Kalibrace a limity její přesnosti

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Kalibrace a limity její přesnosti"

Transkript

1 Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě Odbor hygienických laboratoří Karviná V Karviné dne Ing. Miluše Galuszková Strana 1 (celkem 20)

2 Předmět: 2.2 Kalibrace a limity její přesnosti Přednášející: Prof.RNDr. Milan Meloun, DrSc. Obsah Úloha 1. Lineární kalibrace:. Kalibrace přímkou metodou nejmenších čtverců 3 Regresní diagnostika 6 Kalibrace přímkou metodou nejmenších čtverců 8 po odstranění vlivných bodů Závěr 10 Úloha 2. Nelineární kalibrace: Kalibrace kvadratický spline 10 Závěr 13 Úloha 3. Rozlišení mezi lineární a nelineární kalibrací: Regresní diagnostika 14 Kalibrace přímkou metodou nejmenších čtverců 16 Kalibrace kvadratický spline 18 Kalibrace kvadratický spline 6 uzlů 19 Závěr 20 Strana 2 (celkem 20)

3 Úloha 1. Lineární kalibrace: U přímkové kalibrační závislosti vyčíslete bodový a intervalový odhad pro tři neznámé koncentrace a současně vyčíslete i limity přesnosti. Zadání Stanovení oxidů dusíku (NOx) v ovzduší se provádí fotometrickou metodou. Určete kalibrační přímku, kde x je koncentrace NOx v µg/ml a y je absorbance barevné reakce NOx s činidly při vlnové délce 540 nm. Z kalibrační křivky pak odhadněte koncentraci NOx (x 1, x 2 x 3 ) ve vzorcích, u kterých byla naměřena absorbance y 1 = 0,227, y 2 = 0,031, y 3 = 0,454 Data: x ( µg/ml) 0,20 0,30 0,40 0,50 0,60 y 0,059 0,089 0,122 0,157 0,187 x ( µg/ml) 0,80 1,00 1,20 1,40 1,60 y 0,246 0,308 0,372 0,426 0,480 Program: Modul: Řešení: ADSTAT Kalibrace 1.Kalibrace přímkou metodou nejmenších čtverců 2.Regresní diagnostika Vyšetření vlivných bodů pomocí diagnostických grafů 3.Kalibrace přímkou metodou nejmenších čtverců po odstranění vlivných bodů 1. Kalibrace přímkou metodou nejmenších čtverců Název: Program: Modul: NOx v ovzduší ADSTAT Kalibrace V S T U P PODMÍNKY Hladina významnosti, alpha : Počet bodů, n : 10 Kvantil Studentova rozdělení t(1-alpha,n-m) : Jméno výstupního souboru : NOX.TXT Strana 3 (celkem 20)

4 V Ý S T U P Obr.1 Kalibrační přímka 1 STATISTICKÉ CHARAKTERISTIKY PROMĚNNÝCH: Proměnná Průměr Směrodatná odchylka Var.koef x E E y E E Součty čtverců Sxx: E+00 Syy: E-01 Sxy: E-01 SumX^2: E+00 SumY^2: E-01 SumXY: E+00 Korelační koeficient: PARAMETRY KALIBRACE: Parametr Odhad Směrodatná odchylka t-kritérium Test H0: B[j] = 0 vs. HA: B[j] <> 0 Hypotéza H0 Hladina významnosti úsek E E E-01 Akceptována 0,487 Směrnice E E E+02 Zamítnuta 0,000 Strana 4 (celkem 20)

