UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ"

Transkript

1 UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti Precheza a.s. Přerov 2005 Ing. Miroslav Štrajt

2 1. Zadání Úloha 1. Lineární kalibrace: u přímkové kalibrační závislosti vyčíslete bodový a intervalový odhad pro tři neznámé koncentrace a současně vyčíslete i limity přesnosti. Úloha 2. Nelineární kalibrace: u nelineární (křivkové) kalibrační závislosti vyčíslete bodový a intervalový odhad pro tři neznámé koncentrace a současně vyčíslete i limity přesnosti. Úloha 3. Rozlišení mezi lineární a nelineární kalibrací: u experimentální kalibrační závislosti rozhodněte o počtu uzlových bodů, typu splinové závislosti a současně vyčíslete bodový a intervalový odhad pro tři neznámé koncentrace a současně i limity přesnosti. 2. Zpracované úlohy 2.1. Lineární kalibrace Zadání příkladu U suspenze TiO 2 je měřena koncentrace suspendovaných částic pomocí nefelometru. Proložte naměřené údaje vhodnou kalibrační křivkou a proveďte stanovení koncentrace z křivky pro hodnoty rozptylu:2100, 3200, 5200 FNU (formaline nefelometric unit). Data: (software Qc-Expert 2.5) c (g/dm 3 ) 0 0,005 0,0125 0,025 0,05 0,1 0,125 0,2 0,25 0,3 0,35 FNU 1, c (g/dm 3 ) 0,25 0,3 0,35 FNU Řešení příkladu Z charakteru dat je zřejmé, že jde o lineární závislost. Pokusíme se naměřené hodnoty proložit pomocí metody nejmenších čtverců. Před tím provedeme ověření předpokladů použití této metody a testování významnosti parametrů modelu Předběžný průzkum dat Pomocí metody nejmenších čtverců byly stanoveny parametry regresního modelu a jeho základní statistické charakteristiky (viz. tab. č.1). tabulka 1: Parametry modelu se statistickým testem Proměnná Odhad Směr.odchylka Závěr Pravděpodobnost Spodní mez Horní mez Úsek -47, , Nevýznamný 0, ,965 47,84082 Směrnice 22507,73 207, Významný , ,09 Ve výše uvedené tabulce je testována hypotéza, zda se odhad hodnoty úseku, resp. směrnice statisticky významně odlišuje od nuly. Součásti tabulky je 95% interval spolehlivosti a vzhledem k tomu, že v případě úseku obsahuje nulu, je úsek nevýznamný. To potvrzuje i hodnota P, která v tomto případě vyšla vyšší než 0,05. 2

3 V tabulce číslo 2 je proveden pro doplnění test významnosti modelu pomocí analýzy rozptylu. tabulka 2: ANOVA test významnosti modelu Zdroj variability St. volnosti SS MS F krit. P Regrese 1 1,19E+08 1,19E ,78 2,48E-19 Reziduální variabilita , ,91 Celková variabilita 13 1,19E+08 - SS suma čtverců a MS je příslušná suma čtverců vydělená stupněm volnosti Hodnota testovacího kriteria F krit. je 11804,78 a je větši než hodnota kvantilu F (1-alfa, m-1, n- m), která je 4,7472. Zvolený model je významný. V tabulce je to dokázáno hodnotou P (pravděpodobnost), která je menší než 0,05. tabulka 3:Statistické charakteristiky regrese Vícenásobný korelační koeficient R 0, Koeficient determinace R 2 0, Predikovaný korelační koeficient Rp 0, Střední kvadratická chyba predikce MEP : 11665,82 Akaikeho informační kritérium : 130,9231 Vhodnost zvoleného modelu potvrzují i vysoké hodnoty v tabulce č.3. Koeficient determinace je 0,9989, což znamená že cca 99,9% bodu leží na kalibrační křivce. Dále provedeme soubor testů, ve kterých ověříme, zda jsou splněny předpoklady použití metody nejmenších čtverců. Fisher-Snedecorův test významnosti modelu Hodnota kritéria F : 11804,78411 Kvantil F (1-alfa, m-1, n-m) : 4, Pravděpodobnost : 2, E-019 Závěr : Model je významný Scottovo kritérium multikolinearity Hodnota kritéria SC : 0, Závěr : Model vykazuje multikolinearitu! Cook-Weisbergův test heteroskedasticity Hodnota kritéria CW : 0, Kvantil Chi^2(1-alfa,1) : 3, Pravděpodobnost : 0, Závěr : Rezidua vykazují homoskedasticitu. Jarque-Berrův test normality Hodnota kritéria JB : 0, Kvantil Chi^2(1-alfa,2) : 5, Pravděpodobnost : 0, Závěr : Rezidua mají normální rozdělení. 3

