Teoretický úvod: MINERÁLNÍ VÝŽIVA. Praktikum fyziologie rostlin. MINERÁLNÍ VÝŽIVA - teoretický úvod 1

Rozměr: px
Začít zobrazení ze stránky:

Download "Teoretický úvod: MINERÁLNÍ VÝŽIVA. Praktikum fyziologie rostlin. MINERÁLNÍ VÝŽIVA - teoretický úvod 1"

Transkript

1 Teoretický úvod: MINERÁLNÍ VÝŽIVA Praktikum fyziologie rostlin MINERÁLNÍ VÝŽIVA - teoretický úvod 1

2 Teoretický úvod: MINERÁLNÍ VÝŽIVA Vedle prvků, které tvoří organické látky C, H a O funkční struktury rostlin obsahují řadu dalších prvků, které se v přírodě vyskytují především ve sloučeninách anorganických (nerostných, minerálních). Termín minerální výživa zahrnuje příjem nezbytných anorganických prvků do rostliny, jejich transport na funkční místo a vestavění do struktur nebo vstup do metabolických pochodů. Dle množství v sušině rostliny jsou tyto esenciální (nezbytné, nezastupitelné, nenahraditelné) anorganické prvky označovány jako makro- nebo mikroelementy. Makroelementy - N, P, K, Ca, Mg, S jsou v 1 kg sušiny obsaženy v množství větším než mg (1 g) Mikroelementy - Fe, Mn, Zn, Cu, Cl, B, Mo jsou v 1 kg sušiny zastoupeny v množství menším než 100 mg (0,1 g). Nedostatek esenciálních minerálních látek působí zpomalení až zastavení růstu, poruchy vývoje, často se projeví specifickými změnami tvaru nebo barvy, zasycháním a nekrózami pletiv. Projevy deficience (deficienční syndrom) jsou pro jednotlivé prvky charakteristické, různé rostliny jsou však k nedostatku jednotlivých prvků různě citlivé. Nedostatek kteréhokoli z esenciálních prvků je pro existenci rostliny limitující. Nepříznivě působí také nadbytek živin, v krajním případě hovoříme o toxicitě. Vztah mezi rychlostí fyziologického procesu a dostupnosti konkrétní živiny demonstruje obr. 1. Obr. 1. Závislost rychlosti fyziologického procesu na dostupnosti živiny (převzato z Procházka et al. 1998) MINERÁLNÍ VÝŽIVA - teoretický úvod 2

3 Příjem živin se realizuje především kořeny, v menší míře také listy (např. při aplikaci hnojiva na list). K povrchu kořene se ionty živin dostávají třemi mechanismy difusí, hromadným tokem s pohybem vody a intercepcí prorůstáním kořene do oblastí substrátu, kde ještě nejsou živiny vyčerpány (obr. 2). Dostupnost každé živiny ovlivňuje míra její sorpce v půdním komplexu nejdůležitějšími jsou chemická sorpce (tvorba sloučenin o různé rozpustnosti) a fyzikálně-chemická sorpce na povrchu půdních koloidů. Půdní koloidy jsou jílové nebo organické částice s velkým specifickým povrchem ( m 2 g -1 ), které nesou na svém povrchu náboje a reverzibilně poutají ionty ve svém okolí (obr. 3). Obr. 2. Mechanismy přísunu živin k povrchu kořene (převzato z Brady a Weil 2002) Obr. 3. Půdní koloidy kaolinit (zástupce křemičitanových jílů) a mechanismus výměny iontů na povrchu koloidních částic převzato z Brady a Weil 2002 (levý obr.) a Taiz a Zeiger 2002 (pravý obr.) Pro příjem živin jsou důležité kořenové vlásky zvětšují povrch kořene, pronikají do malých půdních pórů a zajišťují kontakt s půdními částicemi. Kořenový systém navíc reaguje na dostupnost živin v prostředí mění svoji morfologii (rychlost růstu jednotlivých kořenů a intenzitu větvení) s cílem optimálně využít nehomogenní nabídku živin v půdním horizontu. MINERÁLNÍ VÝŽIVA - teoretický úvod 3

4 Význam jednotlivých živin Dusík je přijímán z půdy jako ionty NO - 3 nebo NH + 4 nebo v aminokyselinách. V rostlině je dusík obsažen v proteinových i neproteinových aminokyselinách. Proteinové aminokyseliny tvoří proteiny s funkcí enzymatickou, strukturních nebo regulační, neproteinové aminokyseliny jsou výchozími substráty pro syntézu dalších látek, např. kyselina 5-aminolevulová je substrátem pro syntézu látek obsahujících pyrolové jádro, tj. chlorofylů a cytochromů. Dusík je obsažen v purinových a pyrimidinových bazích nukleových kyselin a v řadě dalších látek primárního i sekundárního metabolismu. Nedostatek dusíku ovlivňuje řadu důležitých fyziologických pochodů včetně asimilace CO 2 a projevuje se inhibicí růstu i vývoje rostliny. Při nedostatku dusíku rostlina investuje do rozvoje kořenového systému na úkor nadzemní části snaha o zajištění dostatečného přísunu limitující živiny. Obr. 4. Růst prýtu a kořenů v závislosti na dostupnosti N v prostředí převzato z Marschner 1995 Fosfor je přijímán z půdy ve formě fosfátového aniontu, který se zabudovává přímo do organických sloučenin. V rostlině je fosfát součástí látek s vysokým obsahem energie - ATP, UTP, GPT, CPT a TTP. Tyto sloučeniny slouží k syntéze nukleových kyselin nebo reagují s množstvím dalších molekul, jejichž vnitřní energie se tím zvyšuje a je tak umožněn jejich vstup do dalších metabolických procesů (např. fosforylace kyseliny 3-fosfoglycerové na 1,3- bisfosfoglycerovou před redukcí na 3-P-glyceraldehyd, vznik UDP-glukózy pro tvorbu celulózy, ADP-glukózy pro vznik škrobu, CDP-fosfatidátu pro vznik membránových fosfolipidů). Vedle změn vnitřní energie molekula navázáním fosfátu získává záporný náboj. U proteinů fosforylace mění jejich konformaci, která ovlivňuje jejich funkční vlastnosti, např. propustnost akvaporinových kanálů, enzymatickou aktivitu (místo navázání fosfátu určuje funkci kináz dependentních na cyklinech v průběhu buněčného cyklu) nebo lokalizaci v buňce (transport fytochromu z cytosolu do jádra a přenos signálu). Fosforylační kaskády jsou důležité při přenosu signálů. Strukturně je fosfát vázán v nukleových kyselinách a ve fosfolipidech membrán. V semenech je fosfát uložen ve formě kyseliny fytové, substituované vápníkem a hořčíkem. Fosforylovaný inositol hraje významnou roli při přenosu signálu. MINERÁLNÍ VÝŽIVA - teoretický úvod 4