5 ANALÝZA REZIDUÍ: Bod Měřená hodnota Predikovaná hodnota Absolutní reziduum Relativní reziduum i yexp[i] yvyp[i] e[i] er[i] E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00 Reziduální součet čtverců RSC 5038E-04 Průměr absolutních hodnot reziduí, Me E-03 Průměr relativních reziduí, Mer[%] Odhad reziduálního rozptylu, s^2(e) E-05 Odhad směrodatné odchylky reziduí, s(e) E-03 KALIBRAČNÍ MEZE: Kritická úroveň yc: E-03 xc: E-02 Limita detekce yd: E-02 xd: E-02 Mez stanovitelnosti ys: E-02 xs: E-01 KALIBRAČNÍ TABULKA: Měřená hodnota Přímý odhad Naszodiho odhad Konfidenční interval yexp[i] xvyp[i] xvyp[i] dolní mez horní mez Llxvyp[i] Luxvyp[i] E E E E E E E E E E E E E E E+00 Strana 5 (celkem 20)

6 2. Regresní diagnostika Vyšetření vlivných bodů pomocí diagnostických grafů Program: Modul: Název: ADSTAT LINEÁRNÍ REGRESE Regresní diagnostika NOx1 V S T U P ZVOLENÁ STRATEGIE REGRESNÍ ANALÝZY: Omezení, P : E-34 Transformace : Ne Váhy : Ne Absolutní člen zahrnut: Ano PODMÍNKY A KVANTILY PRO STATISTICKÉ TESTY: Hladina významnosti, alfa : Počet bodů, n : 10 Počet parametrů, m : 2 Kvantil Studentova rozdělení t(1-alpha/2,n-m) : Kvantil rozd. Chí-kvadrát Chi-square(1-alpha,m) : INDIKACE VLIVNÝCH BODŮ: Standardizované Jackknife Predikované Diagonální Bod reziduum reziduum reziduum prvky i es[i] ej[i] ep[i] H[i,i] E E+00* E E-01* (*indikuje odlehlý nebo vlivný bod) Obr.2 Graf predikovaných rezidui Strana 6 (celkem 20)

7 Obr.3 Williamsův graf Obr.4 L R graf Závěr vyšetření vlivných bodů pomocí diagnostických grafů: V datech se vyskytuje podezřelý bod č.8. Odlehlý bod č.10 ze souboru odstraníme a z takto upravených dat získáme kalibrační přímku a vypočteme limitu detekce a neznámé koncentrace x 1,x 2, x 3. Strana 7 (celkem 20)

8 3. Kalibrace přímkou metodou nejmenších čtverců Název: Program: Modul: PODMÍNKY NOx v ovzduší ADSTAT Kalibrace V S T U P Hladina významnosti, alpha : Počet bodů, n : 9 Kvantil Studentova rozdělení t(1-alpha,n-m) : Jméno výstupního souboru : NOX1.TXT VSTUPNÍ DATA x ( µg/ml) 0,20 0,30 0,40 0,50 0,60 y 0,059 0,089 0,122 0,157 0,187 x ( µg/ml) 0,80 1,00 1,20 1,40 y 0,246 0,308 0,372 0,426 Obr.5 Kalibrační přímka 2 Strana 8 (celkem 20)

9 V Ý S T U P STATISTICKÉ CHARAKTERISTIKY PROMĚNNÝCH: Proměnná Průměr Směrodatná odchylka Var.koef x E E y E E Součty čtverců Sxx: E+00 Syy: E-01 Sxy: E-01 SumX^2: E+00 SumY^2: E-01 SumXY: E+00 Korelační koeficient: PARAMETRY KALIBRACE: Parametr Odhad Směrodatná odchylka t-kritérium Test H0: B[j] = 0 vs. HA: B[j] <> 0 Hypotéza H0 Hladina významnosti úsek E E E-01 Akceptována Směrnice E E E+02 Zamítnuta ANALÝZA REZIDUÍ: Bod Měřená hodnota Predikovaná hodnota Absolutní reziduum Relativní reziduum i yexp[i] yvyp[i] e[i] er[i] E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00 Reziduální součet čtverců RSC E-05 Průměr absolutních hodnot reziduí, Me E-03 Průměr relativních reziduí, Mer[%] Odhad reziduálního rozptylu, s^2(e) E-06 Odhad směrodatné odchylky reziduí, s(e) E-03 KALIBRAČNÍ MEZE: Kritická úroveň yc: E-03 xc: E-02 Limita detekce yd: E-03 xd: E-02 Mez stanovitelnosti ys: E-02 xs: E-01 Strana 9 (celkem 20)

