Středové promítání. Středové promítání E ~ ~ 3. dané průmětnou r a bodem S (S r) je zobrazení prostoru...

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Středové promítání. Středové promítání E ~ ~ 3. dané průmětnou r a bodem S (S r) je zobrazení prostoru..."

Transkript

1 Středové promítání Středové promítání dané průmětnou r a bodem S (S r) je zobrazení prostoru... E ~ 3 (bez S) na r takové, že obrazem bodu A je bod A =SA r. rozšířená euklidovská přímka E ~ 1 E1 U E ~ 3 vlastní body + nevlastní elementy C R stopník přímky p C' U U ' úběžník přímky p 1

2 Realizace středového promítání bodové osvětlení (S je zdroj světla, r je rovina se stínem) geometrický model lidského vidění jedním okem (S je střed oka, r je sítnice) Realizace středového promítání fotografie pořízená standardním fotoaparátem (S je objektiv, r je film) 2

3 Základní vlastnosti středového promítání 1) Průmětem bodu je bod. Průmět nevlastního bodu se nazývá úběžník ( U U ). 2) Průmětem přímky je přímka. Průmět úsečky nemusí být úsečka. 3) Poměr vzdáleností se promítáním nezachovává, tj. průmětem středu úsečky není střed jejího průmětu. Základní vlastnosti středového promítání 4) Průmět přímky p r je přímka p, p p. Poměry délek na p se promítáním zachovávají. 5) Průmět dvojice rovnoběžných přímek, které neprochází S a nejsou r, je dvojice různoběžek se společným úběžníkem. a b SU ' 3

4 Lineární perspektiva je středové promítání, pro které platí: střed promítání a zobrazovaný objekt jsou odděleny průmětnou zobrazovaný objekt spojujeme s vhodnou horizontální rovinou - základní rovina p Sr =d (distance) volíme tak, aby průmět objektu nebyl příliš mnoho zkreslený a zároveň tak, aby se neblížil průmětu sestrojenému v rovnoběžném promítání r d 3r Lineární perspektiva 4

5 Prostorové určení: Střed S Perspektivní průmětna ρ Základní rovina π Základní pojmy a zadání perspektivy Určení v průmětu = zadání perspektivy: Distance d Výška horizontu v H nebo Z Značení: horizont h obzorová rovina σ hlavní bod H základnice z základní rovina π základní bod Z distance d= SH výška horizontu v= HZ dolní distančník D d, HD d =d Perspektiva důležitých přímek 1) Přímky kolmé na základní rovinu (výšky objektů) -> Přímky kolmé na horizont h. 5

6 Perspektiva důležitých přímek 2) Přímky kolmé na průmětnu (hloubkové přímky k) -> Hlavní bod H je úběžník hloubkových přímek. Perspektiva důležitých přímek 3) Přímky rovnoběžné se základní rovinou a nerovnoběžné s průmětnou (hrany p objektů) -> Úběžník přímky leží na horizontu h. 6

7 1) Podle polohy zobrazovaného objektu vzhledem k průmětně: Klasifikace lineární perspektivy Jednoúběžníková (průčelná) jedna stěna objektu je rovnoběžná s průmětnou: interiery, letecké snímky, snímky z výšky, příklad fotografie s osou fotoaparátu vodorovnou, kolmou k průčelné rovině objektu. Jednoúběžníková perspektiva Tři typy přímek: Vodorovné a svislé přímky a přímky vyjadřující hloubku obrazu (pokoje) - v prostoru kolmé na průmětnu. 7

8 Klasifikace lineární perspektivy Dvojúběžníková (nárožní) jedna vertikální hrana objektu je rovnoběžná s průmětnou: většina standardních fotografií, u kterých jsou svislé přímky rovnoběžné, tj. osa fotoaparátu vodorovná, a není to průčelný snímek. Klasifikace lineární perspektivy Trojúběžníková (perspektivní axonometrie) žádná z hlavních hran objektu není rovnoběžná s průmětnou: efektní snímky architektur, věží, fotografie, při které je osa fotoaparátu šikmá. 8

9 Klasifikace lineární perspektivy Ptačí perspektiva je zobrazení z vysokého nadhledu, které umožňuje zobrazovat i to, co u jiných perspektiv není vidět - např. střechy budov,koruny stromů atd. Využívá se zejména v architektuře. 2) Podle vzájemné polohy pozorovatele a zobrazovaného objektu: Žabí perspektiva vychází naopak z extrémního podhledu (z nízko položené horizontální linie). Využívá se pro zobrazení průčelí, fasád, případně detailů. Dvojúběžníková perspektiva 9

