Kalibrace a limity její přesnosti

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Kalibrace a limity její přesnosti"

Transkript

1 Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě Odbor hygienických laboratoří Karviná V Karviné dne Ing. Miluše Galuszková Strana 1 (celkem 20)

2 Předmět: 2.2 Kalibrace a limity její přesnosti Přednášející: Prof.RNDr. Milan Meloun, DrSc. Obsah Úloha 1. Lineární kalibrace:. Kalibrace přímkou metodou nejmenších čtverců 3 Regresní diagnostika 6 Kalibrace přímkou metodou nejmenších čtverců 8 po odstranění vlivných bodů Závěr 10 Úloha 2. Nelineární kalibrace: Kalibrace kvadratický spline 10 Závěr 13 Úloha 3. Rozlišení mezi lineární a nelineární kalibrací: Regresní diagnostika 14 Kalibrace přímkou metodou nejmenších čtverců 16 Kalibrace kvadratický spline 18 Kalibrace kvadratický spline 6 uzlů 19 Závěr 20 Strana 2 (celkem 20)

3 Úloha 1. Lineární kalibrace: U přímkové kalibrační závislosti vyčíslete bodový a intervalový odhad pro tři neznámé koncentrace a současně vyčíslete i limity přesnosti. Zadání Stanovení oxidů dusíku (NOx) v ovzduší se provádí fotometrickou metodou. Určete kalibrační přímku, kde x je koncentrace NOx v µg/ml a y je absorbance barevné reakce NOx s činidly při vlnové délce 540 nm. Z kalibrační křivky pak odhadněte koncentraci NOx (x 1, x 2 x 3 ) ve vzorcích, u kterých byla naměřena absorbance y 1 = 0,227, y 2 = 0,031, y 3 = 0,454 Data: x ( µg/ml) 0,20 0,30 0,40 0,50 0,60 y 0,059 0,089 0,122 0,157 0,187 x ( µg/ml) 0,80 1,00 1,20 1,40 1,60 y 0,246 0,308 0,372 0,426 0,480 Program: Modul: Řešení: ADSTAT Kalibrace 1.Kalibrace přímkou metodou nejmenších čtverců 2.Regresní diagnostika Vyšetření vlivných bodů pomocí diagnostických grafů 3.Kalibrace přímkou metodou nejmenších čtverců po odstranění vlivných bodů 1. Kalibrace přímkou metodou nejmenších čtverců Název: Program: Modul: NOx v ovzduší ADSTAT Kalibrace V S T U P PODMÍNKY Hladina významnosti, alpha : Počet bodů, n : 10 Kvantil Studentova rozdělení t(1-alpha,n-m) : Jméno výstupního souboru : NOX.TXT Strana 3 (celkem 20)

4 V Ý S T U P Obr.1 Kalibrační přímka 1 STATISTICKÉ CHARAKTERISTIKY PROMĚNNÝCH: Proměnná Průměr Směrodatná odchylka Var.koef x E E y E E Součty čtverců Sxx: E+00 Syy: E-01 Sxy: E-01 SumX^2: E+00 SumY^2: E-01 SumXY: E+00 Korelační koeficient: PARAMETRY KALIBRACE: Parametr Odhad Směrodatná odchylka t-kritérium Test H0: B[j] = 0 vs. HA: B[j] <> 0 Hypotéza H0 Hladina významnosti úsek E E E-01 Akceptována 0,487 Směrnice E E E+02 Zamítnuta 0,000 Strana 4 (celkem 20)

5 ANALÝZA REZIDUÍ: Bod Měřená hodnota Predikovaná hodnota Absolutní reziduum Relativní reziduum i yexp[i] yvyp[i] e[i] er[i] E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00 Reziduální součet čtverců RSC 5038E-04 Průměr absolutních hodnot reziduí, Me E-03 Průměr relativních reziduí, Mer[%] Odhad reziduálního rozptylu, s^2(e) E-05 Odhad směrodatné odchylky reziduí, s(e) E-03 KALIBRAČNÍ MEZE: Kritická úroveň yc: E-03 xc: E-02 Limita detekce yd: E-02 xd: E-02 Mez stanovitelnosti ys: E-02 xs: E-01 KALIBRAČNÍ TABULKA: Měřená hodnota Přímý odhad Naszodiho odhad Konfidenční interval yexp[i] xvyp[i] xvyp[i] dolní mez horní mez Llxvyp[i] Luxvyp[i] E E E E E E E E E E E E E E E+00 Strana 5 (celkem 20)