10 KALIBRAČNÍ TABULKA: Měřená hodnota Přímý odhad Naszodiho odhad Konfidenční interval yexp[i] xvyp[i] xvyp[i] dolní mez Llxvyp[i] horní mez Luxvyp[i] E E E E E E E E E E E E E E E+00 Závěr kalibrace přímkou metodou nejmenších čtverců: Odstraněním vlivného bodu č.10 jsme dosáhli laboratoří požadovanou limitu detekce yd = 0,01, xd = 0,03. Závěr: V tabulce jsou uvedeny bodové a intervalové odhady pro tři neznámé koncentrace, které jsme vyčíslili z přímkové kalibrační závislosti: vzorek absorbance přímý odhad Naszodiho odhad intervalový odhad / µg/ml µg/ml µg/ml dolní mez horní mez 1 0,227 0,739 0,739 0,715 0, ,031 0,102 0,102 0,075 0, ,454 1,48 1,48 1,45 1,50 Limity přesnosti kalibrační přímky stanovení NOx v ovzduší jsou: limita detekce yd: E-03 xd: E-02 mez stanovitelnosti ys: E-02 xs: E-01 Strana 10 (celkem 20)

11 Úloha 2. Nelineární kalibrace: U nelineární (křivkové) kalibrační závislosti vyčíslete bodový a intervalový odhad pro tři neznámé koncentrace a současně vyčíslete i limity přesnosti. Zadání Vápník v podzemích vodách se stanovuje metodou AAS. Jedná se o nelineární kalibraci. Vytvořte kalibrační křivku, kde x je koncentrace vápníku v mg/l a y je absorbance. Z kalibrační křivky pak odhadněte koncentraci vápníku x (x 1, x 2 x 3 ) vzorcích, u kterých byla naměřena absorbance y 1 = 0,084, y 2 =0,216, y 3 = 0,423 Data: x ( mg/l) 5,00 10,0 15,0 20,0 25,0 y 0,084 0,132 0,221 0,280 0,346 x ( mg/l) 30,0 40,0 50,0 60,0 70,0 y 0,419 0,519 0,602 0,654 0,695 Program: Modul: Řešení: Název: ADSTAT Kalibrace Kvadratický spline Vapnik v podzemnich vodach V S T U P PODMÍNKY: Počet bodů, n : 10 Počet uzlů, m : 2 Strategie výběru uzlů : Konstantní uzlové intervaly Jméno výstupního souboru : VAPNIK.TXT HODNOTY UZLŮ: a :5.0000E+00 k[ 1] : E+01 k[ 2] : E+01 b : E+01 Strana 11 (celkem 20)

12 V Ý S T U P Obr.1 Kalibrační křivka PARAMETRY KALIBRACE: Koeficienty rovnice: f[i]*x^2+g[i]*x+h[i] pro k[i-1] < x <= k[i] k[i] f[i] g[i] h[i] E E E E E E E E E E E E-02 ANALÝZA REZIDUÍ: Bod Měřená hodnota Predikovaná hodnota Absolutní reziduum Relativní reziduum i yexp[i] yvyp[i] e[i] er[i] E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-02 Strana 12 (celkem 20)

