Matematické semináře pro 9.

Mat2 - Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základních škol. Matematické semináře pro 9. škola: číslo projektu: název projektu: Základní škola Ivana Olbrachta, Semily CZ.1.07/1.4.00/21.0439 Inovace pro kvalitní výuku Název šablony: číslo šablony: 1 poř.č. označení oblast dle RVP okruh dle

Více

BA03 Deskriptivní geometrie

BA03 Deskriptivní geometrie BA03 Deskriptivní geometrie Mgr. Jan Šafařík přednášková skupina P-B1VS2 učebna Z240 letní semestr 2013-2014 Jan Šafařík: Úvod do předmětu deskriptivní geometrie Kontakt: Ústav matematiky a deskriptivní

Více

Středové promítání. Středové promítání E ~ ~ 3. dané průmětnou r a bodem S (S r) je zobrazení prostoru...

Středové promítání. Středové promítání E ~ ~ 3. dané průmětnou r a bodem S (S r) je zobrazení prostoru... Středové promítání Středové promítání dané průmětnou r a bodem S (S r) je zobrazení prostoru... E ~ 3 (bez S) na r takové, že obrazem bodu A je bod A =SA r. rozšířená euklidovská přímka E ~ 1 E1 U E ~

Více

5.1.2 Volné rovnoběžné promítání

5.1.2 Volné rovnoběžné promítání 5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty

Více

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie ZÁKLADY DG VE 4-ROZMĚRNÉM PROSTORU

Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie ZÁKLADY DG VE 4-ROZMĚRNÉM PROSTORU Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie ZÁKLADY DG VE -ROZMĚRNÉM PROSTORU Diplomová práce Vedoucí diplomové práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2007

Více

Smysl otáčení. Aplikace. Pravotočivá

Smysl otáčení. Aplikace. Pravotočivá Šroubovice Definice Šroubovice je křivka generovaná bodem A, který se otáčí kolem dané přímky o a zároveň se posouvá podél této přímky, oboje rovnoměrnou rychlostí. Pohyb bodu A šroubový pohyb Přímka o

Více

Zrcadlení v lineární perspektivě

Zrcadlení v lineární perspektivě Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Zrcadlení v lineární perspektivě Vypracoval: Lukáš Rehberger Třída: 8. M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji,

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

Kuželosečky. Copyright c 2006 Helena Říhová

Kuželosečky. Copyright c 2006 Helena Říhová Kuželosečk Copright c 2006 Helena Říhová Obsah 1 Kuželosečk 3 1.1 Kružnice... 3 1.1.1 Tečnakekružnici..... 3 1.2 lipsa.... 4 1.2.1 Rovniceelips...... 5 1.2.2 Tečnakelipse... 7 1.2.3 Konstrukceelips.....

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ..07/.5.00/4.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Vypracoval: Adam Protivanský Třída: 8.M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlášení Prohlašuji,

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

2.1 Zobrazování prostoru do roviny

2.1 Zobrazování prostoru do roviny 43 2.1 Zobrazování prostoru do roviny br. 1 o x 1,2 V běžném životě se často setkáváme s instruktážními obrázky, technickými výkresy, mapami i uměleckými obrazy. Většinou jde o zobrazení prostorových útvarů

Více

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch.

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch. TEORETICKÉ ŘEŠENÍ STŘECH TEORETICKÉ ŘEŠENÍ STŘECH Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o tzv. střešních rovinách. Velké stavby se často zastřešují pomocí

Více

Ročníková práce Konstrukce kuželosečky zadané pěti body

Ročníková práce Konstrukce kuželosečky zadané pěti body Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Konstrukce kuželosečky zadané pěti body Jakub Borovanský 4. C 2011/2012 Zadavatel: Mgr. Ondřej Machů Přísahám, že jsem zadanou ročníkovou

Více

Sbírka příkladů z m a t e m a t i k y. Příprava k profilové části maturitní zkoušky

Sbírka příkladů z m a t e m a t i k y. Příprava k profilové části maturitní zkoušky Sbírka příkladů z m a t e m a t i k y Příprava k profilové části maturitní zkoušky školní rok 0/0 . Algebraické výrazy ) Rozložte na součin: a) d) n n a a b + b b c) a + a a b b b n n e) a 0a f) b + 5b

Více

7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC

7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC Stereometrie 1/ Je dána krychle ABCDEFGH. Uveďte všechny přímky, které procházejí bodem E a dalším vrcholem krychle a jsou s přímkou BC a) rovnoběžné b) různoběžné c) mimoběžné / Je dána krychle ABCDEFGH.