6 2. Regresní diagnostika Vyšetření vlivných bodů pomocí diagnostických grafů Program: Modul: Název: ADSTAT LINEÁRNÍ REGRESE Regresní diagnostika NOx1 V S T U P ZVOLENÁ STRATEGIE REGRESNÍ ANALÝZY: Omezení, P : E-34 Transformace : Ne Váhy : Ne Absolutní člen zahrnut: Ano PODMÍNKY A KVANTILY PRO STATISTICKÉ TESTY: Hladina významnosti, alfa : Počet bodů, n : 10 Počet parametrů, m : 2 Kvantil Studentova rozdělení t(1-alpha/2,n-m) : Kvantil rozd. Chí-kvadrát Chi-square(1-alpha,m) : INDIKACE VLIVNÝCH BODŮ: Standardizované Jackknife Predikované Diagonální Bod reziduum reziduum reziduum prvky i es[i] ej[i] ep[i] H[i,i] E E+00* E E-01* (*indikuje odlehlý nebo vlivný bod) Obr.2 Graf predikovaných rezidui Strana 6 (celkem 20)

7 Obr.3 Williamsův graf Obr.4 L R graf Závěr vyšetření vlivných bodů pomocí diagnostických grafů: V datech se vyskytuje podezřelý bod č.8. Odlehlý bod č.10 ze souboru odstraníme a z takto upravených dat získáme kalibrační přímku a vypočteme limitu detekce a neznámé koncentrace x 1,x 2, x 3. Strana 7 (celkem 20)

8 3. Kalibrace přímkou metodou nejmenších čtverců Název: Program: Modul: PODMÍNKY NOx v ovzduší ADSTAT Kalibrace V S T U P Hladina významnosti, alpha : Počet bodů, n : 9 Kvantil Studentova rozdělení t(1-alpha,n-m) : Jméno výstupního souboru : NOX1.TXT VSTUPNÍ DATA x ( µg/ml) 0,20 0,30 0,40 0,50 0,60 y 0,059 0,089 0,122 0,157 0,187 x ( µg/ml) 0,80 1,00 1,20 1,40 y 0,246 0,308 0,372 0,426 Obr.5 Kalibrační přímka 2 Strana 8 (celkem 20)

9 V Ý S T U P STATISTICKÉ CHARAKTERISTIKY PROMĚNNÝCH: Proměnná Průměr Směrodatná odchylka Var.koef x E E y E E Součty čtverců Sxx: E+00 Syy: E-01 Sxy: E-01 SumX^2: E+00 SumY^2: E-01 SumXY: E+00 Korelační koeficient: PARAMETRY KALIBRACE: Parametr Odhad Směrodatná odchylka t-kritérium Test H0: B[j] = 0 vs. HA: B[j] <> 0 Hypotéza H0 Hladina významnosti úsek E E E-01 Akceptována Směrnice E E E+02 Zamítnuta ANALÝZA REZIDUÍ: Bod Měřená hodnota Predikovaná hodnota Absolutní reziduum Relativní reziduum i yexp[i] yvyp[i] e[i] er[i] E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00 Reziduální součet čtverců RSC E-05 Průměr absolutních hodnot reziduí, Me E-03 Průměr relativních reziduí, Mer[%] Odhad reziduálního rozptylu, s^2(e) E-06 Odhad směrodatné odchylky reziduí, s(e) E-03 KALIBRAČNÍ MEZE: Kritická úroveň yc: E-03 xc: E-02 Limita detekce yd: E-03 xd: E-02 Mez stanovitelnosti ys: E-02 xs: E-01 Strana 9 (celkem 20)

