Náhled testu. Přijímací zkouška magisterského studia. konečný automat bez zbytečných stavů, který přijímá jazyk popsaný tímto výrazem, má:
|
|
- Petra Slavíková
- před 6 lety
- Počet zobrazení:
Transkript
1 1 z :03 Přijímací zkouška magisterského studia Moodle Test MSP Testy VzorTest-2 Pokus 1 Jste přihlášeni jako Josef Kolář (Odhlásit se) Náhled testu 1 Je dán regulární výraz. Minimální deterministický konečný automat bez zbytečných stavů, který přijímá jazyk popsaný tímto výrazem, má: stavy stavů stavů stavy 2 --/5 Jazyk lze přijímat konečným automatem. je regulární. je totožný s jazykem popsaným regulárním výrazem. lze přijímat zásobníkovým automatem. 3 Multiplikativní inverze čísla 3 modulo 6 je -2 neexistuje 2 3
2 2 z :03 4 Kryptografické hešovací funkce se používají pro zajištění integrity zprávy pro bezpečnou správu hesel jako součást digitálního podpisu pro autentizaci 5 Transakční žurnál (logfile, WAL) v relační databázi obsahuje provedené DDL příkazy provedené DCL příkazy provedené DML příkazy změnové vektory e. synchronizační známku (SCN) 6 Data Control Language (SQL DCL) obsahuje příkazy COMMIT, ROLLBACK obsahuje příkazy COMMIT,GRANT, obsahuje příkazy GRANT, REVOKE obsahuje příkazy ROLLBACK, GRANT 7 Nechť a jsou čtvercové matice se stejným počtem řádků. Která z následujících tvrzení jsou pravdivá? je regulární právě když je regulární právě když
3 3 z :03 8 Mějme vektorový prostor se standardním skalárním součinem. Určete úhel vektorů a : 9 Rozhodněte, které z následujících dvojic formulí výrokové logiky jsou logicky ekvivalentní. 10 Nalezněte negaci formule predikátové logiky. 11 Která z následujících tvrzení platí pro systém souborů FAT? Velikost FAT tabulky je úměrná počtu datových bloků. Obsah souboru je uložen ve FAT tabulce. Velikost FAT tabulky není závislá na velikosti diskové oblasti. FAT tabulka obsahuje atributy datových bloků.
4 est MSP: VzorTest-2 4 z :03 12 Na diskové oblasti Z je systém souborů FAT. Adresáře zabírají pouze jeden datový blok. V paměti je pouze tabulka FAT a kořenový adresář. Kolik diskových přístupů čtení musíme minimálně udělat, abychom načetli první datový blok s obsahem souboru Z:\A\B\file.txt? Zpracování binárního stromu v pořadí preorder se rozumí následující: zpracují se prvky stromu ve stejném pořadí, v jakém byly do stromu vloženy zpracuje se nejprve levý podstrom, pak pravý podstrom a pak kořen zpracují se prvky stromu v uspořádání zleva doprava zpracuje se nejprve kořen, pak jeho levý podstrom a pak pravý podstrom 14 Které z následujících adres jsou platnými adresami v protokolu IPv4: Která následující tvrzení jsou pravdivá: Navázání spojení v protokolu UDP je ralizováno přenosem celkem 3 paketů.
5 5 z :03 Protokol TCP může posílat do sítě další fragmenty dat, i když ještě nebyl příjem naposledy odeslaných dat potvrzen. Protokoly TCP a UDP pracují na 3. (síťové) vrstvě modelu ISO/OSI. Ukončení spojení v protokolu UDP není explicitně oznamováno. 16 Které z následujících spojitých rozdělení nemá paměť? Normální rozdělení. Rovnoměrné rozdělení. Rozdělení Chi-kvadrát. Exponenciální rozdělení. 17 Ve sportovní základní škole je 40% děvčat. Z dívek 20% a z chlapců 10% reprezentuje školu ve školním týmu košíkové. Vybereme náhodně jednoho žáka ze školního týmu košíkové. Jaká je pravděpodobnost, že vybraný žák je chlapec? 8/15 6/14 8/14 6/15 18 Interpretace osmibitového operandu v přímém kódu je: -35 (desítkově) +181 (desítkově) -53 (desítkově) -35 (hexadecimálně) 19 Uvažujme binární relaci na množině.