13 Reziduální součet čtverců RSC E-04 Průměr absolutních hodnot reziduí, Me E-03 Průměr relativních reziduí, Mer[%] Odhad reziduálního rozptylu, s^2(e) E-05 Odhad směrodatné odchylky reziduí, s(e) E-03 ANALÝZA DERIVACÍ A INTEGRÁLŮ: Bod Predikovaná hodnota První derivace Druhá derivace Integrál i Yvyp[i] der1[i] der2[i] int[i] KALIBRAČNÍ MEZE: E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+01 Kritická úroveň yc: E-02 xc: E+00 Limita detekce yd: E-02 xd: E+00 KALIBRAČNÍ TABULKA: Měřená hodnota yexp[i] Inverzní odhad xvyp[i] Konfidenční interval dolní mez Llxvyp[i] horní mez Luxvyp[i] E E E E E E E E E E E E+02 Závěr: V tabulce jsou uvedeny bodové a intervalové odhady pro tři neznámé koncentrace, které jsme vyčíslili z kalibrační závislosti: vzorek absorbance odhad intervalový odhad / mg/l mg/l dolní mez horní mez 1 0, ,75 6,55 2 0,216 15,25 14,39 16,16 3 0,423 30,68 29,70 104,9 Limity přesnosti kalibrační křivky stanovení vápníku v podzemních vodách jsou: limita detekce yd: 0,068 xd: 4,23 Strana 13 (celkem 20)

14 Úloha 3. Rozlišení mezi lineární a nelineární kalibrací U experimentální kalibrační závislosti rozhodněte o počtu uzlových bodů, typu splinové závislosti a současně vyčíslete bodový a intervalový odhad pro tři neznámé koncentrace a současně i limity přesnosti. Zadání Metodou atomové absorpční spektrometrie elektrotermickou atomizací je možné využitím speciální lampy (podle údajů výrobce ) měřit absorbance prvku v širokém rozsahu koncentrací. Pro využití v analýze odpadních vod byla proměřena kalibrace antimonu v rozsahu koncentrací µg/l. U této kalibrační křivky rozhodněte o počtu uzlových bodů, typu splinové závislosti. Vypočtěte bodový a intervalový odhad pro naměřené absorbance y 1 = 0,084, y 2 = 0,690, y 3 = 0,732. Vyčíslete limity přesnosti. Data: x ( µg/l) 5,00 10,0 20,0 30,0 40,0 50,0 75,0 y 0,038 0,083 0,180 0,270 0,338 0,443 0, x ( µg/l) y 0,789 0,909 1,053 1,190 1,396 1,520 1,548 Program: Modul: Řešení: ADSTAT Kalibrace 1.Regresní diagnostika Vyšetření vlivných bodů pomocí diagnostických grafů 2.Kalibrace přímkou metodou nejmenších čtverců 3.Kalibrace kvadratický spline volba uzlů Regresní diagnostika Vyšetření vlivných bodů pomocí diagnostických grafů Program: Modul: Název: 1 ADSTAT LINEÁRNÍ REGRESE Regresní diagnostika Antimon ultra lampa V S T U P ZVOLENÁ STRATEGIE REGRESNÍ ANALÝZY: Omezení, P : E-34 Transformace : Ne Váhy : Ne Absolutní člen zahrnut : Ano Strana 14 (celkem 20)

15 PODMÍNKY A KVANTILY PRO STATISTICKÉ TESTY: Hladina významnosti, alfa : Počet bodů, n : 14 Počet parametrů, m : 2 Kvantil Studentova rozdělení t(1-alpha/2,n-m) : Kvantil rozd. Chí-kvadrát Chi-square(1-alpha,m) : INDIKACE VLIVNÝCH BODŮ: Jackknife Diagonální Bod reziduum prvky i ej[i] H[i,i] (*indikuje odlehlý nebo vlivný bod) E+00* E-01* Obr.1 L - R graf Obr.2 Williamsův graf Strana 15 (celkem 20)