10 KALIBRAČNÍ TABULKA: Měřená hodnota Přímý odhad Naszodiho odhad Konfidenční interval yexp[i] xvyp[i] xvyp[i] dolní mez Llxvyp[i] horní mez Luxvyp[i] E E E E E E E E E E E E E E E+00 Závěr kalibrace přímkou metodou nejmenších čtverců: Odstraněním vlivného bodu č.10 jsme dosáhli laboratoří požadovanou limitu detekce yd = 0,01, xd = 0,03. Závěr: V tabulce jsou uvedeny bodové a intervalové odhady pro tři neznámé koncentrace, které jsme vyčíslili z přímkové kalibrační závislosti: vzorek absorbance přímý odhad Naszodiho odhad intervalový odhad / µg/ml µg/ml µg/ml dolní mez horní mez 1 0,227 0,739 0,739 0,715 0, ,031 0,102 0,102 0,075 0, ,454 1,48 1,48 1,45 1,50 Limity přesnosti kalibrační přímky stanovení NOx v ovzduší jsou: limita detekce yd: E-03 xd: E-02 mez stanovitelnosti ys: E-02 xs: E-01 Strana 10 (celkem 20)

11 Úloha 2. Nelineární kalibrace: U nelineární (křivkové) kalibrační závislosti vyčíslete bodový a intervalový odhad pro tři neznámé koncentrace a současně vyčíslete i limity přesnosti. Zadání Vápník v podzemích vodách se stanovuje metodou AAS. Jedná se o nelineární kalibraci. Vytvořte kalibrační křivku, kde x je koncentrace vápníku v mg/l a y je absorbance. Z kalibrační křivky pak odhadněte koncentraci vápníku x (x 1, x 2 x 3 ) vzorcích, u kterých byla naměřena absorbance y 1 = 0,084, y 2 =0,216, y 3 = 0,423 Data: x ( mg/l) 5,00 10,0 15,0 20,0 25,0 y 0,084 0,132 0,221 0,280 0,346 x ( mg/l) 30,0 40,0 50,0 60,0 70,0 y 0,419 0,519 0,602 0,654 0,695 Program: Modul: Řešení: Název: ADSTAT Kalibrace Kvadratický spline Vapnik v podzemnich vodach V S T U P PODMÍNKY: Počet bodů, n : 10 Počet uzlů, m : 2 Strategie výběru uzlů : Konstantní uzlové intervaly Jméno výstupního souboru : VAPNIK.TXT HODNOTY UZLŮ: a :5.0000E+00 k[ 1] : E+01 k[ 2] : E+01 b : E+01 Strana 11 (celkem 20)

12 V Ý S T U P Obr.1 Kalibrační křivka PARAMETRY KALIBRACE: Koeficienty rovnice: f[i]*x^2+g[i]*x+h[i] pro k[i-1] < x <= k[i] k[i] f[i] g[i] h[i] E E E E E E E E E E E E-02 ANALÝZA REZIDUÍ: Bod Měřená hodnota Predikovaná hodnota Absolutní reziduum Relativní reziduum i yexp[i] yvyp[i] e[i] er[i] E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-02 Strana 12 (celkem 20)

13 Reziduální součet čtverců RSC E-04 Průměr absolutních hodnot reziduí, Me E-03 Průměr relativních reziduí, Mer[%] Odhad reziduálního rozptylu, s^2(e) E-05 Odhad směrodatné odchylky reziduí, s(e) E-03 ANALÝZA DERIVACÍ A INTEGRÁLŮ: Bod Predikovaná hodnota První derivace Druhá derivace Integrál i Yvyp[i] der1[i] der2[i] int[i] KALIBRAČNÍ MEZE: E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+01 Kritická úroveň yc: E-02 xc: E+00 Limita detekce yd: E-02 xd: E+00 KALIBRAČNÍ TABULKA: Měřená hodnota yexp[i] Inverzní odhad xvyp[i] Konfidenční interval dolní mez Llxvyp[i] horní mez Luxvyp[i] E E E E E E E E E E E E+02 Závěr: V tabulce jsou uvedeny bodové a intervalové odhady pro tři neznámé koncentrace, které jsme vyčíslili z kalibrační závislosti: vzorek absorbance odhad intervalový odhad / mg/l mg/l dolní mez horní mez 1 0, ,75 6,55 2 0,216 15,25 14,39 16,16 3 0,423 30,68 29,70 104,9 Limity přesnosti kalibrační křivky stanovení vápníku v podzemních vodách jsou: limita detekce yd: 0,068 xd: 4,23 Strana 13 (celkem 20)