10 Konstrukce objektu Z[9,10] ČE-KO: SKR s.78: d=15, v=9 D: Perspektiva (d,v,h), objekt a průmětna r Postup: 0) Zadání perspektivy v r 1) Půdorys otočený do průmětny 2) Úběžníky horizontálních směrů 3) Perspektiva půdorysu 4) Vynesení výšek A 1 Konstrukce objektu 3) Perspektiva půdorysu 10

11 Konstrukce objektu 3) Perspektiva půdorysu Postup: 1) Půdorys otočený do průmětny 2) Úběžníky horizontálních směrů 3) Perspektiva půdorysu 4) Vynesení výšek Konstrukce objektu Př. ČE-KO: PŘ s.80: Určete výšku bodu A nad základní rovinou. Sestrojte bod B, je-li jeho výška nad základní rovinou 2. 11

12 Křivky Univerzální metody 1) Bodově 2) Pokrytí pravoúhlou sítí (čtverce, obdélníky) rovnoměrné dělení rovnoměrné dělení nerovnoměrné dělení nerovnoměrné dělení 12

13 Křivky užití sítě Př. ČE-KO: PŘ s.87: P 4 Sestrojte zadaný kvádr a na jeho přední stěnu umístěte souměrně nápis KUK. Redukce dolního distančníku 13

14 Křivky užití sítě Př.Předloha: Sestrojte křivku ležící ve vodorovné rovině zadanou otočeným půdorysem. Čtvercová síť jedna strana rovnoběžná s průmětnou Úběžník úhlopříček je levý distančník D, HD =d, a pravý distančník D, HD =d. 14

15 Křivky užití sítě Př.Předloha: Sestrojte křivku ležící ve vodorovné rovině zadanou otočeným půdorysem. 15

16 Dlaždice Julian Beveer 16

17 "Perspective is the rein and rudder of painting" Leonardo da Vinci Klanění tří králů - studie 17

18 Příště: Fotogrammetrie ČE-KO: PŘ s.: 91, 92 18

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L

Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Katedra elektrických strojů a přístrojů KAT 453 TECHNICKÁ DOKUMENTACE (přednášky pro hodiny cvičení) Zobrazování Petr Šňupárek, Martin Marek 1 Co je

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Mongeovo zobrazení. Konstrukce stop roviny

Mongeovo zobrazení. Konstrukce stop roviny Mongeovo zobrazení Konstrukce stop roviny Způsoby určení roviny Způsoby určení roviny při provádění konstrukcí v Mongeově zobrazení je výhodné pracovat s rovinami, které náme určeny pomocí stop; Způsoby

Více

Tvorba technická dokumentace

Tvorba technická dokumentace Tvorba technická dokumentace Základy zobrazování na technických výkresech Zobrazování na technických výkresech se provádí dle normy ČSN 01 3121. Promítací metoda - je soubor pravidel, pro dvourozměrné

Více

Zobrazení a řezy těles v Mongeově promítání

Zobrazení a řezy těles v Mongeově promítání UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI

ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI Pravoúhlé rovnoběžné promítání na několik vzájemně kolmých průměten Použití pomocné průmětny Čistě ploché předměty Souměrné součásti Čistě rotační součásti

Více

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity Číslo projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast ZÁSADY TVORBY VÝKRESŮ POZEMNÍCH STAVEB I. Autor :

Více

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ Abstrakt Příspěvek se zabývá historií výuky deskriptivní geometrie na Vysokém učení technickém.

Více

Poznámka: Tento materiál je součástí tematického balíčku Světlo v prostoru pro 2. ročník čtyřletých maturitních výtvarných oborů

Poznámka: Tento materiál je součástí tematického balíčku Světlo v prostoru pro 2. ročník čtyřletých maturitních výtvarných oborů Datum: 12. 5. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_523 Škola: Akademie VOŠ, Gymn. a SOŠUP Světlá nad Sázavou

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ NORMY A TECHNICKÉ ZOBRAZOVÁNÍ

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Perspektiva v obrazech

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Perspektiva v obrazech Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Perspektiva v obrazech Vypracovala: Tamara Salajová Třída: 8.M Školní rok: 2013/2014 Seminář : Deskriptivní geometrie Prohlašuji, že

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

vést žáky k pečlivému vypracování výkresu vést je k organizaci a plánování práce vést žáky k používání vhodných rýsovacích potřeb

vést žáky k pečlivému vypracování výkresu vést je k organizaci a plánování práce vést žáky k používání vhodných rýsovacích potřeb Vyučovací předmět: TECHNICKÉ KRESLENÍ A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Předmět Technické kreslení má žákům umožnit zvládnout základy technického

Více

Deskriptivní geometrie II.