5 Draslík je přijímán ve formě K + a neváže se do stabilních struktur. Hraje důležitou úlohu v osmotických poměrech buňky a při objemovém růstu buňky. Ovlivňuje aktivitu některých enzymů, které katalyzují reakce fotosyntetické a respirační. Draslík je v rostlině velmi pohyblivý a jeho deficience se projevuje především na starších částech rostliny. Vápník je přijímán jako dvoumocný kation, strukturně je vázán v buněčné stěně a střední lamele především s pektiny. V membránách ovlivňuje soudržnost fosfolipidů a schopnost membrán vázat proteiny. Koncentrace vápníku v cytosolu je udržována velmi nízká (asi 0,2µ M), v buněčné stěně je hladina Ca 2+ asi 1000µM, v endoplazmatickém retikulu asi 10µM. Ve vakuole, kde je koncentrace Ca až 1000 µm, může tvořit s anionty organických i anorganických kyselin nerozpustné soli. V cytosolu se vápník reverzibilně váže s polypeptidem kalmodulinem a výrazně ovlivňuje aktivitu enzymů. Změna jeho koncentrace v cytosolu tak navozuje metabolické změny, které jsou součástí přenosu signálu. V těchto procesech vápník funguje jako tzv. druhý posel. Hořčík je přijímán jako dvoumocný kation a v této podobě je distribuován po rostlině. Strukturně je vázán v chlorofylu (Obr. 5.), kde hraje důležitou úlohu při interakci se strukturními proteiny anténních komplexů. Ovlivňuje aktivitu některých enzymů, např. Rubisco. Obr. 5. Vazba Mg v chlorofylu převzato z Buchanan et al Síra je přijímána ve formě síranového aniontu SO 2-4, je redukována a zabudovávána do aminokyselin cysteinu a methioninu. Výrazně ovlivňuje konformaci proteinů a umožňuje navázání dalších ligandů (vazba chromoforu s proteinem ve fytochromu). V kombinaci s železem tvoří tzv. Fe-S centra, struktury důležité pro přenos elektronu při fotosyntéze v cytochromovém komplexu a ve fotosystému I a v dýchacím řetězci. Je důležitou složkou některých koenzymů koenzymu A, thiaminu a biotinu. Železo je přijímáno snáze jako Fe 2+, v půdě se však často vyskytuje jako Fe 3+. Mechanismus využití trojmocného železa je odlišný u trav oproti ostatním rostlinám. Rostliny dvouděložné a jednoděložné netravního typu redukují Fe 3+ cheláty přítomné v rhizosféře a uvolňují Fe 2+ pro příjem do cytosolu (Obr. 6 vpravo). Trávy vylučují fytosiderofory - specifické neproteinogenní aminokyseliny, které váží Fe 3+. Komplex fytosiderofor-fe 3+ je následně přijímán do rostliny a v cytoplazmě je Fe uvolněno (Obr. 6 vlevo). Také Mn, Cu a Zn jsou přijímány v chelátové formě. MINERÁLNÍ VÝŽIVA - teoretický úvod 5

6 Obr. 6. Mechanismus příjmu Fe u trav (vlevo) a ostatních rostlin (vpravo) převzato z Buchanan et al Mangan je důležitou složkou proteinového komplexu rozkládajícího vodu (OEC), který je asociován s fotosystémem II. Měď je důležitá složka struktur přenášejících elektron, např. plastocyaninu v primární fázi fotosyntézy nebo v cytochromoxidázovém komplexu v elektrontransportním řetězci při dýchání. Zinek je důležitou strukturní složkou řady enzymů a transkripčních faktorů, tzv. zinkové prsty. Chlór hraje důležitou roli v osmotických poměrech buňky a stabilizuje komplex rozkládající vodu ve fotosyntetickém aparátu. Bór je nezbytný pro syntézu nukleových kyselin a růst pylových láček. Přijímán je jako H 3 BO 3. Molybden je přijímán jako anion MoO 2-4. Je vázán v enzymech, např. v nitrátreduktáze. Hodnocení růstu Růst je dynamický proces probíhající v čase, proto se jeho parametry sledují během určitého období. Sledují-li se 2 nebo více souborů, lze provést srovnání ve stejném čase. Jako kriterium růstu se nejčastěji užívá suchá hmotnost = sušina = hmotnost dehydratovaného materiálu, tj. vysušeného do konstantní hmotnosti při 105 C. Čerstvá hmotnost je méně spolehlivé kriterium růstu. Velmi důležité je, aby byl materiál po odebrání vážen co nejdříve a aby u všech srovnávaných variant byly dodrženy stejné podmínky a stejný postup. Z rozdílu čerstvé a suché hmotnosti pak lze stanovit obsah vody v materiálu (hydrataci), který se obvykle vyjadřuje v % čerstvé hmotnosti. Dalšími používanými kriterii růstu jsou délka nebo plocha orgánu. MINERÁLNÍ VÝŽIVA - teoretický úvod 6