4 Waldův test autokorelace Hodnota kritéria WA : 0, Kvantil Chi^2(1-alfa,1) : 3, Pravděpodobnost : 0, Závěr : Autokorelace je nevýznamná Durbin-Watsonův test autokorelace Hodnota kritéria DW : -1 Kritické hodnoty DW 0 Závěr : Negativní autokorelace reziduí není prokázána. Znaménkový test reziduí Hodnota kritéria Sg : 0, Kvantil N(1-alfa/2) : 1, Pravděpodobnost : 0, Závěr : V reziduích není trend. Model vykazuje multikolinaritu. Multikolinearita sama o sobě není porušením předpokladů použití metody nejmenších čtverců. Vede pouze při určování parametrů modelu (směrnice a úsek) k vysokým hodnotám rozptylu. V tomto případě ale nedosahuje kritické hranice. Závěrem tedy je, že použití metody nejmenších čtverců vhodné. Dále provedeme identifikaci případných odlehlých bodů. Nejprve pomocí hodnot rezidui uvedených v následující tabulce. tabulka 4: Analýza reziduí Index Standardní Jackknife Predikované Diag(Hii) Diag(H*ii) Cookova vzdál. 1 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,78 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Z hodnot Jackknife reziduí je vidět, že výběr neobsahuje odlehlé body. Je indikována pouze přítomnost významného bodu (č.6). To potvrzují i níže uvedené grafy. Na obrázku 1 je vidět přítomnost jednoho významného nikoliv odlehlého bodu (bod.č.6). Obr. č.3 indukuje přítomnost podezřelého bodu č.6. Bod č.6 je podezřely spolu s bodem č.11 i na obr. 4. Mezi grafy je i Q-Q graf reziduí- ten mimo potvrzeni splnění předpokladů normality reziduí indikuje rovněž přítomnost jednoho odlehlého bodu (bod č.6). 4

5 obrázek 1: Graf predikce E pred Predikce reziduí - Sheet E obrázek 2: L-R graf E2norm L-R graf - Sheet Hat-diagonal obrázek 3: MCulloh-Meterův graf obrázek 4:Pregibonův graf E std 8 McCulloh-Meterův graf - Sheet1 E2 norm 0.60 Pregibonův graf - Sheet LN(Hat-diagonal)n Hat-diagonal obrázek 5: Graf normality rezidui Q-rezidua 200 Q-Q graf reziduí - Sheet Q-teor Předpoklady použití metody nejmenších čtverců jsou splněny. Výběr neobsahuje odlehlé body. Úsek vychází statisticky nevýznamný Vlastní kalibrace Jako vhodný kalibrační vztah se na základě výše uvedených diagnostik jeví přímka s nulovým úsekem. Kalibrační rovnice má tvar: y=22331,51(±128,55)x, kde y je signál (FNU) a x je měřená hodnota (koncentrace), v závorce je uvedena hodnota směrodatné odchylky. 5