Deskriptivní geometrie II. Střední průmyslová škola elektrotechnická a Vyšší odborná škola Pardubice, Karla IV. 13 Deskriptivní geometrie II. Ing. Rudolf Rožec Pardubice 2001 Skripta jsou určena pro předmět deskriptivní geometrie

Více

OBR. 5: AMBROGIO DI BONDONE (GIOTTO), Vyhnání ďáblů z Areza

OBR. 5: AMBROGIO DI BONDONE (GIOTTO), Vyhnání ďáblů z Areza Renesance Malíři objevují nebo znovuobjevují realistickou malbu, která není již tak svázaná náboženskou symbolikou a jejími kánony. Samozřejmě, že náboženská tematika je stále hlavním námětem, ale je zpracována

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

SEZNÁMENÍ S PROGRAMEM ARCHICAD

SEZNÁMENÍ S PROGRAMEM ARCHICAD ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Technická fakulta SEZNÁMENÍ S PROGRAMEM ARCHICAD Tuturiál pro začátečníky Konstruování s podporou počítačů Martin Branda červenec/srpen 2011 IŘT KS SEZNAMTE SE ARCHICAD!

Více

GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ

GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ V příspěvku pojednáváme o použití počítačového modelování ve výuce geometrie. Naším cílem je zvýšit zájem o studium geometrie na všech

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

SolidWorks. Otevření skici. Mřížka. Režimy skicování. Režim klik-klik. Režim klik-táhnout. Skica

SolidWorks. Otevření skici. Mřížka. Režimy skicování. Režim klik-klik. Režim klik-táhnout. Skica SolidWorks Skica je základ pro vytvoření 3D modelu její složitost má umožňovat tvorbu dílu bez problémů díl vytvoříte jen z uzavřené skici s přesně napojenými entitami bez zdvojení Otevření skici vyberte

Více

TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ V Úžlabině 320, Praha 10 Sbírka úloh z technického kreslení pracovní listy I. Praha 2011 Ing. Gabriela Uhlíková Sbírka úloh z technického kreslení Tato sbírka

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Zrak II. - Slepá skvrna, zrakové iluze a klamy

Zrak II. - Slepá skvrna, zrakové iluze a klamy I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Pracovní list č. 18 Zrak II. - Slepá skvrna, zrakové

Více

STŘEDNÍ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ HORŠOVSKÝ TÝN ALLPLAN. verze 2005 CAD SYSTÉM PRO OBOR POZEMNÍ STAVITELSTVÍ VELIKOST VÝKRESŮ, SKLÁDÁNÍ

STŘEDNÍ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ HORŠOVSKÝ TÝN ALLPLAN. verze 2005 CAD SYSTÉM PRO OBOR POZEMNÍ STAVITELSTVÍ VELIKOST VÝKRESŮ, SKLÁDÁNÍ STŘEDNÍ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ HORŠOVSKÝ TÝN ALLPLAN verze 005 CAD SYSTÉM PRO OBOR POZEMNÍ STAVITELSTVÍ VELIKOST VÝKRESŮ, SKLÁDÁNÍ ŠKOLNÍ ROK 005/006 SOŠ a SOU H. Týn, Ing. Bohumil Veit Zobrazování

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami.