16 Obr.3 Pregibonův graf Závěr vyšetření vlivných bodů pomocí diagnostických grafů: Grafy ( obr.1-3) potvrdily výskyt odlehlého bodu č.14, který odstraníme. 2.Kalibrace přímkou metodou nejmenších čtverců Program: Modul: Řešení: ADSTAT Kalibrace Kalibrace přímkou metodou nejmenších čtverců V S T U P PODMÍNKY Hladina významnosti, alpha : Počet bodů, n : 13 Kvantil Studentova rozdělení t(1-alpha,n-m) : Jméno výstupního souboru : ANTIMON1.TXT PARAMETRY KALIBRACE: Parametr Odhad Směrodatná odchylka t-kritérium Test H0: B[j] = 0 vs. HA: B[j] <> 0 Hypotéza H0 Hladina významnosti úsek E E E+00 Zamítnuta Směrnice E E E+01 Zamítnuta ANALÝZA REZIDUÍ: Reziduální součet čtverců RSC E-02 Průměr absolutních hodnot reziduí, Me E-02 Průměr relativních reziduí, Mer[%] Odhad reziduálního rozptylu, s^2(e) E-03 Odhad směrodatné odchylky reziduí, s(e) E-02 Strana 16 (celkem 20)

17 KALIBRAČNÍ MEZE: Kritická úroveň yc: E-01 xc: E+00 Limita detekce yd: E-01 xd: E+01 Mez stanovitelnosti ys: 7399E-01 xs: E+01 KALIBRAČNÍ TABULKA: Měřená hodnota Přímý odhad Naszodiho odhad Konfidenční interval yexp[i] xvyp[i] xvyp[i] dolní mez horní mez Llxvyp[i] Luxvyp[i] E E E E E E E E E E E E E E E+01 Obr.4 Kalibrační přímka Závěr kalibrace přímkou metodou nejmenších čtverců: Navržený model kalibrace metodou nejmenších čtverců není vhodný pro atomovou absorpční spektrometrii v proměřovaném rozsahu koncentrací. Strana 17 (celkem 20)

18 3.Kalibrace kvadratický spline Program: Modul: Řešení: ADSTAT Kalibrace Kvadratický spline Postupně volíme počet uzlů ( 0-7) a hledáme přijatelnou těsnost proložení, to je sledujeme vzhled kalibrační křivky a porovnáváme odhady směrodatné odchylky reziduí. Název: Antimon ultra lampa V S T U P PODMÍNKY: Počet bodů, n : 13 Počet uzlů, m : 0-7 Strategie výběru uzlů : Konstantní uzlové intervaly Jméno výstupního souboru : ANTIMON2.TXT Grafické porovnání kalibračních křivek např.: Obr.5.1. Kvadratický spline 0 uzlů Obr.5.2 Kvadratický spline 5 uzlů Tabulka porovnání směrodatných odchylek s(e) odhad počet uzlů směrodatné odchylky s(e) 0 2, , , , , , , , Závěr : Postupně jsme v kvadratickém splinu volili 0-7 uzlů a hledali jsme přijatelnou těsnost proložení. Nejvhodnější je model se 6 uzly. Strana 18 (celkem 20)

19 Program: Modul: Řešení: Název: ADSTAT Kalibrace Kvadratický spline Antimon ultra lampa V S T U P PODMÍNKY: Počet bodů, n : 13 Počet uzlů, m : 6 Strategie výběru uzlů : Konstantní uzlové intervaly Jméno výstupního souboru : ANTIMON6.TXT HODNOTY UZLŮ: a :5.0000E+00 k[ 1] : E+01 k[ 2] : E+01 k[ 3] : E+01 k[ 4] : E+02 k[ 5] : E+02 k[ 2] : E+02 b : E+02 Obr.6 Kvadratický spline 6 uzlů Strana 19 (celkem 20)

20 V Ý S T U P ANALÝZA REZIDUÍ: Reziduální součet čtverců RSC E-04 Průměr absolutních hodnot reziduí, Me E-03 Průměr relativních reziduí, Mer[%] Odhad reziduálního rozptylu, s^2(e) E-05 Odhad směrodatné odchylky reziduí, s(e) E-03 KALIBRAČNÍ MEZE: Kritická úroveň yc: E-02 xc: E+00 Limita detekce yd: E-02 xd: E+00 KALIBRAČNÍ TABULKA: Měřená hodnota yexp[i] Inverzní odhad xvyp[i] Konfidenční interval dolní mez Llxvyp[i] horní mez Luxvyp[i] E E E E E E E E E E E E+02 Závěr: Pro kalibrační závislost stanovení antimonu v odpadních vodách metodou atomové absorpční spektrometrie byla zvolena závislost kvadratický spline pro optimální počet uzlů 6. V tabulce jsou uvedeny bodové a intervalové odhady pro tři neznámé koncentrace: vzorek absorbance odhad intervalový odhad µg/l dolní mez horní mez 1 0,084 9,87 8,29 11,29 2 0,690 82,27 78,95 85,86 3 0,732 89,16 85,32 92,85 Limity přesnosti jsou: limita detekce yd: 0,041 xd: 5,34 Strana 20 (celkem 20)