14 Úloha 3. Rozlišení mezi lineární a nelineární kalibrací U experimentální kalibrační závislosti rozhodněte o počtu uzlových bodů, typu splinové závislosti a současně vyčíslete bodový a intervalový odhad pro tři neznámé koncentrace a současně i limity přesnosti. Zadání Metodou atomové absorpční spektrometrie elektrotermickou atomizací je možné využitím speciální lampy (podle údajů výrobce ) měřit absorbance prvku v širokém rozsahu koncentrací. Pro využití v analýze odpadních vod byla proměřena kalibrace antimonu v rozsahu koncentrací µg/l. U této kalibrační křivky rozhodněte o počtu uzlových bodů, typu splinové závislosti. Vypočtěte bodový a intervalový odhad pro naměřené absorbance y 1 = 0,084, y 2 = 0,690, y 3 = 0,732. Vyčíslete limity přesnosti. Data: x ( µg/l) 5,00 10,0 20,0 30,0 40,0 50,0 75,0 y 0,038 0,083 0,180 0,270 0,338 0,443 0, x ( µg/l) y 0,789 0,909 1,053 1,190 1,396 1,520 1,548 Program: Modul: Řešení: ADSTAT Kalibrace 1.Regresní diagnostika Vyšetření vlivných bodů pomocí diagnostických grafů 2.Kalibrace přímkou metodou nejmenších čtverců 3.Kalibrace kvadratický spline volba uzlů Regresní diagnostika Vyšetření vlivných bodů pomocí diagnostických grafů Program: Modul: Název: 1 ADSTAT LINEÁRNÍ REGRESE Regresní diagnostika Antimon ultra lampa V S T U P ZVOLENÁ STRATEGIE REGRESNÍ ANALÝZY: Omezení, P : E-34 Transformace : Ne Váhy : Ne Absolutní člen zahrnut : Ano Strana 14 (celkem 20)

15 PODMÍNKY A KVANTILY PRO STATISTICKÉ TESTY: Hladina významnosti, alfa : Počet bodů, n : 14 Počet parametrů, m : 2 Kvantil Studentova rozdělení t(1-alpha/2,n-m) : Kvantil rozd. Chí-kvadrát Chi-square(1-alpha,m) : INDIKACE VLIVNÝCH BODŮ: Jackknife Diagonální Bod reziduum prvky i ej[i] H[i,i] (*indikuje odlehlý nebo vlivný bod) E+00* E-01* Obr.1 L - R graf Obr.2 Williamsův graf Strana 15 (celkem 20)

16 Obr.3 Pregibonův graf Závěr vyšetření vlivných bodů pomocí diagnostických grafů: Grafy ( obr.1-3) potvrdily výskyt odlehlého bodu č.14, který odstraníme. 2.Kalibrace přímkou metodou nejmenších čtverců Program: Modul: Řešení: ADSTAT Kalibrace Kalibrace přímkou metodou nejmenších čtverců V S T U P PODMÍNKY Hladina významnosti, alpha : Počet bodů, n : 13 Kvantil Studentova rozdělení t(1-alpha,n-m) : Jméno výstupního souboru : ANTIMON1.TXT PARAMETRY KALIBRACE: Parametr Odhad Směrodatná odchylka t-kritérium Test H0: B[j] = 0 vs. HA: B[j] <> 0 Hypotéza H0 Hladina významnosti úsek E E E+00 Zamítnuta Směrnice E E E+01 Zamítnuta ANALÝZA REZIDUÍ: Reziduální součet čtverců RSC E-02 Průměr absolutních hodnot reziduí, Me E-02 Průměr relativních reziduí, Mer[%] Odhad reziduálního rozptylu, s^2(e) E-03 Odhad směrodatné odchylky reziduí, s(e) E-02 Strana 16 (celkem 20)