7 Literatura: Brady, N.C. and Weil, R. R. The Nature and Properties of Soils. Prentice Hall Buchanan, B., Gruissem, W. and Jones, R. (Eds.) - Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologist Marschner, H. - Mineral Nutrition of Higher Plants. Academic Press. London. UK Procházka a kol. Fyziologie rostlin. Academia Praha 1998 (kapitola Vodní provoz, autor J. Šantrůček) Taiz, L. and Zeiger, E. Plant Physiology. Sinauer Associates, Inc., Publichers MINERÁLNÍ VÝŽIVA - teoretický úvod 7

8 Zadání praktických úloh k tématu: MINERÁLNÍ VÝŽIVA Přehled úloh k vypracování: Úkol 1: Vizuální projevy nedostatku živin 1a) Pomocí powerpointového klíče identifikujte minerální živinu, která je v nedostatku 1b) Proveďte biometrickou analýzu rostlin, které byly kultivovány v neúplných živných roztocích MINERÁLNÍ VÝŽIVA - teoretický úvod 8

9 Úkol 1: Vizuální projevy nedostatku živin (deficienční syndrom) Cíl: Demonstrovat význam jednotlivých živin pro růst rostlin. Hypotéza, kterou během práce ověříme: Nedostatek určité živiny má charakteristický vizuální projev, který souvisí s významem (funkcemi) dané živiny v rostlině i možnostmi její retranslokace v rámci rostlinného těla. Dílčí úlohy: 1a) Pomocí powerpointového klíče identifikujte minerální živinu, která je v nedostatku 1b) Proveďte biometrickou analýzu rostlin, které byly kultivovány v neúplných živných roztocích Princip: Rostlina potřebuje pro svůj optimální rozvoj dostatek všech esenciálních prvků (makro- i mikroelementů). Její růst je proto vždy limitován tou živinou, které je v prostředí nejméně (zákon minima). Při nedostatku se rozvíjí syndrom deficience, soubor vizuálních znaků (např. snížená rychlost růstu, morfologické odlišnosti, barevné změny, zasychání listů), charakteristický pro každou živinu v závislosti na jejích funkcích v rostlině a možnostem recyklace v rámci rostlinného těla. Vhodnou metodou pro navození a studium deficience je kultivace rostlin v živném roztoku, postrádajícím některý z esenciálních prvků. V tomto případě byly rostliny kultivovány v živném roztoku Hoagland 3. Tento roztok anorganických solí je koncipován tak, aby svým složením poskytoval rostlinám všechny nejdůležitější esenciální prvky v přiměřeném množství. Jeden prvek však byl vždy vynechán a rostlina vystavena jeho nedostatku. Laboratorní postup: Potřeby pro úlohy 1a-b: rostliny kukuřice kultivované v kompletním živném roztoku rostliny kukuřice kultivované v neúplných živných roztocích powerpointový klíč k určování deficiencí nůžky měřítko MINERÁLNÍ VÝŽIVA - teoretický úvod 9

10 laboratorní váhy váženky nebo alobal skener program pro analýzu obrazu Lucia G s modulem pro zpracování kořenového systému (RootAnalyzator) 0,1% roztok agaru pinzeta program Excel Úloha 1a) Pomocí powerpointového klíče identifikujte minerální živinu, která je v nedostatku Provedení úlohy 1a): V nádobách jsou připraveny rostliny kultivované v kompletním živném roztoku (kontrolní rostliny) a rostliny deficientní. Rostlinný materiál si dobře prohlédněte a pro každý soubor rostlin určete pomocí powerpointového klíče, která živina je v nedostatku. Zaznamenejte všechny vizuální projevy nedostatku (vzrůst, morfologie, barva listů, zasychání). Všímejte si, která část rostliny je nejvíce ovlivněna a zkuste vysvětlit proč. Vše zaznamenejte do protokolů. Úloha 1b) Proveďte biometrickou analýzu rostlin, které byly kultivovány v neúplných živných roztocích Provedení úlohy 1b): 1. Proveďte detailní analýzu rostlinného materiálu v jednotlivých variantách. U každé rostliny stanovte následující charakteristiky: délka prýtu (nadzemní části rostliny) - měřte měřítkem od obilky ke špičce nejdelšího listu délka kořenového systému - měřte měřítkem od obilky ke špičce nejdelšího kořene čerstvá hmotnost prýtu čerstvá hmotnost kořenů 2. Hmotnost prýtu a kořenů použijte pro výpočet celkové čerstvé hmotnosti rostliny a poměru R/S (z anglického root/shoot), tj. poměru hmotnosti kořenů a nadzemní části. 3. Délkové parametry, celkovou hmotnost rostliny a R/S poměr zaznamenejte do tabulky 1, pomocí programu Excel vypočítejte průměrné hodnoty a směrodatné odchylky. Výsledky vyjádřete graficky. MINERÁLNÍ VÝŽIVA - teoretický úvod 10

11 Tab. 1. Biometrické charakteristiky rostlin délka prýtu (cm) rostlina 1 rostlina 2 rostlina 3 rostlina 4 rostlina 5 průměr směrodatná odchylka kontrola -N -P -Ca -Mg -K - Fe délka kořenového systému (cm) rostlina 1 rostlina 2 rostlina 3 rostlina 4 rostlina 5 průměr směrodatná odchylka kontrola -N -P -Ca -Mg -K - Fe celková čerstvá hmotnost rostliny (g) rostlina 1 rostlina 2 rostlina 3 rostlina 4 rostlina 5 průměr směrodatná odchylka kontrola -N -P -Ca -Mg -K - Fe poměr hmotnosti kořenů a nadzemní biomasy rostlina 1 rostlina 2 rostlina 3 rostlina 4 rostlina 5 průměr směrodatná odchylka kontrola -N -P -Ca -Mg -K - Fe MINERÁLNÍ VÝŽIVA - teoretický úvod 11