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Střední průmyslová škola, Karviná. Protokol o zkoušce

Střední průmyslová škola, Karviná. Protokol o zkoušce č.1 Stanovení dusičnanů ve vodách fotometricky Předpokládaná koncentrace 5 20 mg/l navážka KNO 3 (g) Příprava kalibračního standardu Kalibrace slepý vzorek kalibrační roztok 1 kalibrační roztok 2 kalibrační

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat Kalibrace a limity její přesnosti Semestrální práce 2009 RNDr. Markéta

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Posouzení linearity kalibraèní závislosti

Posouzení linearity kalibraèní závislosti Posouzení linearity kalibraèní závislosti Ludìk Dohnal Referenèní laboratoø pro klinickou biochemii,úkbld 1.LF UK a VFN, Karlovo nám. 32, 12111 Praha 2, ludek.dohnal@lf1.cuni.cz Paul Faigl FCDD, University

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Obecné zásady interpretace výsledků - chemické ukazatele

Obecné zásady interpretace výsledků - chemické ukazatele Obecné zásady interpretace výsledků - chemické ukazatele Ivana Pomykačová Konzultační den SZÚ Hodnocení rozborů vody Výsledek měření souvisí s: Vzorkování, odběr vzorku Pravdivost, přesnost, správnost

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 SOLVER UŽIVATELSKÁ PŘÍRUČKA Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 1. Solver Program Solver slouží pro vyhodnocení experimentálně naměřených dat. Základem

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

PŘÍRUČKA SPRÁVNÉHO ZPRACOVÁNÍ VÝSLEDKŮ A TVORBY PROTOKOLŮ

PŘÍRUČKA SPRÁVNÉHO ZPRACOVÁNÍ VÝSLEDKŮ A TVORBY PROTOKOLŮ PŘÍRUČKA SPRÁVNÉHO ZPRACOVÁNÍ VÝSLEDKŮ A TVORBY PROTOKOLŮ TATO PŘÍRUČKA VZNIKLA V RÁMCI PROJEKTU FONDU ROZVOJE VYSOKÝCH ŠKOL FRVŠ G6 1442/2013 PŘEDMLUVA Milí studenti, vyhodnocení výsledků a vytvoření

Více

OBCHOD S KOVOVÝM ŠROTEM (ČÁST 2)

OBCHOD S KOVOVÝM ŠROTEM (ČÁST 2) OBCHOD S KOVOVÝM ŠROTEM (ČÁST 2) Měď je rozšířený kov používaný například do počítačů, jako elektrické kabely, okapy, instalatérské prvky a všemožný spojovací materiál. Po mědi je tedy velká poptávka a

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Statistická analýza složek kvality bílého vína

Statistická analýza složek kvality bílého vína Statistická analýza složek kvality bílého vína Petr Voborník Fakulta informatiky a managementu, Katedra informatiky a kvantitativních metod Univerzita Hradec Králové, Rokitanského 62, 5 Hradec Králové,

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímní učební text vybrané příklady (srpen 01) Miloslav Suchánek Úkol č. 1 Maticové operace s využitím EXCELu V EXCELu jsou dvě důležité maticové operace, které nám pomohou

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd

Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd Prof. RNDr. Milan Meloun, DrSc. (Univerzita Pardubice, Pardubice) 20.-24. června 2011 Tato prezentace je spolufinancována

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Boltzmannův zákon. Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária Rakovská, mrakovska@ukf.sk. Praktický test teoretického zákona.