6 tabulka 5:Statistické charakteristiky regrese u zpřesněného modelu Vícenásobný korelační koeficient R 0, Koeficient determinace R 2 0, Predikovaný korelační koeficient Rp 0, Střední kvadratická chyba predikce MEP 11830,06 Akaikeho informační kritérium 130,2228 Pro úplnost uvádím výsledky testování regresního tripletu u zpřesněného modelu. Fisher-Snedecorův test významnosti modelu Hodnota kritéria F : 11653,54479 Kvantil F (1-alfa, m-1, n-m) : 4, Pravděpodobnost : 1, E-020 Závěr : Model je významný Cook-Weisbergův test heteroskedasticity Hodnota kritéria CW : 0, Kvantil Chi^2(1-alfa,1) : 3, Pravděpodobnost : 0, Závěr : Rezidua vykazují homoskedasticitu. Jarque-Berrův test normality Hodnota kritéria JB : 1, Kvantil Chi^2(1-alfa,2) : 5, Pravděpodobnost : 0, Závěr : Rezidua mají normální rozdělení. Waldův test autokorelace Hodnota kritéria WA : 0, Kvantil Chi^2(1-alfa,1) : 3, Pravděpodobnost : 0, Závěr : Autokorelace je nevýznamná Durbin-Watsonův test autokorelace Hodnota kritéria DW : -1 Kritické hodnoty DW 0 2 Závěr : Negativní autokorelace reziduí není prokázána. Znaménkový test reziduí Hodnota kritéria Sg : 0, Kvantil N(1-alfa/2) : 1, Pravděpodobnost : 0, Závěr : V reziduích není trend. V následující tabulce č.6 jsou uvedeny hodnoty kalibračních mezí. Kde Y je signál a X je měřená hodnota (koncentrace). Indexy mají následující význam- c-kritická úroveň (co je pod ní zaniká v šumu měření), d označuje limitu detekce (hodnota X d udává minimální koncentraci, kterou lze ještě s pravděpodobnosti 1-α odlišit od nulové hodnoty). Z hodnot v tabulce je patrné, že je možné pro naměřené hodnoty rozptylu provést určení koncentrace. 6

7 tabulka 6: Kalibrační meze Metoda Yc Yd Yq Xc Xd Metoda podle ISO , , ,3988 0, , Přímá metoda analytu 81, , ,5838 0, , Přímá metoda signálu, IUPAC 81, , ,6346 0, , Kombinovaná metoda Ebel,Kamm 79, , ,548 0, , Přistupme tedy k určení koncentrací. V tabulce č.7 jsou uvedeny jejich hodnoty spolu s příslušnými intervalovými odhady. tabulka 7:Kalibrační tabulka (95% intervaly spolehlivosti) Číslo vzorku Zpětný odhad Spodní mez Horní mez Naměřené hodnoty 1 0, , , , , , , , , obrázek 6: Kalibrační křivka FNU Regresní křivka - Sheet c (g/dm3) Závěr Jde o lineární závislost. Byly splněny předpoklady použití metody nejmenších čtverců. Výběr neobsahuje odlehlé body a všechny naměřené hodnoty leží nad hodnotami kalibračních mezí. Určené koncentrace jsou uvedeny v tabulce č Nelineární kalibrace Zadání příkladu Byly naměřeny následující data: X 2,8 9,7 17,3 27,8 36,9 43,5 53,7 Y 96,3 229,9 347,6 513,4 625,7 711,2 764,7 X 65, ,4 88,4 Y 828,9 844,9 844,9 855,6 Naměřené hodnoty mají jasně nelineární charakter. Proveďte nelineární kalibraci a určete hodnoty veličiny X pro tyto tři úrovně signálu Y:300, 450, 710. Software: Qc-expert 2.5 7

8 Vlastní kalibrace Jako nejvýhodnější se jeví kvadratický model popsaný rovnicí y=a.x 2 +b.x+c, kde a, b a c jsou konstanty modelu. Jejich hodnoty s 95% intervaly spolehlivosti jsou uvedeny v následující tabulce: tabulka 8:Parametry kvadratického modelu Parametr Odhad Sm. odchylka Spodní mez Horní mez c 38, , , , b 20, , , , a -0, , , , Z tabulky č.8 je patrné,že jde o dobré odhady vzhledem k nízkým hodnotám směrodatných odchylek. Intervalový odhad úseku neobsahuje nulu a tedy úsek je významný. Dále byly určeny hodnoty kalibračních mezí, které vypovídají o přesnosti měření a vhodnosti zvoleného modelu. tabulka 9: Kalibrační meze Kritická úroveň Yc: 67, Xc: 1, Limita detekce Yd: 93, Xd: 2, Z výše uvedených hodnot je patrné, že je možné provést určení hodnot pro zadané úrovně signálu. Dále uvádím kalibrační tabulku, ve které bylo provedeny nepřímé odhady x pro tři úrovně signálu Y. Součástí tabulky jsou 95% intervaly spolehlivosti. tabulka 10: Kalibrační tabulka Číslo vzorku Signál Zpětný odhad Spodní mez Horní mez , , , , , , , , , Obrázek 7: Kalibrační křivka Y Kalibrační závislost - Sheet X Závěr Byl zvolen kalibrační model y=38,9(±8,84)-0,1314(±0,005).x 2 +20,71(±0,465).x. V závorce jsou uvedeny sm. odchylky. Pro úrovně signálu 300, 450 a 710 byly určené příslušné hodnoty x, které jsou uvedeny v tabulce č