17 KALIBRAČNÍ MEZE: Kritická úroveň yc: E-01 xc: E+00 Limita detekce yd: E-01 xd: E+01 Mez stanovitelnosti ys: 7399E-01 xs: E+01 KALIBRAČNÍ TABULKA: Měřená hodnota Přímý odhad Naszodiho odhad Konfidenční interval yexp[i] xvyp[i] xvyp[i] dolní mez horní mez Llxvyp[i] Luxvyp[i] E E E E E E E E E E E E E E E+01 Obr.4 Kalibrační přímka Závěr kalibrace přímkou metodou nejmenších čtverců: Navržený model kalibrace metodou nejmenších čtverců není vhodný pro atomovou absorpční spektrometrii v proměřovaném rozsahu koncentrací. Strana 17 (celkem 20)

18 3.Kalibrace kvadratický spline Program: Modul: Řešení: ADSTAT Kalibrace Kvadratický spline Postupně volíme počet uzlů ( 0-7) a hledáme přijatelnou těsnost proložení, to je sledujeme vzhled kalibrační křivky a porovnáváme odhady směrodatné odchylky reziduí. Název: Antimon ultra lampa V S T U P PODMÍNKY: Počet bodů, n : 13 Počet uzlů, m : 0-7 Strategie výběru uzlů : Konstantní uzlové intervaly Jméno výstupního souboru : ANTIMON2.TXT Grafické porovnání kalibračních křivek např.: Obr.5.1. Kvadratický spline 0 uzlů Obr.5.2 Kvadratický spline 5 uzlů Tabulka porovnání směrodatných odchylek s(e) odhad počet uzlů směrodatné odchylky s(e) 0 2, , , , , , , , Závěr : Postupně jsme v kvadratickém splinu volili 0-7 uzlů a hledali jsme přijatelnou těsnost proložení. Nejvhodnější je model se 6 uzly. Strana 18 (celkem 20)

19 Program: Modul: Řešení: Název: ADSTAT Kalibrace Kvadratický spline Antimon ultra lampa V S T U P PODMÍNKY: Počet bodů, n : 13 Počet uzlů, m : 6 Strategie výběru uzlů : Konstantní uzlové intervaly Jméno výstupního souboru : ANTIMON6.TXT HODNOTY UZLŮ: a :5.0000E+00 k[ 1] : E+01 k[ 2] : E+01 k[ 3] : E+01 k[ 4] : E+02 k[ 5] : E+02 k[ 2] : E+02 b : E+02 Obr.6 Kvadratický spline 6 uzlů Strana 19 (celkem 20)

20 V Ý S T U P ANALÝZA REZIDUÍ: Reziduální součet čtverců RSC E-04 Průměr absolutních hodnot reziduí, Me E-03 Průměr relativních reziduí, Mer[%] Odhad reziduálního rozptylu, s^2(e) E-05 Odhad směrodatné odchylky reziduí, s(e) E-03 KALIBRAČNÍ MEZE: Kritická úroveň yc: E-02 xc: E+00 Limita detekce yd: E-02 xd: E+00 KALIBRAČNÍ TABULKA: Měřená hodnota yexp[i] Inverzní odhad xvyp[i] Konfidenční interval dolní mez Llxvyp[i] horní mez Luxvyp[i] E E E E E E E E E E E E+02 Závěr: Pro kalibrační závislost stanovení antimonu v odpadních vodách metodou atomové absorpční spektrometrie byla zvolena závislost kvadratický spline pro optimální počet uzlů 6. V tabulce jsou uvedeny bodové a intervalové odhady pro tři neznámé koncentrace: vzorek absorbance odhad intervalový odhad µg/l dolní mez horní mez 1 0,084 9,87 8,29 11,29 2 0,690 82,27 78,95 85,86 3 0,732 89,16 85,32 92,85 Limity přesnosti jsou: limita detekce yd: 0,041 xd: 5,34 Strana 20 (celkem 20)

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3)

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3) KALIBRACE Chemometrie I, David MILDE Definice kalibrace: mezinárodní metrologický slovník (VIM 3) Činnost, která za specifikovaných podmínek v prvním kroku stanoví vztah mezi hodnotami veličiny s nejistotami

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Tabulka 1 Příklad dat pro kalibraci

Tabulka 1 Příklad dat pro kalibraci Kalibrace Menu: QCExpert Kalibrace Modul Kalibrace je určen především pro analytické laboratoře a metrologická pracoviště. Nabízí kalibrační modely pro lineární a nelineární kalibrační závislosti s možností