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami. Paprsková optika Zobrazení zrcadl a čočkami zobrazování optickými soustavami tvořené zrcadl a čočkami obecné označení: objekt, který zobrazujeme, nazýváme předmět cílem je nalézt jeho obraz vzdálenost

Více

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy

Více

BA03 Deskriptivní geometrie pro kombinované studium

BA03 Deskriptivní geometrie pro kombinované studium BA03 Deskriptivní geometrie pro kombinované studium RNDr. Jana Slaběňáková Mgr. Jan Šafařík přednášková skupina P-BK1VS1 učebna D185 letní semestr 2014-2015 Kontakt: Deskriptivní geometrie pro kombinované

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

1.1 Oslunění vnitřního prostoru

1.1 Oslunění vnitřního prostoru 1.1 Oslunění vnitřního prostoru Úloha 1.1.1 Zadání V rodném městě X slavného fyzika Y má být zřízeno muzeum, připomínající jeho dílo. Na určeném místě v galerii bude umístěna deska s jeho obrazem. V den

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Vývoj lineární perspektivy ve výtvarném umění

Vývoj lineární perspektivy ve výtvarném umění Vývoj lineární perspektivy ve výtvarném umění Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Výtvarné umění malířství, sochařství a architektura Lineární perspektiva

Více

TECHNICKÉ KRESLENÍ. Technické normy. Popisové pole. Zobrazování na technických výkresech

TECHNICKÉ KRESLENÍ. Technické normy. Popisové pole. Zobrazování na technických výkresech Technické normy Formáty výkresů Úprava výkresových listů Popisové pole Skládání výkresů TECHNICKÉ KRESLENÍ Čáry na technických výkresech Technické písmo Zobrazování na technických výkresech Kótování Technické

Více

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Připravil: David Procházka. Projekce

Připravil: David Procházka. Projekce 15. října 2013, Brno Připravil: David Procházka Projekce Počítačová grafika 2 Projekce Strana 2 / 38 Obsah přednášky 1 Projekce 2 Ortografická projekce 3 Perspektivní projekce 4 Nastavení pohledové matice

Více

ZOBRAZOVÁNÍ V ŘEZECH A PRŮŘEZECH

ZOBRAZOVÁNÍ V ŘEZECH A PRŮŘEZECH ZOBRAZOVÁNÍ V ŘEZECH Základní pravidla Označení řezné roviny a obrazu řezu Šrafování ploch řezu Vyznačení úzkých ploch řezu Podélný a příčný řez Části a součásti, které se nešrafují v podélném řezu Poloviční

Více

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch.

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch. TEORETICKÉ ŘEŠENÍ STŘECH TEORETICKÉ ŘEŠENÍ STŘECH Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o tzv. střešních rovinách. Velké stavby se často zastřešují pomocí

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

n =, kde n je počet podlaží. ψ 0 je redukční

n =, kde n je počet podlaží. ψ 0 je redukční Užitné zatížení Činnost lidí Je nahrazeno plošným a bodovým zatížením. Referenční hodnota 1 rok s pravděpodobností překročení 0,98 Zatížení stropů Velikost zatížení je dána v závislosti na druhu stavby

Více

-Zobrazí čísla a nulu na číselné ose

-Zobrazí čísla a nulu na číselné ose Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel

Více

Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy

Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 6. Žák: čte, zapisuje a porovnává přirozená čísla provádí početní operace s přirozenými čísly zpaměti a písemně provádí

Více

GIMP ZÁKLADNÍ ÚPRAVY

GIMP ZÁKLADNÍ ÚPRAVY Cíle lekce Změna velikosti obrázku GIMP ZÁKLADNÍ ÚPRAVY Použití transformací na celý obrázekzákladní úpravy obrázku Změna velikosti obrázku Změna velikosti obrázku je základní dovednost při práci s grafickým

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová Tematický plán učiva Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová 1. Používá čtení a psaní v číselném oboru 0 1 000 000. 2. Rozumí lineárnímu uspořádání

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE + MP vazby 1. Obor přirozených čísel - používá čísla v oboru 0-20 k modelování reálných situací.- práce s manipulativy - počítá předměty v oboru 0-20, vytváří soubory

Více

Grafická a multimediální laboratoř KOMPOZICE 2B.

Grafická a multimediální laboratoř KOMPOZICE 2B. KOMPOZICE 2B. DALŠÍ ZÁSADY ŘEŠENÍ KOMPOZICE Grafická a multimediální laboratoř šikmé linie a diagonála efektní je esovitá křivka přes diagonálu dává pocit prostoru, hloubky a rytmu neměla by úplně opustit

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

OBSAH 1 ÚVOD... 7. 1.1 Úloha, význam a obsah předmětu... 7 1.2 Pomůcky pro kreslení... 7 1.3 Technika kreslení... 9 2 ZÁSADY KRESLENÍ...