9 2.3. Rozlišení mezi lineární a nelineární kalibrací Zadání příkladu Na kontrolní filtraci na provoze Titanové běloby bylo provedeno proměření závislosti mezi výškou hladiny v produkčním žlabu kalolisů a průtokem titanového roztoku (viz. tabulka níže). Proložte naměřené body pomocí vhodné kalibrační závislosti a v případě nelinearity naměřených dat proveďte volbu optimálního typu splinu a v hodného počtu uzlových bodů. Data: Hladina (cm) 5,000 6,000 7,250 8,305 9,110 9,805 10,305 10,780 Průtok (m 3 /h) Hladina (cm) 11,220 11,610 11,944 Průtok (m 3 /h) Software: ADSTAT Řešení příkladu Z charakteru dat je zřejmé, že se nejedná o lineární závislost. To názorně potvrzuje uvedeny graf reziduí (viz. obr.8). Na obr.č.8 je dobře patrný významný trend v reziduích. Nelineární charakter dat dokresluje i prosté zobrazení naměřených bodu na obr.9. Obrázek 8: Graf reziduí R e z i d u a Hladina (cm) Obrázek 9: Závislost průtoku tit. roztoku průtok (m 3 /h) hladina (cm) V další fázi řešení provedeme rozhodnutí o tom zda použijeme při kalibraci lineární, kvadratický či kubický spline určíme optimální počet uzlových bodů. Za nejlepší kalibrační model se považuje takový, který má nejnižší limitu detekce koncentrace a odhad směrodatné odchylky reziduí při nejnižším počtu uzlových bodů. a) lineární spline parametry lineární spline uzlové body x c 3,750 2,655 3,3757 σe 0, , ,

10 b)kvadratický spline parametry kvadratický spline uzlové body x D 6,4145 8, ,217 σe 0, , , c) kubický spline parametry kubický spline uzlové body x D 9,213 15,084 - σ(e) 0, , ,07969 Na základě výše uvedených údajů se jeví jako nejvýhodnější model použití kvadratického splinu s jedním uzlovým bodem. Kalibrační rovnice má následující tvar: y=a x 2 +b x+c pro k[i-1] x k[i] Koeficienty rovnice jsou uvedeny v tabulce č.11. V tabulce č.12 jsou uvedeny hodnoty kalibračních mezí. V tabulce č.13 je uveden inverzní odhad pro hodnoty 9, 10 a 11 spolu s příslušnými intervalovými odhady. Tabulka 11:Hodnoty koeficientů kalibrační rovnice bod k[i] a b c 8,472 0, , , ,944 0, , ,908 Reziduální součet čtverců, RSC 0,04544 Průměr absolutních hodnot reziduí, Me 0,05648 Průměr relativních reziduí, Mer[%] 0,406 Odhad reziduálního rozptylu, s 2 (e) 0, Odhad směrodatné odchylky reziduí, s(e) 0, Tabulka 12:Hodnoty kalibračních mezí Kritická úroveň yc: 8, xc: 6, Limita detekce yd: 8, xd: 6, Tabulka 13:Kalibrační tabulka Měřená hodnota Inverzní odhad koncentrace Konfidenční interval y exp [i] x vyp [i] dolní mez Llxvyp[i] horní mez Luxvyp[i] 9 6, , , , , , , , ,

11 Závěr Na základě provedených statistických analýz se jako nejvhodnější model jeví kubický spline s jedním uzlovým bodem. U tohoto modelu je limita detekce 6,41 cm výšky hladiny titanového roztoku. Byl proveden inverzní odhad pro tři různé hodnoty určení intervalů spolehlivosti, viz. tabulka č.10 11

12 Obsah 1. Zadání Zpracované úlohy Lineární kalibrace Zadání příkladu Řešení příkladu Předběžný průzkum dat Vlastní kalibrace Závěr Nelineární kalibrace Zadání příkladu Vlastní kalibrace Závěr Rozlišení mezi lineární a nelineární kalibrací Zadání příkladu Řešení příkladu Závěr

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO a limity její přesnosti Seminární práce Monika Vejpustková leden 2016 OBSAH Úloha 1. Lineární kalibrace...