6 6 z :03 --/5 Určete, pro které z následujících relací je relace ekvivalencí na. (Symbolem označujeme relaci identita na množině ) žádná z uvedených 20 Uvažujme binární relaci na množině. Určete, která z následujících relací je ekvivalencí na. (Symbolem označujeme relaci identita na množině, symbol značí transitivní uzávěr relace ) žádná z uvedených Dokumentace k této stránce Jste přihlášeni jako Josef Kolář (Odhlásit se) Test MSP
Náhled testu. Přijímací zkouška magisterského studia. konečný automat bez zbytečných stavů, který přijímá jazyk popsaný tímto výrazem, má:
Přijímací zkouška magisterského studia Moodle Test MSP Testy VzorTest-2 Pokus 1 Jste přihlášeni jako Josef Kolář (Odhlásit se) Info Výsledky Náhled Upravit Náhled testu 1 Je dán regulární výraz. Minimální
VíceVzorTest-1. Prohlídka náhledu
1 z 11 14.11.2017 11:30 Přijímací zkouška magisterského studia Moodle Test MSP Testy VzorTest-1 Prohlídka náhledu Jste přihlášeni jako Josef Kolář (Odhlásit se) Info Výsledky Náhled Upravit VzorTest-1
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceZpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb.
Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. 1. Informace o přijímacích zkouškách Studijní program: Informatika navazující magisterský
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceUkázka testu Informatiky pro přijímací zkoušky do navazujícího magisterského studia
Ukázka testu Informatiky pro přijímací zkoušky do navazujícího magisterského studia 1. Databázový jazyk SQL obsahuje příkaz SELECT. Příkaz SELECT slouží pro: a. definici dat v tabulkách či pohledech b.
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceBooleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
VíceVýroková a predikátová logika - VI
Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceDatabáze I. 1. přednáška. Helena Palovská
Databáze I 1. přednáška Helena Palovská palovska@vse.cz Co je databáze Mnoho dat Organizovaných používá se model uspořádání Řízený přístup k datům přijímá požadavky v jazyce modelu umožňuje sdílení dat
VíceTÉMATA K ZÁVĚREČNÝM BAKALÁŘSKÝM ZKOUŠKÁM Z INFORMATIKY 2019 Obor: Aplik. inf. - prez. Bc. a Aplik. inf. - komb. Bc.