12 Vyhodnocení experimentu: Vypracujte protokol, ve kterém vyhodnotíte získaná data. Zamyslete se nad vztahem mezi dostupností živin a morfologií rostliny. Zkuste odpovědět na následující otázky: O čem vypovídá změna R/S poměru rostliny? Proč je pro rostliny výhodné zvýšit R/S poměr při nedostatku dusíku? Jaké to má důsledky pro přežívání rostliny v měnících se podmínkách prostředí? MINERÁLNÍ VÝŽIVA - teoretický úvod 12

Teoretický úvod: MINERÁLNÍ VÝŽIVA. Praktikum fyziologie rostlin

Teoretický úvod: MINERÁLNÍ VÝŽIVA. Praktikum fyziologie rostlin Teoretický úvod: MINERÁLNÍ VÝŽIVA Praktikum fyziologie rostlin 1 Teoretický úvod: MINERÁLNÍ VÝŽIVA Vedle prvk, které tvoí organické látky C, H a O funkní struktury rostlin obsahují adu dalších prvk, které

Více

6. Mikroelementy a benefiční prvky. 7. Toxické prvky Al a těžké kovy, mechanismy účinku, obranné mechanismy rostlin

6. Mikroelementy a benefiční prvky. 7. Toxické prvky Al a těžké kovy, mechanismy účinku, obranné mechanismy rostlin 1. Základní úvod do problematiky Historie studia minerální výživy rostlin, obecné mechanismy příjmu minerálních živin, transportní procesy na membránách. 2. Příjem minerálních živin kořeny rostlin a jejich

Více

Půda - 4 složky: minerálníčástice organickéčástice voda vzduch

Půda - 4 složky: minerálníčástice organickéčástice voda vzduch Půda - 4 složky: minerálníčástice organickéčástice voda vzduch kameny a štěrk písek (částice o velikosti 2-0,05mm) prachovéčástice (0,05-0,002mm) jílovéčástice (méně než 0,002mm) F t = F m + F d F d =

Více

Minerální výživa na extrémních půdách. Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů

Minerální výživa na extrémních půdách. Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů Minerální výživa na extrémních půdách Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů Procesy vedoucí k acidifikaci půd Zvětrávání hornin s následným vymýváním kationtů (draslík,

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

Klí k urování deficiencí kukuice seté (Zea mays) autoi: E. Tylová, L. Moravcová

Klí k urování deficiencí kukuice seté (Zea mays) autoi: E. Tylová, L. Moravcová Klí k urování deficiencí kukuice seté (Zea mays) autoi: E. Tylová, L. Moravcová Takto vypadají kontrolní, kultivované v roztoku obsahujícím všechny živiny. Pokud se vaše rostlinka vizuáln liší, kliknte

Více

Mendělejevova tabulka prvků

Mendělejevova tabulka prvků Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých

Více

Fyziologie rostlin. 8. Minerální výživa rostlin část 3. Ca, Mg a mikroelementy. Alena Dostálová, Ph.D.

Fyziologie rostlin. 8. Minerální výživa rostlin část 3. Ca, Mg a mikroelementy. Alena Dostálová, Ph.D. Fyziologie rostlin 8. Minerální výživa rostlin část 3. Ca, Mg a mikroelementy Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Min. výživa rostl. Ca, Mg, mikroelementy - vápník,

Více

Odborná škola výroby a služeb, Plzeň, Vejprnická 56, Plzeň. Číslo materiálu 19. Bc. Lenka Radová. Vytvořeno dne

Odborná škola výroby a služeb, Plzeň, Vejprnická 56, Plzeň. Číslo materiálu 19. Bc. Lenka Radová. Vytvořeno dne Název školy Název projektu Číslo projektu Číslo šablony Odborná škola výroby a služeb, Plzeň, Vejprnická 56, 318 00 Plzeň Digitalizace výuky CZ.1.07/1.5.00/34.0977 VY_32_inovace_ZZV19 Číslo materiálu 19

Více

DOKONČENÍ PŘÍJEM ŽIVIN

DOKONČENÍ PŘÍJEM ŽIVIN DOKONČENÍ PŘÍJEM ŽIVIN Aktivní příjem = příjem vyžadující energii, dodává ji ATP (energie k regeneraci nosičů) Pasivní příjem = příjem na základě elektrochemického potenciálu (ve vnitřním prostoru převažuje

Více

10. Minerální výživa rostlin na extrémních půdách

10. Minerální výživa rostlin na extrémních půdách 10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

jungle kompletní výživa rostlin Nahlédnutí pod pokličku indabox pro všechny typy pěstebních systémů /mírně odborné pojednání MEDICAL QUALITY GROWIN

jungle kompletní výživa rostlin Nahlédnutí pod pokličku indabox pro všechny typy pěstebních systémů /mírně odborné pojednání MEDICAL QUALITY GROWIN /mírně odborné pojednání kompletní výživa rostlin pro všechny typy pěstebních systémů JungleInDaBox je třísložkový komplex minerálního základu a synergicky působících biologických doplňků. Vysoká efektivita

Více

FOTOSYNTÉZA. Princip, jednotlivé fáze

FOTOSYNTÉZA. Princip, jednotlivé fáze FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější

Více

STANOVENÍ OBSAHŮ PŘÍSTUPNÝCH MIKROELEMENTŮ V PŮDÁCH BMP. Šárka Poláková

STANOVENÍ OBSAHŮ PŘÍSTUPNÝCH MIKROELEMENTŮ V PŮDÁCH BMP. Šárka Poláková STANOVENÍ OBSAHŮ PŘÍSTUPNÝCH MIKROELEMENTŮ V PŮDÁCH BMP Šárka Poláková Přístupné mikroelementy Co jsou mikroelementy a jaká je jejich funkce v živých organismech Makrobiogenní prvky (H, C, O, N) Mikrobiogenní