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti 005/006 Ing. Petr Eliáš 1. LINEÁRNÍ KALIBRACE 1.1 Zadání Povrchově upravená suspenze TiO je protiproudně promývána v kaskádě Dorrových usazováků. Nejvíce

Více

Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti

Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS 1. VÝPOČET OBSAHU

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015

Více

KALIBRACE A LIMITY JEJÍ PŘESNOSTI. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

KALIBRACE A LIMITY JEJÍ PŘESNOSTI. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie KALIBRACE A LIMITY JEJÍ PŘESNOSTI Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2016

Více

Úloha 1: Lineární kalibrace

Úloha 1: Lineární kalibrace Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé

Více

KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015

KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015 UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce KALIBRACE

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE

Více

Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )

Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte

Více

2.2 Kalibrace a limity její p esnosti

2.2 Kalibrace a limity její p esnosti UNIVERZITA PARDUBICE Òkolní rok 000/001 Fakulta chemicko-technologická, Katedra analytické chemie LICEN NÍ STUDIUM STATISTICKÉ ZPRACOVÁNÍ DAT PÌI MANAGEMENTU JAKOSTI P EDM T:. Kalibrace a limity její p

Více

Semestrální práce. 2. semestr

Semestrální práce. 2. semestr Licenční studium č. 89002 Semestrální práce 2. semestr PŘEDMĚT 2.2 KALIBRACE A LIMITY JEJÍ PŘESNOSTI Příklad 1 Lineární kalibrace Příklad 2 Nelineární kalibrace Příklad 3 Rozlišení mezi lineární a nelineární

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza

Více

Inovace bakalářského studijního oboru Aplikovaná chemie

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Kalibrace a limity její přesnosti Vedoucí licenčního studia Prof. RNDr. Milan Meloun,

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Tvorba nelineárních regresních

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Semestrální práce Licenční studium Galileo Interaktivní statistická analýza

Více

Tvorba nelineárních regresních

Tvorba nelineárních regresních Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Tvorba nelineárních regresních modelů v analýze dat Zdravotní ústav

Více

Semestrální práce. 2. semestr

Semestrální práce. 2. semestr Licenční studium č. 89002 Semestrální práce 2. semestr Tvorba lineárních regresních modelů při analýze dat Příklad 1 Porovnání dvou regresních přímek u jednoduchého lineárního regresního modelu. Počet

Více

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat Semestrální práce 1 3.3 Tvorba nelineárních regresních modelů v analýze dat Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného výzkumu Řež, a. s. Husinec Řež 130 250 68 Řež V Řeži, únor

Více

Příloha č. 1 Grafy a protokoly výstupy z adstatu

Příloha č. 1 Grafy a protokoly výstupy z adstatu 1 Příklad 3. Stanovení Si metodou OES Byly porovnávány naměřené hodnoty Si na automatickém analyzátoru OES s atestovanými hodnotami. Na základě testování statistické významnosti regresních parametrů (úseku

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 2.1 Tvorba lineárních regresních modelů při analýze dat Autor práce: Přednášející:

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Semestrální práce Licenční studium Galileo Předmět Nelineární regrese Jiří Danihlík Olomouc, 2016 Obsah... 1 Hledání vhodného

Více

Tvorba lineárních regresních modelů při analýze dat

Tvorba lineárních regresních modelů při analýze dat Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Tvorba lineárních regresních modelů při analýze dat Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS

Více

Fakulta chemicko technologická Katedra analytické chemie

Fakulta chemicko technologická Katedra analytické chemie Fakulta chemicko technologická Katedra analytické chemie Licenční studium statistické zpracování dat Tvorba lineárních a kalibračních modelů při analýze dat Pavel Valášek Školní rok 2001 02 OBSAH 1 POROVNÁNÍ

Více

Tvorba lineárních regresních modelů

Tvorba lineárních regresních modelů Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Tvorba lineárních regresních modelů při analýze dat Zdravotní ústav

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Tvorba nelineárních regresních modelů v analýze dat Vedoucí licenčního studia Prof. RNDr.