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat

Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat DOMINIKA BURKOŇOVÁ 4.ročník 2000/2001 Dominika Burkoňová Příklad č.1

Více

Střední průmyslová škola, Karviná. Protokol o zkoušce

Střední průmyslová škola, Karviná. Protokol o zkoušce č.1 Stanovení dusičnanů ve vodách fotometricky Předpokládaná koncentrace 5 20 mg/l navážka KNO 3 (g) Příprava kalibračního standardu Kalibrace slepý vzorek kalibrační roztok 1 kalibrační roztok 2 kalibrační

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

Předmět: 1.1 Využití tabulkového procesu jako laboratorního deníku Přednášející: Doc. Ing. Stanislava Šimonová, Ph.D., Doc. Ing. Milan Javůrek, CSc.

Předmět: 1.1 Využití tabulkového procesu jako laboratorního deníku Přednášející: Doc. Ing. Stanislava Šimonová, Ph.D., Doc. Ing. Milan Javůrek, CSc. Předmět: 1.1 Využití tabulkového procesu jako laboratorního deníku Přednášející: Doc. Ing. Stanislava Šimonová, Ph.D., Doc. Ing. Milan Javůrek, CSc. Zadání: Do příštího soustředění předložte ke klasifikaci

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat Kalibrace a limity její přesnosti Semestrální práce 2009 RNDr. Markéta

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Popis metod CLIDATA-GIS. Martin Stříž

Popis metod CLIDATA-GIS. Martin Stříž Popis metod CLIDATA-GIS Martin Stříž Říjen 2008 Obsah 1CLIDATA-SIMPLE...3 2CLIDATA-DEM...3 2.1Metodika výpočtu...3 2.1.1Výpočet regresních koeficientů...3 2.1.2 nalezených koeficientu...5 2.1.3Výpočet

Více

Posouzení linearity kalibraèní závislosti

Posouzení linearity kalibraèní závislosti Posouzení linearity kalibraèní závislosti Ludìk Dohnal Referenèní laboratoø pro klinickou biochemii,úkbld 1.LF UK a VFN, Karlovo nám. 32, 12111 Praha 2, ludek.dohnal@lf1.cuni.cz Paul Faigl FCDD, University

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

VYUŽITÍ A VALIDACE AUTOMATICKÉHO FOTOMETRU V ANALÝZE VOD

VYUŽITÍ A VALIDACE AUTOMATICKÉHO FOTOMETRU V ANALÝZE VOD Citace Kantorová J., Kohutová J., Chmelová M., Němcová V.: Využití a validace automatického fotometru v analýze vod. Sborník konference Pitná voda 2008, s. 349-352. W&ET Team, Č. Budějovice 2008. ISBN

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Zobecněná analýza rozptylu, více faktorů a proměnných

Zobecněná analýza rozptylu, více faktorů a proměnných Zobecněná analýza rozptylu, více faktorů a proměnných Menu: QCExpert Anova Více faktorů Zobecněná analýza rozptylu (ANalysis Of VAriance, ANOVA) umožňuje posoudit do jaké míry ovlivňují kvalitativní proměnné

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Přednáška č.7 Ing. Sylvie Riederová

Přednáška č.7 Ing. Sylvie Riederová Přednáška č.7 Ing. Sylvie Riederová 1. Aplikace klasifikace nákladů na změnu objemu výroby 2. Modelování nákladů Podstata modelování nákladů Nákladové funkce Stanovení parametrů nákladových funkcí Klasifikační

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Regresní analýza doplnění základů Vzhledem k požadavku Vašich kolegů zařazuji doplňující partii o regresní

Více

Obecné zásady interpretace výsledků - chemické ukazatele

Obecné zásady interpretace výsledků - chemické ukazatele Obecné zásady interpretace výsledků - chemické ukazatele Ivana Pomykačová Konzultační den SZÚ Hodnocení rozborů vody Výsledek měření souvisí s: Vzorkování, odběr vzorku Pravdivost, přesnost, správnost

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

(n, m) (n, p) (p, m) (n, m)

(n, m) (n, p) (p, m) (n, m) 48 Vícerozměrná kalibrace Podobně jako jednorozměrná kalibrace i vícerozměrná kalibrace se používá především v analytické chemii Bude vysvětlena na příkladu spektroskopie: cílem je popis závislosti mezi