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

Síra. Deficience síry: řepka. - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH

Síra. Deficience síry: řepka. - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH Síra řepka - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH - toxicita není příliščastá (nad 4000 mg SO 4 2- l -1 ), poškození může vyvolat SO 2 (nad 1-1,5 mg m 3 1 ) fazol Deficience síry:

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

Mikroelementy Chlór Bór Železo Mangan Zinek Měď Molybden Nikl

Mikroelementy Chlór Bór Železo Mangan Zinek Měď Molybden Nikl Prvek Chemický symbol Koncentrace v sušině (µg/g) Koncentrace v čerstvé biomase Makroelementy Dusík Draslík Vápník Hořčík Fosfor Síra N K Ca Mg P S 15 000 10 000 5 000 2 000 2 000 1 000 71,4 mm 17 mm 8,3

Více

Obsah 5. Obsah. Úvod... 9

Obsah 5. Obsah. Úvod... 9 Obsah 5 Obsah Úvod... 9 1. Základy výživy rostlin... 11 1.1 Rostlinné živiny... 11 1.2 Příjem živin rostlinami... 12 1.3 Projevy nedostatku a nadbytku živin... 14 1.3.1 Dusík... 14 1.3.2 Fosfor... 14 1.3.3

Více

Fyziologie rostlin - maturitní otázka z biologie (3)

Fyziologie rostlin - maturitní otázka z biologie (3) Otázka: Fyziologie rostlin Předmět: Biologie Přidal(a): Isabelllka FOTOSYNTÉZA A DÝCHANÍ, VODNÍ REŽIM ROSTLINY, POHYBY ROSTLIN, VÝŽIVA ROSTLIN (BIOGENNÍ PRVKY, AUTOTROFIE, HETEROTROFIE) A)VODNÍ REŽIM VODA

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

Složení látek a chemická vazba Číslo variace: 1

Složení látek a chemická vazba Číslo variace: 1 Složení látek a chemická vazba Číslo variace: 1 Zkoušecí kartičku si PODEPIŠ a zapiš na ni ČÍSLO VARIACE TESTU (číslo v pravém horním rohu). Odpovědi zapiš na zkoušecí kartičku, do testu prosím nepiš.

Více

MINERÁLNÍ VÝŽIVA ROSTLIN. Minerální živiny Koloběh živin Mechanizmy transportu minerálních živin v rostlině Funkce jednotlivých živin

MINERÁLNÍ VÝŽIVA ROSTLIN. Minerální živiny Koloběh živin Mechanizmy transportu minerálních živin v rostlině Funkce jednotlivých živin MINERÁLNÍ VÝŽIVA ROSTLIN Minerální živiny Koloběh živin Mechanizmy transportu minerálních živin v rostlině Funkce jednotlivých živin Minerální živina prvek, při jehož nedostatku přestávají rostliny růst

Více

PŘÍPRAVKY NA BÁZI LIGNOSULFONÁTŮ

PŘÍPRAVKY NA BÁZI LIGNOSULFONÁTŮ PŘÍPRAVKY NA BÁZI LIGNOSULFONÁTŮ LIGNOSULFONÁTY Lignin představuje heterogenní amorfní polymer potřebný pro pevnost a tuhost dřevnatých buněčných stěn rostlin. Po celulóze je to druhá nejrozšířenější látka

Více

značné množství druhů a odrůd zeleniny ovocné dřeviny okrasné dřeviny květiny travní porosty.

značné množství druhů a odrůd zeleniny ovocné dřeviny okrasné dřeviny květiny travní porosty. o značné množství druhů a odrůd zeleniny ovocné dřeviny okrasné dřeviny květiny travní porosty. Podobné složení živých organismů Rostlina má celkově více cukrů Mezidruhové rozdíly u rostlin Živočichové

Více

Vápník. Deficience vápníku: - 0,4-1,5% DW. - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM)

Vápník. Deficience vápníku: - 0,4-1,5% DW. - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM) Vápník - 0,4-1,5% DW - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM) - stavební, signální funkce, stabilizace membrán - vápnomilné x vápnostřežné druhy Deficience vápníku: - poškození meristemů,

Více

Diagnostika dřevin pomocí analýzy šťávy listů

Diagnostika dřevin pomocí analýzy šťávy listů Diagnostika dřevin pomocí analýzy šťávy listů Ing. Zbyněk Slezáček, MSc. Gramoflor Školkařské dny Svazu školkařů ČR 14.-16.1.2013 Skalský Dvůr Diagnostika dřevin pomocí analýzy šťávy listů Rychlý a komplexní

Více

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,

Více

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 FOTOSYNTÉZA Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 Fotosyntéza (z řec. phos, photós = světlo) je anabolický děj probíhající u autotrofních organismů (řasy,

Více

Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D.

Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D. Úvod do biochemie Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Co je to biochemie? Biochemie je chemií živých soustav.

Více

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů

Více

Fotosyntéza (2/34) = fotosyntetická asimilace

Fotosyntéza (2/34) = fotosyntetická asimilace Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější

Více

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za

Více

05 Biogeochemické cykly

05 Biogeochemické cykly 05 Biogeochemické cykly Ekologie Ing. Lucie Kochánková, Ph.D. Prvky hlavními - biogenními prvky: C, H, O, N, S a P v menších množstvích prvky: Fe, Na, K, Ca, Cl atd. ve stopových množstvích I, Se atd.