Více

5.1.3 Obrazy těles ve volném rovnoběžném promítání I

5.1.3 Obrazy těles ve volném rovnoběžném promítání I 5.1.3 Obrazy těles ve volném rovnoběžném promítání I Předpoklady: 5102 Pedagogická poznámka: K obrazům těles ve volném rovnoběžném promítání je možné přistoupit dvěma způsoby: Látku v podstatě přeskočit

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Opakování k maturitě matematika 4. roč. TAD 2 <

Opakování k maturitě matematika 4. roč. TAD 2 < 8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární

Více

Fotogrammetrie. Rekonstrukce svislého snímku

Fotogrammetrie. Rekonstrukce svislého snímku Fotogrammetrie Rekonstrukce svisléo snímku Zaání: prove te úplnou rekonstrukci svisléo snímku anéo objektu, je-li známo, že vstupní část má čtvercový půorys o élce strany s = 2. pro větší přelenost nejprve

Více

3. Středoškolská stereometrie v anaglyfech

3. Středoškolská stereometrie v anaglyfech 3. Středoškolská stereometrie v anaglyfech V předchozích dvou kapitolách jsme zjistili, jak se zobrazují tělesa ve středovém promítání a hlavně v lineární perspektivě, a jak pomocí těchto promítání vytvořit

Více

pro obor Geodézie a kartografie

pro obor Geodézie a kartografie Vysoké učení technické v Brně Fakulta stavební pro obor Geodézie a kartografie BRNO 2006 Tento studijní materiál byl zpracován v rámci projektu Multimediální podpora studia matematiky a deskriptivní geometrie

Více

TECHNICKÉ OSVĚTLENÍ. Jan Šafařík

TECHNICKÉ OSVĚTLENÍ. Jan Šafařík Vysoké učení technické Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE TECHNICKÉ OSVĚTLENÍ Jan Šafařík BRNO 2006 Tento studijní materiál byl zpracován v rámci projektu Multimediální podpora

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ PRAVIDLA PRO KÓTOVÁNÍ SOUČÁSTÍ

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Tematický plán pro školní rok 2015/2016 Předmět: Matematika Vyučující: Mgr. Jitka Vlčková Týdenní dotace hodin: 5 hodin Ročník: čtvrtý

Tematický plán pro školní rok 2015/2016 Předmět: Matematika Vyučující: Mgr. Jitka Vlčková Týdenní dotace hodin: 5 hodin Ročník: čtvrtý ČASOVÉ OBDOBÍ Září KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA porovnává přirozená čísla v oboru do zaokrouhluje čísla na desítky a stovky provádí zpaměti jednoduché početní operace řeší a tvoří

Více

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM. STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Osvětlení sada - 1. bod A =[4,3,0]. b) Sestrojte vržený stín okna na π=(x,y), je-li A stínem bodu A=[0,11,6] na π.

Osvětlení sada - 1. bod A =[4,3,0]. b) Sestrojte vržený stín okna na π=(x,y), je-li A stínem bodu A=[0,11,6] na π. Osvětlení sada - 1 Osvětlení okna a vrat - zadání úloh 1-6 1. KP (ω=150 o, q=3/4) A4 na šířku O(14,9) a) V rovině y=11 sestrojte okno složené z 8 čtverců a půlkruhu (viz náčrtek na obr. 1) a bod A =[6,-8,0].

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Jan Helm. Topografické plochy. Katedra didaktiky matematiky

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Jan Helm. Topografické plochy. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Jan Helm Topografické plochy Katedra didaktiky matematiky Vedoucí bakalářské práce: RNDr. Jana Hromadová, Ph.D. Studijní program:

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_TD.21.1 Autor Petr Škapa Datum vytvoření 01.09.2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu Anotace (metodický

Více

ZÁKLADY TECHNICKÉHO ZOBRAZOVÁNÍ PRŮVODNÍ TEXTY PRO PRÁCI SE STAVEBNICÍ

ZÁKLADY TECHNICKÉHO ZOBRAZOVÁNÍ PRŮVODNÍ TEXTY PRO PRÁCI SE STAVEBNICÍ Základní škola Jakuba Jana Ryby Roţmitál pod Třemšínem Efektivní výuka pro rozvoj potenciálu ţáka projekt v rámci Operačního programu VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST ZÁKLADY TECHNICKÉHO ZOBRAZOVÁNÍ