TÉMATA K ZÁVĚREČNÝM BAKALÁŘSKÝM ZKOUŠKÁM Z INFORMATIKY 2019 Obor: Aplik. inf. - prez. Bc. a Aplik. inf. - komb. Bc. A. TEORETICKÉ A METODOLOGICKÉ ZÁKLADY INFORMATIKY A1. Základy teoretické informatiky
VíceObsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17
Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní
VícePřijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
VíceDatabázové systémy úvod
Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze c Michal Valenta, 2016 BI-DBS, LS 2015/16 https://edux.fit.cvut.cz/courses/bi-dbs/
VíceDeskripční logika. Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157
Deskripční logika Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157 Co nás čeká 1 Základy deskripční logiky 2 Jazyk ALC Syntax a sémantika 3 Cyklické a acyklické TBOXy Petr Křemen
VícePro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
VíceÚvod do databázových systémů
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů Cvičení 3 Ing. Petr Lukáš petr.lukas@vsb.cz Ostrava, 2014 Opakování 4 fáze vytváření
VíceUnární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
Více1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
VícePRŮBĚHOVÝ TEST Z PŘEDNÁŠEK
PRŮBĚHOVÝ TEST Z PŘEDNÁŠEK listopad 2009 souhrn v1 Červené dobře (nejspíš), modré možná Oracle Internet Directory OID: Databáze nemůže z OID přebírat seznam uživatelů *Databáze může získat z OID seznam
VíceHierarchický databázový model
12. Základy relačních databází Když před desítkami let doktor E. F. Codd zavedl pojem relační databáze, pohlíželo se na tabulky jako na relace, se kterými se daly provádět různé operace. Z matematického
VíceDatabáze I. 5. přednáška. Helena Palovská
Databáze I 5. přednáška Helena Palovská palovska@vse.cz SQL jazyk definice dat - - DDL (data definition language) Základní databáze, schemata, tabulky, indexy, constraints, views DATA Databáze/schéma
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
VíceJaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR):
Mezi příkazy pro manipulaci s daty (DML) patří : 1. SELECT 2. ALTER 3. DELETE 4. REVOKE Jaké vlastnosti má identifikující relace: 1. Je relace, která se využívá pouze v případě modelovaní odvozených entit
VíceMatematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
VíceDatabázové systémy BIK-DBS
Databázové systémy BIK-DBS Ing. Ivan Halaška katedra softwarového inženýrství ČVUT FIT Thákurova 9, m.č. T9:311 ivan.halaska@fit.cvut.cz Stránka předmětu: https://edux.fit.cvut.cz/courses/bi-dbs/parttime/start
VíceVýroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
VíceKaždé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Více2.2 Sémantika predikátové logiky
14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky
VíceALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
VíceHammingovy kódy. dekódování H.kódů. konstrukce. šifrování. Fanova rovina charakteristický vektor. princip generující a prověrková matice
Hammingovy kódy konstrukce Fanova rovina charakteristický vektor šifrování princip generující a prověrková matice dekódování H.kódů třída lineárních binárních kódů s A n, 3 n = délka kódu, d = distance
VíceTémata profilové maturitní zkoušky
Obor: 18-20-M/01 Informační technologie Předmět: Databázové systémy Forma: praktická 1. Datový model. 2. Dotazovací jazyk SQL. 3. Aplikační logika v PL/SQL. 4. Webová aplikace. Obor vzdělání: 18-20-M/01
Více1 Nejkratší cesta grafem
Bakalářské zkoušky (příklady otázek) podzim 2014 1 Nejkratší cesta grafem 1. Uvažujte graf s kladným ohodnocením hran (délka). Definujte formálně problém hledání nejkratší cesty mezi dvěma uzly tohoto
VíceAutomaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
VíceKMA Písemná část přijímací zkoušky - MFS 2o16
JMÉNO a PŘÍJMENÍ KMA Písemná část přijímací zkoušky - MFS 2o16 verze 1 / 28. 6. 2016 Pokyny k vypracování: Za každý správně vyřešený příklad lze získat 2 body. U zaškrtávacích otázek, je vždy správná právě
VíceVýroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
VíceUkázka knihy z internetového knihkupectví www.kosmas.cz
Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 1 1 4 5 Oracle průvodce správou,
VíceSeznam zkušebních okruhů pro SZZ v bakalářském oboru Aplikovaná informatika
Seznam zkušebních okruhů pro SZZ v bakalářském oboru Aplikovaná informatika Předmět: Informační a komunikační technologie Skupina A 1. ARCH: Číselné soustavy, převody číselných soustav, základní operace
VíceDatabázové systémy. * relační kalkuly. Tomáš Skopal. - relační model
Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření
VíceÚvod do databázových systémů 1. cvičení
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů 1. cvičení Ing. Petr Lukáš petr.lukas@nativa.cz Ostrava, 2013 Úvod do databázových systémů
Více1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
VíceÚvod do databázových systémů
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky Database Research Group Úvod do databázových systémů Cvičení 3 Ing. Petr Lukáš petr.lukas@vsb.cz
VíceDatabáze SQL SELECT. David Hoksza http://siret.cz/hoksza
Databáze SQL SELECT David Hoksza http://siret.cz/hoksza Osnova Úvod do SQL Základní dotazování v SQL Cvičení základní dotazování v SQL Structured Query Language (SQL) SQL napodobuje jednoduché anglické
Více2. přednáška. Databázový přístup k datům (SŘBD) Možnost počítání v dekadické aritmetice - potřeba přesných výpočtů, např.