Více

EU peníze středním školám

EU peníze středním školám EU peníze středním školám Název projektu Registrační číslo projektu Název aktivity Název vzdělávacího materiálu Číslo vzdělávacího materiálu Jméno autora Název školy Moderní škola CZ.1.07/1.5.00/34.0526

Více

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních. 1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné

Více

Anorganické látky v buňkách - seminář. Petr Tůma některé slidy převzaty od V. Kvasnicové

Anorganické látky v buňkách - seminář. Petr Tůma některé slidy převzaty od V. Kvasnicové Anorganické látky v buňkách - seminář Petr Tůma některé slidy převzaty od V. Kvasnicové Zastoupení prvků v přírodě anorganická hmota kyslík (O) 50% křemík (Si) 25% hliník (Al) 7% železo (Fe) 5% vápník

Více

Základy pedologie a ochrana půdy

Základy pedologie a ochrana půdy Základy pedologie a ochrana půdy 6. přednáška VZDUCH V PŮDĚ = plynná fáze půdy Význam (a faktory jeho složení): dýchání organismů výměna plynů mezi půdou a atmosférou průběh reakcí v půdě Formy: volně

Více

VLIV DEFICIENCE MAKROBIOGENNÍCH PRVKŮ V ŽIVNÉM ROZTOKU NA RŮST ROSTLIN KUKUŘICE, FAZOLU A BOBU

VLIV DEFICIENCE MAKROBIOGENNÍCH PRVKŮ V ŽIVNÉM ROZTOKU NA RŮST ROSTLIN KUKUŘICE, FAZOLU A BOBU Úloha č. 5 Vliv deficifnce makroprvků na růst rostlin kukuřice - 1 - VLIV DEFICIENCE MAKROBIOGENNÍCH PRVKŮ V ŽIVNÉM ROZTOKU NA RŮST ROSTLIN KUKUŘICE, FAZOLU A BOBU RŮSTOVÁ ANALÝZA ROSTLIN, RŮSTOVÉ CHARAKTERISTIKY

Více

Vyjádření fotosyntézy základními rovnicemi

Vyjádření fotosyntézy základními rovnicemi FOTOSYNTÉZA Fotochemický proces, při němž fotosynteticky aktivní pigmenty v zelených částech rostlin přijímají energii světelného záření a přeměňují ji na energii chemickou. Ta je dále využita při biologických

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 0 0 1 1 U k á z k a k n i h

Více

a) pevná fáze půdy jíl, humusové částice vážou na svém povrchu živiny v podobě iontů

a) pevná fáze půdy jíl, humusové částice vážou na svém povrchu živiny v podobě iontů Otázka: Minerální výživa rostlin Předmět: Biologie Přidal(a): teriiiiis MINERÁLNÍ VÝŽIVA ROSTLIN - zahrnuje procesy příjmu, vedení a využití minerálních živin - nezbytná pro život rostlin Jednobuněčné

Více

Základní stavební kameny buňky Kurz 1 Struktura -7

Základní stavební kameny buňky Kurz 1 Struktura -7 Základní stavební kameny buňky Kurz 1 Struktura -7 vladimira.kvasnicova@lf3.cuni.cz Oddělení biochemie - 4. patro pracovna 411 Doporučená literatura kapitoly z biochemie http://neoluxor.cz (10% sleva přes

Více

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje. KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo

Více

Jednotné pracovní postupy ÚKZÚZ Zkoušení hnojiv 2. vydání Brno 2015

Jednotné pracovní postupy ÚKZÚZ Zkoušení hnojiv 2. vydání Brno 2015 Číslo Název postupu postupu ÚKZÚZ 20001.1 Stanovení obsahu vlhkosti gravimetricky a dopočet sušiny Zdroj 20010.1 Stanovení obsahu popela a spalitelných látek gravimetricky 20020.1 Stanovení obsahu chloridů

Více

Pedogeochemie. Sorpce fosforečnanů FOSFOR V PŮDĚ. 11. přednáška. Formy P v půdě v závislosti na ph. Koloběh P v půdě Přeměny P v půdě.

Pedogeochemie. Sorpce fosforečnanů FOSFOR V PŮDĚ. 11. přednáška. Formy P v půdě v závislosti na ph. Koloběh P v půdě Přeměny P v půdě. Pedogeochemie 11. přednáška FOSFOR V PŮDĚ v půdách běžně,8 (,2 -,) % Formy výskytu: apatit, minerální fosforečnany (Ca, Al, Fe) silikáty (substituce Si 4+ v tetraedrech) organické sloučeniny (3- %) inositolfosfáty,

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je

Více

= prvky, které rostlina přijímá jen ve stopovém množství, o to více jsou ale pro ni důležité

= prvky, které rostlina přijímá jen ve stopovém množství, o to více jsou ale pro ni důležité 9. Mikroprvky = prvky, které rostlina přijímá jen ve stopovém množství, o to více jsou ale pro ni důležité Mangan Mn - Mnoho různých oxidačních stavů (II a IV nejvíce) - Velikost iontu je podobná Mg a

Více

ROSTLINNÁ FYZIOLOGIE OSMOTICKÉ JEVY

ROSTLINNÁ FYZIOLOGIE OSMOTICKÉ JEVY Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74 Katedra experimentální biologie rostlin, Z. Lhotáková proteinové komplexy thylakoidní membrány - jsou kódovány jak plastidovými tak jadernými geny 1905

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

11. Zásobení rostlin živinami a korekce nedostatku

11. Zásobení rostlin živinami a korekce nedostatku 11. Zásobení rostlin živinami a korekce nedostatku = kapitola,,jak poznáme nedostatek které živiny a jak a čím hnojíme - Diagnostika nedostatku: o Vizuální o Chemická analýza biomasy o Histologické a biochemické

Více

- Cesta GS GOGAT - Cesta GDH

- Cesta GS GOGAT - Cesta GDH Buchanan 2000 Asimilace amonného iontu: - Cesta GS GOGAT - Cesta GDH Buchanan 2000 GS (glutaminsyntetáza, EC 6.3.1.2) - oktamerní protein o velikosti 350-400 kda, tvořený 8 téměř identickými podjednotkami

Více

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA: BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,

Více

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,

Více

Vliv selenu, zinku a kadmia na růstový vývoj česneku kuchyňského (Allium sativum L.)