Více

Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese

Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese Závěrečná práce 12. licenčního studia Pythagoras Fakulta chemicko-technologická, katedra

Více

Univerzita Pardubice Fakulta chemicko-technologická. Licenční studium Statistické zpracování dat

Univerzita Pardubice Fakulta chemicko-technologická. Licenční studium Statistické zpracování dat Univerzita Pardubice Fakulta chemicko-technologická Licenční studium Statistické zpracování dat 3.3 Tvorba nelineárních regresních modelů v analýze dat RNDr. Lada Kovaříková České technologické centrum

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat Kalibrace a limity její přesnosti Semestrální práce 2009 RNDr. Markéta

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Tvorba lineárních regresních modelů při analýze dat

Tvorba lineárních regresních modelů při analýze dat Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO Tvorba lineárních regresních modelů při analýze dat Seminární práce Monika Vejpustková leden 2016

Více

Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba nelineárních regresních modelů v analýze dat. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.

Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba nelineárních regresních modelů v analýze dat. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Univerzita Pardubice SEMESTRÁLNÍ PRÁCE Tvorba nelineárních regresních modelů v analýze dat 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Úloha Nalezení vhodného modelu pro popis reakce TaqMan real-time PCR

Více

S E M E S T R Á L N Í

S E M E S T R Á L N Í Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu

Více

Univerzita Pardubice

Univerzita Pardubice Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Lineární regrese Ing. Jan Balcárek, Ph.D. vedoucí Centrálních laboratoří Precheza

Více

http: //meloun.upce.cz,

http: //meloun.upce.cz, Porovnání rozlišovací schopnosti regresní analýzy spekter a spolehlivosti Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Chemickotechnologická fakulta, Univerzita Pardubice, nám. s. Legií 565,

Více

Licenční studium Galileo: Statistické zpracování dat. Kalibrace a limity její přesnosti. Semestrální práce

Licenční studium Galileo: Statistické zpracování dat. Kalibrace a limity její přesnosti. Semestrální práce Licenční studium Galileo: Statistické zpracování dat Kalibrace a limity její přesnosti Semestrální práce Lenka Husáková Pardubice 2016 Obsah 1 Lineární kalibrace... 3 1.1 Zadání... 3 1.2 Data... 3 1.3

Více

Licenční studium Galileo: Statistické zpracování dat. Tvorba lineárních regresních modelů při analýze dat. Semestrální práce

Licenční studium Galileo: Statistické zpracování dat. Tvorba lineárních regresních modelů při analýze dat. Semestrální práce Licenční studium Galileo: Statistické zpracování dat Tvorba lineárních regresních modelů při analýze dat Semestrální práce Lenka Husáková Pardubice 2016 Obsah 1 Porovnání dvou regresních přímek u jednoduchého

Více

Tabulka č. 1 95%ní intervaly Úsek Směrnice model L1 L2 L1 L2 Leco1-0, , , ,15618 OES -0, , , ,21271

Tabulka č. 1 95%ní intervaly Úsek Směrnice model L1 L2 L1 L2 Leco1-0, , , ,15618 OES -0, , , ,21271 1 Příklad 1. Porovnání dvou regresních přímek Při výrobě automatových ocelí dané jakosti byla porovnávána závislost obsahu uhlíku v posledním zkušebním vzorku (odebraném z mezipánve na ZPO a analyzovaném

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium chemometrie na téma Statistické zpracování dat Semestrální práce ze 6. soustředění Předmět: 3.3 Tvorba nelineárních

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015 UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015

Více

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách

Více

ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 3.3 v analýze dat Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc Pro

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO Tvorba nelineárních regresních modelů v analýze dat Seminární práce Monika Vejpustková červen 2016

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce ANALÝZA

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Pythagoras Statistické zpracování experimentálních dat Semestrální práce ANOVA vypracoval: Ing. David Dušek

Více

Semestrální práce str. 1. Semestrální práce. 2.1 Tvorba lineárních regresních modelů při analýze dat. 2.3 Kalibrace a limity její přesnosti

Semestrální práce str. 1. Semestrální práce. 2.1 Tvorba lineárních regresních modelů při analýze dat. 2.3 Kalibrace a limity její přesnosti Semestrální práce str. Semestrální práce 2. Tvorba lineárních regresních modelů při analýze dat 2.3 Kalibrace a limity její přesnosti Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného

Více

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3)

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3) KALIBRACE Chemometrie I, David MILDE Definice kalibrace: mezinárodní metrologický slovník (VIM 3) Činnost, která za specifikovaných podmínek v prvním kroku stanoví vztah mezi hodnotami veličiny s nejistotami

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat ANOVA Zdravotní ústav se sídlem v Ostravě Odbor hygienických laboratoří