OBSAH 1 ÚVOD... 7. 1.1 Úloha, význam a obsah předmětu... 7 1.2 Pomůcky pro kreslení... 7 1.3 Technika kreslení... 9 2 ZÁSADY KRESLENÍ... Obsah 5 OBSAH 1 ÚVOD.................................... 7 1.1 Úloha, význam a obsah předmětu.............. 7 1.2 Pomůcky pro kreslení........................ 7 1.3 Technika kreslení...........................

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 3. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace čte, zapisuje a porovnává přirozená čísla do 1000, užívá a zapisuje vztah rovnosti a

Více

OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce:

OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: OSOVÁ SOUMĚRNOST Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: EVOKACE Metoda: volné psaní Každý žák obdrží obrázek zámku Červená Lhota. Obrázek je také možné promítnout na interaktivní

Více

MAPY NAŽIVO PRO VÁŠ GIS PALIVO

MAPY NAŽIVO PRO VÁŠ GIS PALIVO MAPY NAŽIVO PRO VÁŠ GIS PALIVO MICHAL SÝKORA TOPGIS, S.R.O. 4.6.2015 1 PROGRAM PREZENTACE Seznam.cz TopGis, s.r.o. O společných mapách O přístupu k mapám Nástroje pro práci s Mapy.cz GisOnline - GisManager

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Matematika 1.ročník str. učivo -témata číslo a početní operace geometrie Závislosti, vztahy a práce s daty

Matematika 1.ročník str. učivo -témata číslo a početní operace geometrie Závislosti, vztahy a práce s daty Matematika 1.ročník str. učivo -témata číslo a početní operace geometrie Závislosti, vztahy a práce s daty přirozená čísla 1 až 5 správně čte daná čísla vyhledává je na číselné ose řadí čísla lineárně

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šablony Mendelova střední škola, Nový Jičín NÁZEV MATERIÁLU: Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Autor: Mgr. Břetislav Macek Rok vydání: 2014

Více

Planimetrie úvod, základní pojmy (teorie)

Planimetrie úvod, základní pojmy (teorie) Planimetrie úvod, základní pojmy (teorie) Geometrie (původně zeměměřictví) nyní část matematiky, zabývající se studiem geometrických objektů Planimetrie rovinná geometrie Stereometrie prostorová geometrie

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

VÝUKA DESKRIPTIVNÍ GEOMETRIE NA PŘELOMU 19. A 20. STOLETÍ

VÝUKA DESKRIPTIVNÍ GEOMETRIE NA PŘELOMU 19. A 20. STOLETÍ VÝUKA DESKRIPTIVNÍ GEOMETRIE NA PŘELOMU 19. A 20. STOLETÍ Lucie Zrůstová 1. Výuka na reálných školách a reálných gymnáziích První reálná škola v Rakousku - Uhersku byla založena roku 1770 jako reálná obchodní

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

Lineární pole Rotační pole

Lineární pole Rotační pole Lineární pole Rotační pole Projekt SIPVZ 2006 3D Modelování v SolidWorks Autor: ing. Laďka Krejčí 2 Obsah úlohy Vytvoření základu těla Vytvoření skici (přímka) Zakótování skici Zaoblení skici Vytvoření

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

Studie Rekonstrukce kina Bc. Petr Kvasnička 2009. STUDIE Rekonstrukce Konstantinovy Lázně bývalé kino Bratrská jednota baptistů ČÁST 3 (26.2.

Studie Rekonstrukce kina Bc. Petr Kvasnička 2009. STUDIE Rekonstrukce Konstantinovy Lázně bývalé kino Bratrská jednota baptistů ČÁST 3 (26.2. STUDIE Rekonstrukce Konstantinovy Lázně bývalé kino Bratrská jednota baptistů ČÁST 3 (26.2.2009) Obsah: 1 Varianta S1u 1.1 Schéma 1.2 Hlavní změny 2 Popis řešení 2.1 Hlavní vstup 2.2 Přístup do bytu (zádveří)

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

6.5 Matematika 1.stupeň

6.5 Matematika 1.stupeň VZDĚLÁVACÍ OBLAST : VZDĚLÁVACÍ OBOR: VYUČOVACÍ PŘEDMĚT: Matematika a její aplikace Matematika 6.5 Matematika 1.stupeň CHARAKTERISTIKA PŘEDMĚTU: Vyučovací předmět matematika je předmět, který poskytuje

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro

Více