Vliv selenu, zinku a kadmia na růstový vývoj česneku kuchyňského (Allium sativum L.) Vliv selenu, zinku a kadmia na růstový vývoj česneku kuchyňského (Allium sativum L.) Botanická charakteristika: ČESNEK KUCHYŇSKÝ (ALLIUM SATIVUM L.) Pravlastí je Džungarsko (severní Čína) v Střední Asii,

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Praktické cvičení č. 11 a 12 - doplněno

Praktické cvičení č. 11 a 12 - doplněno Praktické cvičení č. 11 a 12 - doplněno Téma: Metabolismus eukaryotické buňky Pomůcky: pracovní list, učebnice botaniky Otázky k opakování: Co je anabolismus a co je katabolisimus? Co jsou enzymy a jak

Více

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie

Více

Ch - Stavba atomu, chemická vazba

Ch - Stavba atomu, chemická vazba Ch - Stavba atomu, chemická vazba Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

OBECNÁ FYTOTECHNIKA BLOK: VÝŽIVA ROSTLIN A HNOJENÍ Témata konzultací: Základní principy výživy rostlin. Složení rostlin. Agrochemické vlastnosti půd a půdní úrodnost. Hnojiva, organická hnojiva, minerální

Více

pátek, 24. července 15 BUŇKA

pátek, 24. července 15 BUŇKA BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné

Více

Poměr CNP v bioremediacích

Poměr CNP v bioremediacích Poměr v bioremediacích Sanační technologie 2012, Pardubice limitovaný růst Bioremediace je založena na mikrobiálním metabolismu. Projevem metabolismu je růst. Kinetika růstu je determinována koncentrací

Více

Ústřední kontrolní a zkušební ústav zemědělský Oddělení půdy a lesnictví

Ústřední kontrolní a zkušební ústav zemědělský Oddělení půdy a lesnictví Ústřední a zkušební ústav zemědělský Oddělení půdy a lesnictví Analýza a vyhodnocení účinnosti leteckého vápnění, provedeného v roce 2008 v Krušných horách v okolí Horního Jiřetína, po pěti letech od data

Více

13. Kolik molů vodíku vznikne reakcí jednoho molu zinku s kyselinou chlorovodíkovou?

13. Kolik molů vodíku vznikne reakcí jednoho molu zinku s kyselinou chlorovodíkovou? Hmotnosti atomů a molekul, látkové množství - 1. ročník 1. Vypočítej skutečnou hmotnost jednoho atomu železa. 2. Vypočítej látkové množství a) S v 80 g síry, b) S 8 v 80 g síry, c) H 2 S v 70 g sulfanu.

Více

12-Fotosyntéza FRVŠ 1647/2012

12-Fotosyntéza FRVŠ 1647/2012 C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,

Více

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi Fotosyntéza FOTOSYNTÉZA soubor chemických reakcí,, probíhaj hajících ch v rostlinách a sinicích ch zachycení a využit ití sluneční energie k tvorbě složitých chemických sloučenin z CO2 a vody jediný zdroj

Více

Agroekologie. Globální a lokální cykly látek. Fotosyntéza Živiny Rhizosféra Mykorhiza

Agroekologie. Globální a lokální cykly látek. Fotosyntéza Živiny Rhizosféra Mykorhiza Agroekologie Globální a lokální cykly látek Fotosyntéza Živiny Rhizosféra Mykorhiza Cyklus prvků transport prvků v prostoru uvolnění prvků nebo jejich sloučenin následný transport opětné zadržení prvku

Více

3) Membránový transport

3) Membránový transport MBR1 2016 3) Membránový transport a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy 1 Prokaryotická buňka Eukaryotická buňka 2 Pohyb vody první reakce klidných

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Produkce kyselin v metabolismu Těkavé: 15,000 mmol/den kyseliny uhličité, vyloučena plícemi jako CO 2 Netěkavé kyseliny (1 mmol/kg/den) jsou vyloučeny

Produkce kyselin v metabolismu Těkavé: 15,000 mmol/den kyseliny uhličité, vyloučena plícemi jako CO 2 Netěkavé kyseliny (1 mmol/kg/den) jsou vyloučeny Vnitřní prostředí a acidobazická rovnováha 13.12.2004 Vnitřní prostředí Sestává z posuzování složení extracelulární tekutiny z hlediska izohydrie (= optimální koncentrace ph) izoionie (= optimální koncentrace

Více

Stav lesních půd drama s otevřeným koncem

Stav lesních půd drama s otevřeným koncem Stav lesních půd drama s otevřeným koncem Pavel Rotter Ca Mg Lesní půda = chléb lesa = Prvek K význam pro výživu rostlin příznaky nedostatku podporuje hydrataci pletiv a osmoregulaci, aktivace enzymů ve

Více

Pracovní listy pro žáky

Pracovní listy pro žáky Pracovní listy pro žáky : Ušlech lý pan Beketov Kovy a potraviny Úkol 1: S pomocí nápovědy odhadněte správný kov, který je v dané potravině obsažen. Nápověda: MANGAN (Mn), ŽELEZO (Fe), CHROM (Cr), VÁPNÍK

Více

Zdroje. Záření Voda CO 2 O 2 Živiny Potrava

Zdroje. Záření Voda CO 2 O 2 Živiny Potrava Zdroje Záření Voda CO 2 O 2 Živiny Potrava Sluneční záření UV < 400 nm světelné 400 750 nm IR > 750 nm 7 48 45 Sluneční konstanta1390 W m 2 Forosyntéza Světelná fáze redukuje NADP a produkuje ATP Temná