2 přednáška 2 října 2012 10:32 Souborově orientované uchování dat Slabý HW Není možné uchovávat "velká data" - maximálně řádově jednotky MB Na každou úlohu samostatná aplikace, která má samostatná data
VíceVlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
VíceInformační technologie. Název oboru: Školní rok: jarní i podzimní zkušební období 2017/2018
Název oboru: Kód oboru: Druh zkoušky: Forma zkoušky: ta profilové maturitní zkoušky z předmětu Souborná zkouška z odborných předmětů informačních technologii (Technické vybavení, Operační systémy, Programové
VíceMatematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující
VíceOborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část
VíceCvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka
Celkové hodnocení BI-MLO (nevyplňujte!) Semestr Zkouška Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka BI-MLO Písemná zkouška 9. února 2016 Matematická logika FIT ČVUT v Praze Varianta B
VíceVZOROVÝ STIPENDIJNÍ TEST Z INFORMAČNÍCH TECHNOLOGIÍ
VZOROVÝ STIPENDIJNÍ TEST Z INFORMAČNÍCH TECHNOLOGIÍ 1. Dědičnost v OOP umožňuje: a) dědit vlastnosti od jiných tříd a dále je rozšiřovat b) dědit vlastnosti od jiných tříd, rozšiřovat lze jen atributy
VíceMatematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková
VíceProfilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
VíceFyzické uložení dat a indexy
Fyzické uložení dat a indexy Michal Valenta Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze c Michal Valenta, 2016 BI-DBS, LS 2015/16 https://edux.fit.cvut.cz/courses/bi-dbs/
VíceObor: Informatika Červen 2005 Okruh: Základy matematiky Otázka: 1. Jméno: Bodů:...
Inf-M-1 Obor: Informatika Červen 2005 Okruh: Základy matematiky Otázka: 1. Uvažujte funkci f(x) =ln(x + p x 2 +1): Najděte její definiční obor, vypočtěte jednostranné limity v krajních bodech definičních
VíceNegativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1
Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit
VíceFormální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
VíceDatabázové systémy úvod
Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2011 BI-DBS, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-dbs/ Michal
Vícegrupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
VíceZáklady počítačových sítí Model počítačové sítě, protokoly
Základy počítačových sítí Model počítačové sítě, protokoly Základy počítačových sítí Lekce Ing. Jiří ledvina, CSc Úvod - protokoly pravidla podle kterých síťové komponenty vzájemně komunikují představují
VícePredikátová logika. prvního řádu
Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)
VíceČíselné vyjádření hodnoty. Kolik váží hrouda zlata?
Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceZákladní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
VíceMísto pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
VíceProfilová část maturitní zkoušky 2013/2014
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
VíceDatabáze II. 1. přednáška. Helena Palovská palovska@vse.cz
Databáze II 1. přednáška Helena Palovská palovska@vse.cz Program přednášky Úvod Třívrstvá architektura a O-R mapování Zabezpečení dat Role a přístupová práva Úvod Co je databáze Mnoho dat Organizovaných
VíceMaturitní témata. IKT, školní rok 2017/18. 1 Struktura osobního počítače. 2 Operační systém. 3 Uživatelský software.