Více

ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva

ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Vypracoval: Zdeněk Ovečka Třída: 4. C Školní rok: 2011/2012 Seminář: Deskriptivní geometrie Prohlášení Prohlašuji,

Více

11 Zobrazování objektů 3D grafiky

11 Zobrazování objektů 3D grafiky 11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Katedra elektrických strojů a přístrojů KAT 453 TECHNICKÁ DOKUMENTACE (přednášky pro hodiny cvičení) Zobrazování Petr Šňupárek, Martin Marek 1 Co je

Více

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Yulianna Tolkunova. Geometrie stínu. Katedra didaktiky matematiky

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Yulianna Tolkunova. Geometrie stínu. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Yulianna Tolkunova Geometrie stínu Katedra didaktiky matematiky Vedoucí bakalářské práce: RNDr. Petra Surynková, Ph.D. Studijní

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

BA03 Deskriptivní geometrie pro kombinované studium

BA03 Deskriptivní geometrie pro kombinované studium BA03 Deskriptivní geometrie pro kombinované studium RNDr. Jana Slaběňáková Mgr. Jan Šafařík přednášková skupina P-BK1VS1 učebna D185 letní semestr 2014-2015 Kontakt: Deskriptivní geometrie pro kombinované

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Aplikace lineární perspektivy

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Aplikace lineární perspektivy Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Aplikace lineární perspektivy Vypracoval: Jiří Koucký Třída: 8. M Školní rok: 2014/2015 Seminář: Deskriptivní geometrie Prohlašuji,

Více

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky Časopis pro pěstování mathematiky a fysiky Bedřich Procházka Příspěvek k fotogrammetrii Časopis pro pěstování mathematiky a fysiky, Vol. 27 (1898), No. 5, 312--317 Persistent URL: http://dml.cz/dmlcz/108945

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 1 Kontrukční úlohy Výsledkem tzv.

Více

Pravoúhlá axonometrie - řezy hranatých těles

Pravoúhlá axonometrie - řezy hranatých těles Pravoúhlá axonometrie - řezy hranatých těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS 2008 1 / 41 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při

Více

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity Číslo projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast ZÁSADY TVORBY VÝKRESŮ POZEMNÍCH STAVEB I. Autor :

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

CZ.1.07/1.5.00/34.0527

CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

8. Stereometrie 1 bod

8. Stereometrie 1 bod 8. Stereometrie 1 bod 8.1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) : π e) 4 : π. 8.. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Kreslení obrazů součástí Zobrazování geometrických těles. Zobrazení kvádru

Kreslení obrazů součástí Zobrazování geometrických těles. Zobrazení kvádru Kreslení obrazů součástí Zobrazování geometrických těles Zobrazení kvádru Kreslení obrazů součástí Zobrazování geometrických těles Zobrazení jehlanu s čtvercovou podstavou Kreslení obrazů součástí Zobrazování

Více

ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI

ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI Pravoúhlé rovnoběžné promítání na několik vzájemně kolmých průměten Použití pomocné průmětny Čistě ploché předměty Souměrné součásti Čistě rotační součásti

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

ŠVP Gymnázium Ostrava-Zábřeh. 4.8.19. Úvod do deskriptivní geometrie

ŠVP Gymnázium Ostrava-Zábřeh. 4.8.19. Úvod do deskriptivní geometrie 4.8.19. Úvod do deskriptivní geometrie Vyučovací předmět Úvod do deskriptivní geometrie je na naší škole nabízen v rámci volitelných předmětů v sextě, septimě nebo v oktávě jako jednoletý dvouhodinový

Více

Plochy stavebně-inženýrské praxe

Plochy stavebně-inženýrské praxe Plochy stavebně-inženýrské praxe 2. Rotační plochy In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 8 31. Persistent

Více

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky STEREOMETRIE, TĚLESA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce:

OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: OSOVÁ SOUMĚRNOST Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: EVOKACE Metoda: volné psaní Každý žák obdrží obrázek zámku Červená Lhota. Obrázek je také možné promítnout na interaktivní

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Vypracoval: Barbora Mrázová Třída: 8.M Školní rok: 2014/2015 Seminář: Deskriptivní geometrie Zadavatel:

Více

Povrch a objem těles

Povrch a objem těles Povrch a objem těles ) Kvádr: a.b.c S =.(ab+bc+ac) ) Krychle: a S = 6.a ) Válec: π r.v S = π r.(r+v) Obecně: S podstavy. výška S =. S podstavy + S pláště Vypočtěte objem a povrch kvádru, jehož tělesová

Více