Boltzmannův zákon. Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária Rakovská, mrakovska@ukf.sk. Praktický test teoretického zákona. PROMOTE MSc POPIS TÉMATU FYZIKA 7 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Boltzmannův zákon Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária

Více

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU návod vznikl jako součást bakalářské práce Martiny Vidrmanové Fluorimetrie s využitím spektrofotometru SpectroVis Plus firmy Vernier (http://is.muni.cz/th/268973/prif_b/bakalarska_prace.pdf)

Více

Revidované referenční hodnoty pro sledované toxické prvky v krvi a moči české populace

Revidované referenční hodnoty pro sledované toxické prvky v krvi a moči české populace Revidované referenční hodnoty pro sledované toxické prvky v krvi a moči české populace Andrea Krsková Humánní biomonitoring současný stav a perspektivy SZÚ, 23. 11. 2011 Úvod v životním prostředí se vyskytuje

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Použití základních typů grafu v programu EXCEL

Použití základních typů grafu v programu EXCEL Použití základních typů grafu v programu EXCEL (doplňující výukový text, únor 2013) Václav Synek 1 Použití základních typů grafu v programu EXCEL Václav Synek Graf sloupcový Graf spojnicový Graf XY bodový

Více

SEMESTRÁLNÍ PRÁCE 3.5 Klasifikace analýzou vícerozměrných dat

SEMESTRÁLNÍ PRÁCE 3.5 Klasifikace analýzou vícerozměrných dat UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE LICENČNÍ STUDIUM - STATISTICKÉ ZPRACOVÁNÍ DAT SEMESTRÁLNÍ PRÁCE Ing. Věra Fialová BIOPHARM VÝZKUMNÝ ÚSTAV BIOFARMACIE A VETERINÁRNÍCH

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE)

Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE) V rámci projektu OPVK CZ.1.07/2.2.00/28.0021 Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE) se v roce 2015

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

x T 1 matici 45.53 25.22 57.81 12.39 11.88 36.09 22.15 7.52 &0.31 20.94 27.97 48.06 1.41 16.77 66.21 S 1 kovarianční matici 74.42 &9.52 37.

x T 1 matici 45.53 25.22 57.81 12.39 11.88 36.09 22.15 7.52 &0.31 20.94 27.97 48.06 1.41 16.77 66.21 S 1 kovarianční matici 74.42 &9.52 37. Vzorová úloha 4.7 Užití lineární diskriminační funkce Předpokládejme, že máme data o 2 třídách objektů tibetských lebek v úloze B4.14 Aglomerativní hierarchické shlukování při analýze lebek Tibeťanů: prvních

Více

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703).

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 1 Pracovní úkoly 1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 2. Určete dynamický vnitřní odpor Zenerovy diody v propustném směru při proudu 200 ma

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

Milan Bernauer, Bohumil Bernauer, Petr Št astný. dat. Ústav Anorganické Technologie. Obsah

Milan Bernauer, Bohumil Bernauer, Petr Št astný. dat. Ústav Anorganické Technologie. Obsah Milan Bernauer, Bohumil Bernauer, Petr Št astný Statistické zpracování naměřených dat Ústav Anorganické Technologie Obsah 1 Základní pojmy 1 1.1 Výběrové charakteristiky.............. 2 1.2 Aplikace výběrových

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12 Obsah Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11 Typografická konvence použitá v knize 12 1 Vybraná témata z Excelu pro techniky 13 Vzorce a funkce pro techniky 14 Vytvoření jednoduchého vzorce

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického 1 Pracovní úkol 1. Změřte V-A charakteristiky magnetronu při konstantním magnetickém poli. Rozsah napětí na magnetronu volte 0-200 V (s minimálním krokem 0.1-0.3 V v oblasti skoku). Proměřte 10-15 charakteristik

Více