Maturitní témata IKT, školní rok 2017/18 1 Struktura osobního počítače Von Neumannova architektura: zakreslete, vysvětlete její smysl a popište, jakým způsobem se od ní běžné počítače odchylují. Osobní
VíceBinární logika Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita
VíceProvoz Počet zaměstnanců Průměrná nemocnost hod/osoba/rok
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
VíceKritéria hodnocení praktické maturitní zkoušky z databázových systémů
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů Otázka č. 1 Datový model 1. Správně navržený ERD model dle zadání max. 40 bodů teoretické znalosti konceptuálního modelování správné
VíceKritéria hodnocení praktické maturitní zkoušky z databázových systémů
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů Otázka č. 1 Datový model 1. Správně navržený ERD model dle zadání max. 40 bodů teoretické znalosti konceptuálního modelování správné
VíceTémata profilové maturitní zkoušky
Obor vzdělání: 18-20-M/01 informační technologie Předmět: programování 1. Příkazy jazyka C# 2. Datové konstrukce 3. Objektově orientované programování 4. Tvorba vlastních funkcí Obor vzdělání: 18-20-M/01
VíceText úlohy. Systémový katalog (DICTIONARY):
Úloha 1 Částečně správně Bodů 050 / 100 Systémový katalog (DICTIONARY): a Se skládá z tablek a pohledů uložených v tabulkovém SYSTEM b Všechny tabulky vlastní uživatel SYS c Se skládá z tablek a pohledů
VíceÚvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
VíceOrganizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část
Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova
VíceDatabázové systémy. Ing. Radek Holý
Databázové systémy Ing. Radek Holý holy@cvut.cz Literatura: Skripta: Jeřábek, Kaliková, Krčál, Krčálová, Kalika: Databázové systémy pro dopravní aplikace Vydavatelství ČVUT, 09/2010 Co je relační databáze?
Více10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
VíceMatematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
VíceKód uchazeče ID:... Varianta: b. 1. Z původní ceny byl výrobek zlevněn o 10 % a potom ještě o 8 % nové ceny.
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 014 Kód uchazeče ID:.................. Varianta: 35 1. Z původní ceny byl výrobek zlevněn o 10 % a potom ještě o 8 % nové ceny.
Víceplatné nejsou Sokrates je smrtelný. (r) 1/??
Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice
VíceDatabázové systémy úvod
Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2012 BI-DBS, ZS 2012/13 https://edux.fit.cvut.cz/courses/bi-dbs/ Michal
VíceOperace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
VíceInovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky.
Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Projekt ESF OP VK reg.č. CZ.1.07/2.2.00/28.0209 Elektronické opory a e-learning pro obory výpočtového
VíceNáhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
VícePŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Více4.2 Syntaxe predikátové logiky
36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a
VíceInformační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází
1 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Požadavky kreditového systému. Relační datový model, relace, atributy,
VíceKód uchazeče ID:... Varianta: 13
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 13 1. V únoru byla zaměstnancům zvýšena mzda o 20 % lednové mzdy. Následně
VíceDeterminanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Více1/1 ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA PŘIJÍMACÍ ŘÍZENÍ 2017/2018
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA PŘIJÍMACÍ ŘÍZENÍ 2017/2018 Informační technologie 1 - Doporučená doba zpracování: 40 minut 1) Termín DCL v relačně databázové technologii
Vícedo magisterské etapy programu ELEKTRONIKA A KOMUNIKACE
JMÉNO A PŘÍJMENÍ: 1 VZOROVÝ TEST K PŘIJÍMACÍ ZKOUŠCE do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE Odpovědi na otázky pište do volného místa za každou otázkou. Pro pomocné výpočty použijte čistou
VíceMatematická indukce. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 3
doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 3 Evropský sociální fond.
VícePojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
VíceI) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů):
I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů): 1. Všechna prvočísla větší než 2 jsou lichá. Je-li prvočíslo větší než 2, pak je liché.
VíceLogika a logické programování
Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho
VíceModely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
VíceVýroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2018/2019 1 / 13 Dokončené tablo Chceme, aby dokončená bezesporná
Více