Více

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím

Více

Úpravy chemických rovnic

Úpravy chemických rovnic Úpravy chemických rovnic Chemické rovnice kvantitativně i kvalitativně popisují chemickou reakci. Na levou stranu se v chemické rovnici zapisují výchozí látky (reaktanty), na pravou produkty. Obě strany

Více

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru: Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -

Více

Správná zemědělská praxe a zdravotní nezávadnost a kvalita potravin. Daniela Pavlíková Česká zemědělská univerzita v Praze

Správná zemědělská praxe a zdravotní nezávadnost a kvalita potravin. Daniela Pavlíková Česká zemědělská univerzita v Praze Správná zemědělská praxe a zdravotní nezávadnost a kvalita potravin Daniela Pavlíková Česká zemědělská univerzita v Praze Správná zemědělská praxe a hnojení plodin Spotřeba minerálních hnojiv v ČR 120

Více

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron). Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek

Více

POROVNÁNÍ ÚČINNOSTI SRÁŽENÍ REAKTIVNÍCH AZOBARVIV POUŽITÍM IONTOVÉ KAPALINY A NÁSLEDNÁ FLOKULACE AZOBARVIV S Al 2 (SO 4 ) 3.18H 2 O S ÚPRAVOU ph

POROVNÁNÍ ÚČINNOSTI SRÁŽENÍ REAKTIVNÍCH AZOBARVIV POUŽITÍM IONTOVÉ KAPALINY A NÁSLEDNÁ FLOKULACE AZOBARVIV S Al 2 (SO 4 ) 3.18H 2 O S ÚPRAVOU ph POROVNÁNÍ ÚČINNOSTI SRÁŽENÍ REAKTIVNÍCH AZOBARVIV POUŽITÍM IONTOVÉ KAPALINY A NÁSLEDNÁ FLOKULACE AZOBARVIV S Al 2 (SO 4 ) 3.18H 2 O S ÚPRAVOU ph Ing. Jana Martinková Ing. Tomáš Weidlich, Ph.D. prof. Ing.

Více

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.

Více

Srovnání obsahů makro- a mikroživin v biomase rostlin

Srovnání obsahů makro- a mikroživin v biomase rostlin Srovnání obsahů makro- a mikroživin v biomase rostlin Mangan Příjem, funkce v rostlině, projevy nedostatku Formy Manganu v půdě a rostlinách Mnoho různých oxidačních stavů (II a IV nejčast.) Velikost iontu

Více

3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek

3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek MBRO1 1 2 2017 3) Membránový transport Prokaryotická buňka Eukaryotická buňka a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy Pohyb vody první reakce klidných

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_412 Jméno autora: Třída/ročník: Mgr. Alena

Více

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.

Více

Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály

Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály Elektrochemie rovnováhy a děje v soustavách nesoucích elektrický náboj Krystal kovu ponořený do destilované vody + +

Více

Chemické veličiny, vztahy mezi nimi a chemické výpočty

Chemické veličiny, vztahy mezi nimi a chemické výpočty SBÍRKA ŘEŠENÝCH PŘÍKLADŮ PRO PROJEKT PŘÍRODNÍ VĚDY AKTIVNĚ A INTERAKTIVNĚ CZ.1.07/1.1.24/01.0040 Chemické veličiny, vztahy mezi nimi a chemické výpočty Mgr. Jana Žůrková, 2013, 20 stran Obsah 1. Veličiny

Více

Intermediární metabolismus. Vladimíra Kvasnicová

Intermediární metabolismus. Vladimíra Kvasnicová Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ. Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno

ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ. Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno KATEGORIE HNOJIVÝCH VÝROBKŮ (DLE FUNKCE) 1. Hnojivo 2. Materiál k vápnění

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

Plasma a většina extracelulární

Plasma a většina extracelulární Acidobazická rovnováha Tato prezentace je přístupná online Fyziologické ph Plasma a většina extracelulární tekutiny ph = 7,40 ± 0,02 Význam stálého ph Na ph závisí vlastnosti bílkovin aktivita enzymů struktura

Více

Biochemie kosti. Anatomie kosti. Kostní buňky. Podpůrná funkce. Udržování homeostasy minerálů. Sídlo krvetvorného systému

Biochemie kosti. Anatomie kosti. Kostní buňky. Podpůrná funkce. Udržování homeostasy minerálů. Sídlo krvetvorného systému Biochemie kosti Podpůrná funkce Udržování homeostasy minerálů Sídlo krvetvorného systému Anatomie kosti Haversovy kanálky okostice lamely oddělené lakunami Kostní buňky Osteoblasty Osteocyty Osteoklasty

Více

1- Úvod do fotosyntézy

1- Úvod do fotosyntézy 1- Úvod do fotosyntézy Prof. RNDr. Petr Ilík, Ph.D. KBF a CRH, PřF UP FS energetická bilance na povrch Země dopadá 2/10 10 energie ze Slunce z toho 30% odraz do kosmu 47% teplo 23% odpar vody 0.02% pro

Více

Transport živin do rostliny. Radiální a xylémový transport. Mimokořenová výživa rostlin.

Transport živin do rostliny. Radiální a xylémový transport. Mimokořenová výživa rostlin. Transport živin do rostliny Radiální a xylémový transport. Mimokořenová výživa rostlin. Zóny podél kořene, jejich vztah s anatomií a příjmem živin Transport iontů na střední vzdálenosti Radiální transport

Více

FOTOSYNTÉZA Správná odpověď:

FOTOSYNTÉZA Správná odpověď: FOTOSYNTÉZA Správná odpověď: 1. Mezi asimilační barviva patří 1. chlorofyly, a) 1, 2, 4 2. antokyany b) 1, 3, 4 3. karoteny c) pouze 1 4. xantofyly d) 1, 2, 3, 4 2. V temnostní fázi fotosyntézy dochází

Více