Více

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR KORELACE A REGRESE 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/..00/8.001)

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 SOLVER UŽIVATELSKÁ PŘÍRUČKA Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 1. Solver Program Solver slouží pro vyhodnocení experimentálně naměřených dat. Základem

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,

Více

4.1 Metoda horizontální a vertikální finanční analýzy

4.1 Metoda horizontální a vertikální finanční analýzy 4. Extenzívní ukazatelé finanční analýzy 4.1 Metoda horizontální a vertikální finanční analýzy 4.1.1 Horizontální analýza (analýza vývojových trendů -AVT) AVT = časové změny ukazatelů (nejen absolutních)

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika? Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

DOOSAN Škoda Power s. r. o. a Západočeská univerzita v Plzni ŘÍZENÍ AERODYNAMICKÉHO TUNELU PRO KALIBRACI TLAKOVÝCH SOND

DOOSAN Škoda Power s. r. o. a Západočeská univerzita v Plzni ŘÍZENÍ AERODYNAMICKÉHO TUNELU PRO KALIBRACI TLAKOVÝCH SOND DOOSAN Škoda Power s. r. o. a Západočeská univerzita v Plzni ŘÍZENÍ AERODYNAMICKÉHO TUNELU PRO KALIBRACI TLAKOVÝCH SOND Autor práce: Ing. Lukáš Kanta Obsah prezentace 1. Seznámení s aerodynamickým kalibračním

Více

1 DATA: CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ. 1.5 Úlohy. 1.5.1 Analýza farmakologických a biochemických dat

1 DATA: CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ. 1.5 Úlohy. 1.5.1 Analýza farmakologických a biochemických dat 1 DATA: CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ 1.5 Úlohy Úlohy jsou rozděleny do čtyř kapitol: B1 (farmakologická a biochemická data), C1 (chemická a fyzikální data), E1 (environmentální,

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Validace sérologických testů výrobcem. Vidia spol. s r.o. Ing. František Konečný IV/2012

Validace sérologických testů výrobcem. Vidia spol. s r.o. Ing. František Konečný IV/2012 Validace sérologických testů výrobcem Vidia spol. s r.o. Ing. František Konečný IV/2012 Legislativa Zákon č. 123/2000 Sb. o zdravotnických prostředcích ve znění pozdějších předpisů Nařízení vlády č. 453/2004

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Příloha P.1 Mapa větrných oblastí

Příloha P.1 Mapa větrných oblastí Příloha P.1 Mapa větrných oblastí P.1.1 Úvod Podle metodiky Eurokódů se velikost zatížení větrem odvozuje z výchozí hodnoty základní rychlosti větru, definované jako střední rychlost větru v intervalu

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

OBCHOD S KOVOVÝM ŠROTEM (ČÁST 2)

OBCHOD S KOVOVÝM ŠROTEM (ČÁST 2) OBCHOD S KOVOVÝM ŠROTEM (ČÁST 2) Měď je rozšířený kov používaný například do počítačů, jako elektrické kabely, okapy, instalatérské prvky a všemožný spojovací materiál. Po mědi je tedy velká poptávka a

Více

u Pacova Metoda pro validaci koncentrace přízemního ozónu kontinuálně měřené na Atmosférické 1 / 23sta

u Pacova Metoda pro validaci koncentrace přízemního ozónu kontinuálně měřené na Atmosférické 1 / 23sta koncentrace přízemního ozónu kontinuálně měřené na Atmosférické stanici Křešín u Pacova Metoda pro validaci koncentrace přízemního ozónu kontinuálně měřené na Atmosférické 1 / 23sta Obsah Měření Kvalita

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup.

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. IX Název: Charakteristiky termistoru Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 17.10.2013 Odevzdal

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4 MĚŘENÍ Laboratorní cvičení z měření Měření oteplovací charakteristiky, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce ZPRACOVÁNÍ

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímní učební text vybrané příklady (srpen 01) Miloslav Suchánek Úkol č. 1 Maticové operace s využitím EXCELu V EXCELu jsou dvě důležité maticové operace, které nám pomohou

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více