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat

Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat DOMINIKA BURKOŇOVÁ 4.ročník 2000/2001 Dominika Burkoňová Příklad č.1

Více

Posouzení linearity kalibrační závislosti

Posouzení linearity kalibrační závislosti Posouzení linearity kalibrační závislosti Luděk Dohnal Referenční laboratoř pro klinickou biochemii,úkbld 1.LF UK a VFN, Karlovo nám. 32, 12111 Praha 2, ludek.dohnal@lf1.cuni.cz Paul Faigl FCDD, University

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti

Více

Plánování experimentu

Plánování experimentu Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces

Více

Analýza rozptylu ANOVA

Analýza rozptylu ANOVA Licenční studium Galileo: Statistické zpracování dat ANOVA ANOVA B ANOVA P Analýza rozptylu ANOVA Semestrální práce Lenka Husáková Pardubice 05 Obsah Jednofaktorová ANOVA... 3. Zadání... 3. Data... 3.3

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Úlohy. Kompendium 2012, Úloha B8.01a, str. 785, Model y = P1 * exp( P2/(B801x + P3)

Úlohy. Kompendium 2012, Úloha B8.01a, str. 785, Model y = P1 * exp( P2/(B801x + P3) Úlohy Kompendium 2012, Úloha B8.01a, str. 785, Model y = P1 * exp( P2/(B801x + P3) Úloha B8.01 Závislost hmotnosti očních čoček na stáří králíků Dudzinksi a Mykytowycz (1961) ukázali, že hmotnost vysušených

Více

FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE. Semestrální práce z CHEMOMETRE. TOMÁŠ SYROVÝ 4.ročník

FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE. Semestrální práce z CHEMOMETRE. TOMÁŠ SYROVÝ 4.ročník FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE Semestrální práce z CHEMOMETRE TOMÁŠ SYROVÝ 4.ročník OBSAH: 1.Příklad C112 CHYBY A VARIABILITA INSTRUMENTÁLNÍCH MĚŘENÍ... 3 2. Příklad H207 PRŮZKUMOVÁ

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah

Více

Aproximace a vyhlazování křivek

Aproximace a vyhlazování křivek Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Přednášející: Prof. Ing. Jiří Militký, Csc 1. SLEDOVÁNÍ ZÁVISLOSTI HODNOTY SFM2 NA BARVIVOSTI

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.

Více

Statistická analýza. jednorozměrných dat

Statistická analýza. jednorozměrných dat Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie icenční studium chemometrie Statistické zpracování dat Statistická analýza jednorozměrných dat Zdravotní ústav se sídlem v

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Tabulka 1 Příklad dat pro kalibraci

Tabulka 1 Příklad dat pro kalibraci Kalibrace Menu: QCExpert Kalibrace Modul Kalibrace je určen především pro analytické laboratoře a metrologická pracoviště. Nabízí kalibrační modely pro lineární a nelineární kalibrační závislosti s možností

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.

POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. POLYNOMICKÁ REGRESE Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. y = b 0 + b 1 x + b 2 x 2 + + b n x n kde b i jsou neznámé parametry,

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v

Více

PYTHAGORAS Statistické zpracování experimentálních dat

PYTHAGORAS Statistické zpracování experimentálních dat UNIVERZITA PARDUBICE Fakulta chemicko-technologická, Katedra analytické chemie SEMESTRÁLNÍ PRÁCE Květen 2008 Licenční studium PYTHAGORAS Statistické zpracování experimentálních dat Předmět 1.4 ANOVA a

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.3 Tvorba nelineárních regresních modelů v analýze dat Semestrální

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

12. licenční studium Statistické zpracování dat při managementu jakosti. Lenka Hromádková

12. licenční studium Statistické zpracování dat při managementu jakosti. Lenka Hromádková 12. licenční studium Statistické zpracování dat při managementu jakosti Lenka Hromádková Desinfekční přípravky slouží k zneškodňování mikroorganismů (MO) vyvolávající onemocnění člověka nebo zvířat Druhy

Více

LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica

LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná

Více

Plánování experimentu

Plánování experimentu SEMESTRÁLNÍ PRÁCE Plánování experimentu 05/06 Ing. Petr Eliáš 1. NÁVRH NOVÉHO VALIVÉHO LOŽISKA 1.1 Zadání Při návrhu nového valivého ložiska se v prvotní fázi uvažovalo pouze o změně designu věnečku (parametr

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je = Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více